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Abstract.—Consensus trees are required to summarize trees obtained through MCMC sampling of a posterior distribution,
providing an overview of the distribution of estimated parameters such as topology, branch lengths, and divergence times.
Numerous consensus tree construction methods are available, each presenting a different interpretation of the tree sample.
The rise of morphological clock and sampled-ancestor methods of divergence time estimation, in which times and topology
are coestimated, has increased the popularity of the maximum clade credibility (MCC) consensus tree method. The MCC
method assumes that the sampled, fully resolved topology with the highest clade credibility is an adequate summary of the
most probable clades, with parameter estimates from compatible sampled trees used to obtain the marginal distributions
of parameters such as clade ages and branch lengths. Using both simulated and empirical data, we demonstrate that MCC
trees, and trees constructed using the similar maximum a posteriori (MAP) method, often include poorly supported and
incorrect clades when summarizing diffuse posterior samples of trees. We demonstrate that the paucity of information
in morphological data sets contributes to the inability of MCC and MAP trees to accurately summarise of the posterior
distribution. Conversely, majority-rule consensus (MRC) trees represent a lower proportion of incorrect nodes when
summarizing the same posterior samples of trees. Thus, we advocate the use of MRC trees, in place of MCC or MAP trees,
in attempts to summarize the results of Bayesian phylogenetic analyses of morphological data. [Bayesian phylogenetics;
consensus trees; divergence time estimation; total-evidence dating; morphology.]

Recently developed tip-calibration methods facilitate
the inclusion of fossil species and morphological
data alongside living species and molecular data
for phylogenetic and divergence time estimation,
making use of all available relevant data. Indeed, these
methods have ignited interest among paleontologists
in estimating true evolutionary timescales, even for
entirely extinct clades for which only morphological
data are available (Bapst et al. 2016; Matzke and
Wright 2016; Wright 2017a,b; Wright and Toom
2017). Thus, these methods have the potential to
revolutionize our understanding of evolutionary
history and unite the hitherto disparate disciplines of
paleontological and molecular phylogenetics. However,
interpreting the results of such analyses is complicated
because morphological data often yield a very diffuse
posterior sample of topologically disparate trees that
are difficult to reconcile meaningfully in a single
consensus tree.

Several methods are available to summarize the results
from Bayesian posterior tree samples. A straightforward
approach to representing the posterior distribution of
trees is to choose a single tree from the sample of trees
that can be considered optimal by maximizing some
criterion of support. One such approach is to use the
single sampled topology with the greatest posterior
probability, the maximum a posteriori tree (MAP). As
Markov chain Monte Carlo (MCMC) sampling is used
to obtain a posterior sample of trees it is never certain
that the true MAP tree is present in the sample,
unless it is possible to obtain an infinite number of
samples. This is because the MCMC procedure does
not attempt to search for a tree that maximizes the

posterior probability but instead samples trees with
frequency proportional to their posterior probability.

There are
(
2n−3

)!
2n−2

(
n−2

)! possible strictly bifurcating trees for

n taxa (Felsenstein 1978); if the posterior distribution
of these trees is very diffuse it is possible that many
unique topologies are sampled. To obtain the MAP
tree, the MCMC sampling procedure must therefore be
performed for an inordinate amount of time as the goal is
no longer to approximate the posterior distribution but,
instead, to inefficiently find the tree with the greatest
posterior probability. Another sampled tree consensus
method, Maximum Clade Credibility (MCC), is less
susceptible to this source of error as it considers the
distribution of clade support in the posterior sample
of trees. The MCC method has become one of the
most popular consensus methods for summarizing tree
samples obtained in tip-calibrated analyses in which
morphological data are analyzed (Pyron 2011; Wood
et al. 2013; Dembo et al. 2015; Dornburg et al. 2015;
Dembo et al. 2016; Herrera and Davalos 2016; Matzke
and Wright 2016; Wright 2017a,b; Wright and Toom 2017).
This popularity is perhaps because it yields consensus
trees that are highly resolved, unlike more conventional
methods, such as Majority Rule Consensus (MRC),
or alternatively because it is the default method in
the popular TreeAnnotator consensus tree construction
utility that is often used with BEAST (Bouckaert et al.
2014). The MCC method identifies the single tree in the
posterior sample with the largest sum (or alternatively,
product) of posterior probabilities across its constituent
bifurcations (Heled and Bouckaert 2013). Like the MAP
tree, the MCC tree will not explicitly account for
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topological uncertainty in its structure, as each sampled
tree in the posterior sample is invariably fully resolved.
As with the MAP tree, the fully resolved nature of
the MCC tree is appealing, but it may be a poor
summary of the posterior distribution of trees, as it
has the potential to include clades with low posterior
probabilities that are poorly supported by the data. The
potential inclusion of such clades in MCC trees may
be caused by morphological data which often yield
a diffuse sample of topologically disparate trees from
the posterior distribution, principally due to a relative
lack of phylogenetic information distributed across a
matrix consisting of few characters (Gelman et al. 2013;
Steel 2013). Thus, MCC trees based on morphological
data, have the potential to include clades with low
posterior probabilities which are, by definition, poorly
supported by the data and, therefore, likely to be
spurious.

The MRC tree method offers an alternative approach
in summarizing a distribution of trees by sacrificing
the precision associated with potentially erroneous
clades for total topological accuracy. MRC trees present
divergence times on a set of well-supported (posterior
probability >0.5) bifurcations, or soft polytomies, in the
presence of uncertainty. Such a conservative approach
to presenting topological uncertainty may be desirable,
particularly in a Bayesian framework in which obtaining
the marginal posterior distribution of model parameters
results in the explicit estimation of their uncertainty.

For morphological clock analyses, the accuracy of the
consensus tree topology upon which clade ages are
presented, is integral to the accuracy of the reported
timescale. This is because the marginal distributions of
clade ages are constructed from only the trees in the
sample that are compatible with the consensus topology
(Heled and Bouckaert 2013). Reporting ages for spurious
clades will have a significant impact on interpretations
of evolutionary history. The consensus tree used to
summarize the posterior distribution must, therefore,
minimize incorrect clades while also maximizing the
inclusion of correct clades. Here, using simulated
data sets containing variable levels of phylogenetic
information, we demonstrate that the increased variance
of a finite posterior sample of trees obtained from
morphological data is often poorly summarized by
MCC and MAP trees as they often include numerous
incorrect clades. We also show that MRC trees
outperform MCC and MAP trees in summarizing diffuse
posterior distributions, presenting a more conservative
summary of topology, resulting in the inclusion of
fewer incorrect clades. Finally, by analyzing several
empirical data matrices that are expected to possess
differing amounts of observed information about
the same set of divergences, we demonstrate that
both the MCC and MAP methods are likely to be
inappropriate when summarizing posterior samples of
trees obtained from empirical morphological data as
consensus trees.

MATERIALS AND METHODOLOGY

We simulated matrices that exhibit varying levels
of phylogenetic information, performed coestimation
of divergence times and topology on these matrices,
and then constructed MCC, MAP, and MRC trees
from samples of the posterior distribution. To simulate
matrices with varying amounts of observed information,
we exploited the relationship between the quantity
of independent and identically distributed (i.i.d.) data
drawn from the underlying process in question and
the variance of the posterior distribution around the
true value of parameter estimates; this relationship is
commonly termed consistency (Gelman et al. 2013). We
can therefore assume that small matrices simulated with
the standard morphological model (Lewis 2001) and
analyzed with that same model will produce a more
diffuse posterior distribution than larger matrices, and
that larger matrices will contain more information about
the distribution of parameters in the model.

Simulated Matrices
All simulations were performed on an arbitrary

36-tip time scaled phylogeny containing four fossil
taxa (Supplementary Material available on Dryad at
https://doi.org/10.5061/dryad.66s9h). The simulations
used the Mk model of morphological evolution (Lewis
2001), with 100 replicate matrices of either 100, 1000, or
10,000 binary characters produced using this model and
the assumption of a strict clock.

Empirical Matrices
We analyzed three empirical matrices spanning

common data types used in divergence time estimation.
These matrices were obtained by splitting the total-
evidence matrix from Ronquist et al. (2012a) into
its constituent elements. The first empirical matrix
consisted of the morphological characters from this
analysis only (353 characters), the second matrix
consisted of the molecular characters only (5096
characters), with all fossil taxa removed; the final matrix
was a total-evidence combination of both molecular and
morphological characters for extinct and extant taxa
(5449 characters).

Divergence time estimation—For analyses of our simulated
data sets, a posterior sample of trees was obtained
using MrBayes 3.2 (Ronquist et al. 2012b). For simulated
matrices, errorless point calibrations were applied to
noncontemporaneous tips and a root calibration was
applied as a gamma distribution with mean = 1 and
standard deviation = 0.1. A strict clock was employed
with a prior on the rate of G(1,2). The Mk model
(Lewis 2001) was used to analyze the simulated data.
Four chains of Metropolis-coupled MCMC sampling
were performed for one million generations, sampling
every hundredth generation to produce a final posterior

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx086#supplementary-data
https://doi.org/10.5061/dryad.66s9h
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sample of 10,000 trees. For empirical data sets, we
performed analyses as in O’Reilly et al. (2015). Consensus
trees were constructed for each posterior sample of trees
after a 25% burnin, MCC trees were constructed in
TreeAnnotator, MAP trees were taken from the MrBayes
output files, and MRC trees were constructed by the sumt
function in MrBayes.

Consensus Tree Efficacy Tests
For both simulated and empirical matrices, we

performed several tests of the ability of the MCC, MAP,
or MRC tree to summarize the posterior distribution of
sampled trees. Using a custom R script, we identified
all bipartitions present in each individual tree in the
posterior sample (post burn-in) for each replicate and
then obtained the posterior probability of each of these
bifurcations. We use the number of unique bipartitions
sampled from the posterior distribution of each analysis
to approximate the variance of the posterior distribution
itself.

Effective MCMC sampling of the posterior
distribution requires a Markov-chain with a stationary
distribution that is the same as the posterior distribution,
in addition to a finite number of samples that is large
enough to accurately approximate the distribution.
When MCMC sampling of the posterior distribution
is performed, estimated parameter values are sampled
with a frequency proportional to their posterior
probability. Therefore, if the posterior distribution of a
discrete parameter is highly concentrated around the
true value of the estimated parameter, a small number of
discrete parameter values will be sampled regularly in a
finite sample of the posterior distribution. We therefore
consider the number of unique sampled bifurcations
as an acceptable approximation of the variance of the
posterior distribution of topologies.

For simulated matrices, we obtained the number of
clades in the MCC, MAP, or MRC tree that are not
found in the generating tree, and are therefore incorrect.
This was achieved by comparing the constituent taxa of
each clade in the generating tree with the constituent
taxa of each clade, whether defined by a bifurcation or
a soft polytomy, in the consensus trees. If any of the
clades in the consensus tree consisted of taxa that did
not form a monophyletic clade in the generating tree,
they were considered incorrect. We also obtained the
number of correct clades within each consensus tree.
MCC and MAP trees will possess a constant number
of constituent clades, whereas MRC trees may include
soft polytomies and will therefore present a variable
number of clades. Therefore, we also calculated the
proportion of nodes that are incorrect in MRC, MAP, or
MCC trees, correcting for the resolution of the consensus
tree. For each replicate, we also subtracted the number
of incorrect nodes from the number of correct nodes
for each consensus tree to obtain a score for the overall
accuracy of the estimated topologies.

For empirical matrices we also consider the degree
of underrepresentation of clades with relatively high

support across consensus tree construction methods.
We use three different criteria to determine whether a
sampled clade should be represented in the MCC or
MAP tree but is missing from either, i.e. if it meets
at least one of these criteria it is considered valid but
unrepresented. The three separate criteria for a clade
to be considered valid but unrepresented are: (i) a
posterior probability greater than that of the most poorly
supported clade in the MCC or MAP consensus tree; (ii)
a posterior probability greater than the mean posterior
probability of clades in the MCC or MAP tree; or (iii) a
posterior probability greater than 0.5.

RESULTS

Simulated Matrices
As the number of simulated characters was increased

the posterior sample of trees became more concentrated,
as reflected in the decreasing number of unique sampled
bifurcations (Table 1). For all consensus tree methods, the
mean and range of both the number and percentage of
incorrect nodes decreased as the posterior distribution
became less diffuse (Table 2). When the posterior sample
of trees was at its most diffuse, based on 100-character
data sets, MRC consensus trees included far fewer
incorrect nodes than MCC or MAP trees, whether
expressed in absolute terms or as a proportion of the total
number of clades in the consensus tree. MAP trees often
contained more incorrect nodes than MCC trees (Table 2;
Figs. 1–3). MRC trees recovered from 100-character data
sets were never fully resolved, with trees containing a
mean of 22 resolved nodes out of a possible 35 (63%),
with a range of 16 to 29 (46–83%). MCC trees recovered
from 100-character data sets possessed the most correct
nodes in absolute terms (on average), with MRC and
MAP trees possessing a similar number of correct clades
to one another (Fig. 2). Conversely, MCC and MAP trees
also included more incorrect nodes than MRC trees in
both absolute and proportional terms (Table 2; Fig. 2).
When the number of correct nodes is expressed as a
proportion of the total number of resolved nodes in the
consensus tree, MRC trees greatly outperformed MCC
and MAP trees (Table 2; Fig. 2). When the number of
incorrect nodes is subtracted from the number of correct
nodes presented in each consensus tree, the MRC tree
often exhibited a greater total level of accuracy than
MCC trees, which in turn often exhibited a higher level
of accuracy than MAP trees (Fig. 2). Both MCC and

TABLE 1. Number of unique sampled bipartitions obtained from
the posterior distribution for 100 replicate simulated data sets

Number of unique sampled bipartitions

Number of characters Mean Range

100 3882.0 1010–9726
1000 208.7 177–246
10,000 176.9 142–220
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TABLE 2. Absolute number of incorrect clades in maximum clade credibility (MCC), majority rule consensus (MRC), and maximum a
posteriori (MAP) trees constructed for posterior distributions sampled from 100 replicate simulated data sets

MCC MRC MAP

Number of characters Mean (%) Range (%) Mean (%) Range (%) Mean (%) Range (%)

100 10.5 (30.1) 520 (14.3–57.1) 2.7 (11.9) 0–7 (0–35) 14.8 (42.3) 5–22 (14.3–62.9)
1000 1.69 (4.8) 0–5 (0–14.3) 1.03 (3) 0–4 (0–12.1) 1.72 (4.9) 0–5 (0–14.3)
10,000 0.03 (0.1) 0–1 (0–2.9) 0.02 (0.1) 0–1 (0–2.9) 0.03 (0.1) 0–1 (0–2.9)

Note: The percentage of nodes that are incorrect for each consensus tree method are presented in parentheses.
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FIGURE 1. The number and proportion of incorrect bifurcations in MCC, MAP, and MRC summarizations of simulated data sets of different
sizes plotted against the number of unique bifurcations sampled in each analysis. MRC trees present fewer incorrect nodes in both absolute and
proportional terms, with MCC presenting fewer incorrect nodes than MAP trees. When few characters are analyzed there are more incorrect
nodes, in both absolute and proportional terms, in MCC trees than MAP trees. When more characters are analyzed the performance of all three
consensus tree methods begins to converge.

MAP trees occasionally produced topologies with more
incorrect nodes than correct nodes, as can be seen in
the frequency of replicates with a value below 0 in
Figure 3.

The differences between the performance of MRC,
MAP, and MCC trees diminished as the number of
analyzed characters increased and the posterior sample
became less diffuse, with differences between the
three methods becoming indistinguishable when 10,000
characters were analyzed (Fig. 1; Table 2; Supplementary
Material Figures available on Dryad).

Empirical Matrices

The posterior sample of trees obtained using
molecular data was the least diffuse of all three data
types (Table 3). The addition of morphological data in
the total-evidence analysis dramatically increased the
number of sampled clades and, therefore, yielded a more
diffuse posterior sample. It should be noted, however,
that this analysis involves more taxa and will therefore
naturally allow for more unique sampled bipartitions.
Analysis of morphological data on its own produced
the most diffuse posterior sample, as inferred from the
number of unique sampled clades.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx086#supplementary-data
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FIGURE 2. The number and proportion of correct and incorrect clades presented in consensus trees constructed from 100 replicate matrices
of 100 simulated characters. MCC trees often present more correct nodes than MRC or MAP trees in absolute terms, but they also present many
more incorrect nodes than MRC trees in absolute terms. MRC trees present proportionally more correct nodes and fewer incorrect nodes than
either MAP or MCC trees.
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FIGURE 3. The number of incorrect nodes found within each consensus tree, subtracted from the number of correct nodes found tree within
the same consensus trees constructed from 100 replicate matrices of 100 morphological characters. In several cases both MCC and MAP trees
contain more incorrect nodes than correct ones.

The number of valid but unrepresented clades derived
from each set of posterior samples, increased with
inferred diffusion, with molecular data resulting in MCC
and MAP trees with few overlooked clades and the
smallest posterior probabilities for unrepresented clades
(Tables 3 and 4). The addition of morphological data,

or the analysis of morphological data alone, greatly
increased the number of clades unrepresented in MCC
and MAP trees (Tables 3 and 4).

The taxa that defined the valid but unrepresented
clades that possessed the greatest support in each
consensus tree (Table 3), were as follows: total-evidence
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TABLE 3. Features of valid but unrepresented clades in MCC trees constructed from posterior distributions obtained using different data
types

Data source
Number of sampled
clades

Number of clades missing
from MCC tree with pp
>minimum pp of clades
in MCC tree

Max pp of clades missing
from MCC tree with pp
>minimum pp of clades
in MCC tree

Number of MRC clades
not presented in MCC
tree

Molecular 256 13 0.55 1
Morphology 94,660 41,623 0.84 8
Total evidence 29,610 1372 0.78 3

TABLE 4. Features of valid but unrepresented clades in MAP trees constructed from posterior distributions obtained using different data
types

Data source

Number of clades missing
from MAP tree with pp
>minimum pp of clades
in MAP tree

Max pp of clades missing
from MAP tree with pp
>minimum pp of clades
in MAP tree

Number of MRC clades
not presented in MAP tree

Molecular 31 0.90 5
Morphology 41,629 0.95 13
Total evidence 5803 0.65 4

MCC (Tenthredonoidea, Aglaostigma, Dolerus, Taxonus);
total-evidence MAP (StephanidaeA, StephanidaeB, Meg-
alyra, Trigonalidae, Chalcidoidea, Evanioidea, Ichneumo-
nidae, Cynipoidea, ApoideaA, ApoideaB, ApoideaC,
Vespidae, Stephanogaster, Leptephialtites, Cleistogaster,
Symphytopterus); morphology-only MCC (Sirex, Xeris,
Urocerus, Tremex); morphology-only MAP (Runaria,
Paremphytus); molecular-only MCC (StephanidaeA,
StephanidaeB, Megalyra, Chalcidoidea, Cynipoidea);
molecular-only MAP (Paremphytus, Tenthredonoidea,
Aglaostigma, Dolerus, Selandria, Strongylogaster, Monop-
hadnoides, Metallus, Athalia, Taxonus, Hoplocampa,
Nematinus, Nematus, Cladius, Monoctenus, Gilpinia, Dip-
rion, Cimbicinae, Abia, Corynis, Arge, Sterictiphora, Perga,
Phylacteophaga, Lophyrotoma, Acordulecera, Decameria).

DISCUSSION

Using simulated data, the results of our analyses show
that when summarizing a diffuse posterior sample of
trees, MAP and MCC consensus trees often include
many correct clades, but at the cost of the inclusion
of large numbers of incorrect clades. Conversely, MRC
trees resolve fewer clades in total, but those that are
resolved are less likely to be incorrect. 100-character data
sets yield a reduced level of information regarding the
distribution of the parameters of the model. In this case,
the MRC tree often outperforms the MCC and MAP
trees in minimizing the inclusion of both the absolute
number and percentage of incorrect clades (Figs. 1
and 3). With larger numbers of simulated characters
there is increased information about the estimated model
parameters and, therefore, the posterior distribution
is expected to become more concentrated around the
true value of the model parameters (Gelman et al.
2013). In these cases, MCC, MAP, and MRC methods

obtain comparable levels of accuracy, as measured by the
proportion of incorrect clades that are presented by these
consensus tree methods (Fig. 1). Our results suggest
that, when analyzing matrices with large numbers of
informative characters, the use of either the MCC, MAP
or MRC method is justifiable, but when there is a paucity
of information in the observed data, such as when
morphological data are analyzed, a more considered
choice needs to be made. This choice must be based on
whether the inclusion of an incorrect clade is considered
worse than the omission of a correct clade; the MRC tree
will likely minimize the inclusion of incorrect clades, the
MCC tree is more likely to maximize the inclusion of
accurate clades, and the MAP tree will include fewer
correct clades, and therefore more incorrect clades,
than the MCC tree. When choosing consensus tree
construction methods, the trade-off between type I and
type II errors has previously been explored in a decision
theory framework, with the MRC tree considered the
optimal topology if the inclusion of an incorrect clade
is considered worse than the exclusion of a correct
clade (Holder et al. 2008). The results we present here
are congruent with this, suggesting that the optimal
consensus tree for reporting parameter estimates from
morphological data sets is likely to be the MRC tree.

Categorical morphological data can inform parameter
estimates alone, or in tandem with molecular data,
in a total-evidence approach (Pyron 2011; Ronquist
et al. 2012a). By using the number of uniquely
sampled bipartitions as a proxy for the variance
of the posterior distribution, we have shown that
empirical analyses that utilize morphological data
in both exclusive and total-evidence approaches, are
likely to possess a markedly more diffuse posterior
distribution than if molecular data from the same
group is analyzed alone, and are therefore less suitable
for summary using MCC or MAP trees. Indeed, the
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0.64

0.61

0.73

0.86
0.5

0.7

0.89

0.77
0.94

0.56
0.95

0.78
0.93

0.68

0.84 0.73

0.67

0.88
0.95

0.83

0.88
0.95

0.82
0.94

0.91

0.63

0.74
0.83

0.59
0.86

0.79

0.9

0.97

0.54

0.83

0.59
0.73

0.66

0.93

MAP

Ichneumonidae
Cynipoidea
Megalyra
Evanioidea
ApoideaA
Vespidae
Trigonalidae
Mesorussus
StephanidaeA
Orussus
Cleistogaster
Stephanogaster
Symphytopterus
Leptephialtites
Praeoryssus
Paroryssus
Grimmaratavites
Xiphydria
Sogutia
Brigittepterus
Syntexis
Sirex
Urocerus
Xeris
Tremex
Aulisca
Karatavites
Hartigia
Calameuta
Cephus
Prosyntexis
Thoracotrema
Trematothorax
Ghilarella
Kulbastavia
Anaxyela
Brachysyntexis
Syntexyela
Aulidontes
Onochoius
Sepulca
Xyelula
Chalcidoidea
Rudisiricius
Turgidontes
Megalodontesc
Megalodontessk
Ferganolyda
Mesolyda
PamphiliidaeUndesc
Neurotoma
Onycholyda
Pamphilius
Cephalcia
Acantholyda
Coleo Adephaga
Protosirex
Xyelotoma
Acordulecera
Decameria
Lophyrotoma
Phylacteophaga
Perga
Sterictiphora
Arge
Gilpinia
Diprion
Monoctenus
Cimbicinae
Abia
Corynis
Athalia
Palaeathalia
Lepid Papilionidae
Aglaostigma
ApoideaB
Nematus
Nematinus
Cladius
Hoplocampa
Selandria
Strongylogaster
Metallus
Monophadnoides
Tenthredo
Taxonus
Dolerus
Blasticotoma
Runaria
Paremphytus
StephanidaeB
Undatoma
Pseudoxyelocerus
Dahuratoma
Asioxyela
ApoideaC
Gigantoxyelinae
Macroxyela
Xyela
Xyela mesozoica
Spathoxyela
Eoxyela
Liadoxyela
Abrotoxyela
Angaridyela
Nigrimonticola
Triassoxyela
Chrysopidae
Raphidioptera
Mecoptera
Coleo Polyphaga
Paraneoptera
Orthoptera

1

1

0.59

0.05

0

0

0

0.28

0

0.16

0.01

0.19

0

0.08

0.33

0.74
0.83

0.59
0.86

0.63
0.13

0.18

0.01
0.05

0

0.02

0.01
0.84

0.37

0.73

0

0

0

0.11

0.49
0.91

0.29

0.01

0

0.67
0.09

0.28

0

0.01
0.1

0.14

0

0

0

0

0.1
0.31

0.97

0.02

0.04

0.77
0.94

0.56
0.95

0

0.01

0

0.06

0.61
0.73

0.04
0.86

0.25

0.89

0

0.88
0.95

0

0
0.82

0.94

0

0

0

0
0.01

0.17

0.09
0.01

0.78
0.93

0.68

0.9

0.83
0.21

0

0.01

0.02
0.01

0

0.48

0.04

0

0

0

0
0.03

0.09

0

0
0.03

0.15

0.05

0.59
0.73

0.13

0.93

MCC

Ichneumonidae
Cynipoidea
Megalyra
Evanioidea
ApoideaA
Vespidae
Trigonalidae
Mesorussus
Orussus
StephanidaeA
Cleistogaster
Stephanogaster
Symphytopterus
Leptephialtites
Praeoryssus
Paroryssus
Brigittepterus
Xiphydria
Grimmaratavites
Karatavites
Syntexis
Sirex
Urocerus
Xeris
Tremex
Lepid Papilionidae
Aulidontes
Rudisiricius
Onochoius
Turgidontes
Hartigia
Cephus
Calameuta
Prosyntexis
Thoracotrema
Trematothorax
Aulisca
Sepulca
Ghilarella
Kulbastavia
Brachysyntexis
Anaxyela
Syntexyela
Xyelula
Sogutia
Protosirex
Ferganolyda
PamphiliidaeUndesc
Megalodontesc
Megalodontessk
Neurotoma
Onycholyda
Pamphilius
Cephalcia
Acantholyda
Xyelotoma
Acordulecera
Decameria
Lophyrotoma
Phylacteophaga
Perga
Sterictiphora
Arge
Cimbicinae
Abia
Corynis
Gilpinia
Diprion
Monoctenus
Nematus
Nematinus
Cladius
Hoplocampa
Metallus
Monophadnoides
Aglaostigma
Selandria
Strongylogaster
Athalia
Tenthredo
Taxonus
Dolerus
Palaeathalia
Blasticotoma
Runaria
Paremphytus
ApoideaC
Undatoma
ApoideaB
StephanidaeB
Pseudoxyelocerus
Dahuratoma
Mesolyda
Coleo Adephaga
Chalcidoidea
Gigantoxyelinae
Eoxyela
Asioxyela
Nigrimonticola
Macroxyela
Xyela
Xyela mesozoica
Spathoxyela
Abrotoxyela
Angaridyela
Liadoxyela
Triassoxyela
Chrysopidae
Raphidioptera
Mecoptera
Coleo Polyphaga
Paraneoptera
Orthoptera

1

1

0.59

0.05

0

0

0

0

0

0.02

0.03

0.28

0.16

0.05

0.19

0.15

0.28

0.11
0.74

0.83

0.59
0.86

0.63
0.45

0.46

0.83

0.11
0.32

0.03

0.04

0.37

0.01
0.73

0.03
0.21

0.05

0

0.01
0.11

0.02
0.49

0.91
0.44

0.1

0.01
0.13

0.01
0.18

0.28

0.01

0.07

0.05

0.31

0.26

0.97

0.77
0.22

0.94

0.95

0.01

0

0

0

0.04

0.02

0.05

0.15

0.37

0.61

0.73
0.86

0.25

0.7

0.89

0.82
0.94

0.88
0.95

0.78
0.19

0.93

0.9

0.11

0.18
0.79

0.43
0.83

0.41

0.02

0.02

0.03
0.88

0.95

0.01

0.48

0

0.04

0

0
0

0

0.05

0.02

0.03
0.66

0.64
0.73

0.15

0.59
0.73

0.66

0.93

FIGURE 4. MRC, MAP, and MCC consensus trees for Hymenoptera constructed from a posterior sample of trees obtained when only
morphological data was analyzed. The trees are presented as cladograms with arbitrary branch lengths as summary of the posterior distribution
of branch lengths results in numerous branches with negative length for the maximum clade credibility tree. The posterior probability of each
clade is presented as a node label. In the MCC and MAP trees many clades express very low support and most are not consistent with molecular
phylogenies or conventional understanding of Hymenopteran evolution. For the MRC tree few clades can be presented with support >0.5, but
those that are present are broadly congruent with established Hymenopteran phylogenetic relationships. Posterior probabilities of 0 are induced
by the rounding of values to 2 decimal places.

MCC tree constructed from the posterior distribution
obtained from morphological data alone, contains few
clades consistent with other published hymenopteran
phylogenies (Fig. 4; Supplementary Material Figures
available on Dryad) (Klopfstein et al. 2015; Zhang
et al. 2016). Conversely, the MRC tree contains few
resolved clades, but those that are presented are broadly
congruent with established phylogenetic relationships.
The exclusion of correct, well-supported, clades in
MCC and MAP trees is particularly worrying as
this will influence understanding of both evolutionary
relationships and, when divergence times are presented
on a consensus tree, our understanding of evolutionary
timescales. For example, in the total-evidence MCC
tree, the best-supported unrepresented clade has strong
support, with a posterior probability of 0.78 (Table 3).
These taxa are resolved in a clade in the MCC tree that
includes three other taxa, but this has less than 50%
support (posterior probability of 0.43), which will not

therefore be resolved in the MRC tree. Similarly, the
best-supported unrepresented clade in the morphology-
only MAP tree has strong support (posterior probability
of 0.95; Table 3). However, the smallest clade that
contains these taxa also includes an additional taxon and
exhibits <0.009 posterior probability (Supplementary
Material Figures available online on Dryad), effectively
precluding the resolution of a strongly supported clade
in favor of a very poorly supported clade.

When summarizing a diffuse posterior distribution,
the propensity of the MCC and MAP trees to include
spurious clades is intimately linked to their inability
to represent topological uncertainty as soft polytomies.
A finite sample of trees from a highly concentrated
posterior distribution will consist of only a small number
of clades that have been visited frequently by the
MCMC algorithm. In such circumstances, there is a
high probability of the set of best-supported clades
appearing simultaneously in any sampled tree and,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx086#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx086#supplementary-data
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therefore, the MCC or MAP tree. Conversely, when
the tree sample is diffuse, the probability of the set
of best-supported clades appearing simultaneously in
any single sampled tree is diminished, increasing the
chances that the MCC or MAP tree will include poorly
supported and incorrect clades. This problem is likely
to be exacerbated as the number of taxa included in an
analysis increases as this will also increase the number of
possible bifurcations, reducing the chance of the best set
of bifurcations appearing simultaneously. Alternatively,
MRC trees represent frequently sampled and, therefore,
well-supported, clades exclusively, collapsing poorly
supported bifurcations into soft polytomies. Naturally,
this reduces the number of spurious and infrequently
sampled, poorly supported clades. Our results highlight
the fact that poorly supported clades should not be
considered credible in general, as collapsing such
clades into soft polytomies often improves the overall
topological accuracy of a consensus tree.

The relative efficacy of consensus tree construction
methods has a large influence over the presentation and
interpretation of divergence time estimates in molecular,
morphological or total-evidence clock analyses. To
obtain the marginal distributions on node ages, the
tree sample is examined for clades that are compatible
with the consensus tree and a set of node ages is
constructed for each clade in the consensus tree from
these compatible sampled trees (Heled and Bouckaert
2013). Therefore, it is likely that for morphological clock
or total-evidence dating analyses, estimates of clade
age are more likely to be presented for incorrect or
poorly supported clades in MCC and MAP trees, than
in MRC trees. As MCC and MAP trees are more likely to
present age estimates for spurious clades, the MRC tree
can be considered the optimal topology when inferring
evolutionary timescales.

While the presentation of topological uncertainty
through the use of soft polytomies often improves
the overall accuracy observed in MRC trees when
morphological data are analyzed, the potential lack of
resolution means that such trees may not be suitable
for further downstream analyses that either require a
strictly bifurcating topology or erroneously interpret
soft polytomies as true multifurcating divergence events.
Such downstream analyses should preferably use the
posterior sample of trees as input and allow the
topological uncertainty of this distribution to be an
intrinsic part of the analysis. If this is not possible
then the MCC or MAP tree may be considered as
potential input trees but, as shown here, these trees
are likely to contain poorly supported clades that will
impact negatively on the accuracy of estimates that are
dependent on these topologies and timescales.

CONCLUSION

Using simulated data, we have demonstrated that
MCC and MAP consensus trees often include more
incorrect nodes than MRC trees when attempting to

summarize particularly diffuse posterior distributions.
With empirical data, we have shown that when
morphological data are added to analyses, MCC and
MAP methods have a propensity to include poorly
supported and likely incorrect clades. These results
suggest that MCC or MAP trees may be unsuitable for
use with phylogenetic methods that attempt to integrate
morphological data, especially those in which parameter
estimates are summarized as annotations on a consensus
tree, such as divergence time estimation analyses.
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