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Rice cyclic nucleotide-gated channel 13 is a novel player in pollen
tube-pistil signaling

Lower plants generate mobile sperm cells that must reach their female counterparts by swim-
ming. This requirement for water is a disadvantage for these plants as compared with angio-
sperms, for which the dry pollen attaches to a stigma and becomes hydrated, enabling the
emerging pollen tube to grow in the protected environment of the pistil. After adhesion,
hydration, and germination of the pollen at the stigmatic papilla cells, the pollen tube enters
the stigma and grows in the intercellular space between papilla cells towards the style and
transmission tract (TT). The TT contains a nutrient-rich extracellular matrix (ECM) and
guides the pollen tube to the ovary. After penetrating the septum, the pollen tube grows
through the funiculus and then enters the ovule though the micropyle to deliver the two non-
flagellate sperm cells to the two female gametes, leading to double fertilization, a prerequisite
to seed formation [1]. The 2017 study by Xu et al. [2] reveals, for the first time, the importance
of a Ca®* signal generated by rice cyclic nucleotide-gated channel 13 (OsCNGC13) in the pistil
to induce programmed cell death (PCD), which facilitates proper pollen tube growth. Further-
more, they showed this step significantly affects the yield of rice grains.

The events during pollen grain—stigma interaction and pollen tube reception are relatively
well studied [1, 3], while much less is known about the growth of the pollen tube through the
style and TT tissue—particularly the signaling between the pollen tube and the pistil tissue(s).
Intracellular signaling in the pollen tube during pollen tube growth has been studied exten-
sively [4]. The role of Ca2+ is well established: in the pollen tube, a Ca2+ gradient is essential
for pollen tube guidance [5]. External Ca2+ from the pistil must be taken up by the pollen tube
and is required for its growth. Several potential Ca2+ channels that are expressed in the pollen
tube have been identified in Arabidopsis. These include two glutamate receptor-like (GLR)
channels (GLR1.2 and GLR3.7) [6] and six cyclic nucleotide-gated channels (CNGCs; CNGC7,
8,9, 10, 16, and 18), of which CNGC18 has been shown to be a Ca2+-conducting channel that
is essential for tip growth in pollen tubes [7] and pollen tube guidance (Fig 1) [5].

Pollen tubes can grow in vitro; however, for the pollen tube to make its way through the
style to the ovary, some communication with the sporophyte is necessary. But so far, few sig-
naling components have been identified that drive the interaction between the TT and the pol-
len tube. On the pollen tube side, two membrane-localized leucine rich repeat (LRR) receptor
kinases, LePRKI and 2, have been identified that may interact with different ligands in differ-
ent pistil tissues [8]. Other examples include the pollen tube-localized GLRs, GLR1.2 and
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Fig 1. Ca®* channels in pollen tubes and pistils in Arabidopsis and rice. The Ca®* gradient in pollen tubes is created by members of the CNGC
and GLR families (left). Xu et al. [2] reveal a role of OsCNGC13in the TT of the rice style, where a CNGC-mediated Ca2* signal is required to induce
cell death, which is necessary for the pollen tube to grow through the TT to reach the ovary (right). A role for CNGCs in PCD formation had been
previously shown for AtCNGC11/12[21]. CNGC, cyclic nucleotide-gated channel; GLR, glutamate receptor-like; PCD, programmed cell death; TT,
transmission tract.

https://doi.org/10.1371/journal.pgen.1007066.9001

GLR3.7. They are activated by D-serine, which is produced in the TT by the serine racemase
SR1, which converts L-serine to its biologically active enantiomer [6]. The C2H2/C2HC zinc
finger transcription factor No Transmitting Tract (NTT) has been identified as a key regulator
of the ECM tissue; pollen tubes will terminate prematurely in ntt mutants [9]. Other factors in
the TT that affect pollen tube growth are three HECATE transcription factors and the auxin
response factors ARF6 and 8 [10].

Xu et al. show that the semi-seed-setting ratel-Dominant (sss1-D) rice mutant displays a low
seed yield phenotype, caused by premature termination of pollen tube growth, which was con-
nected to delayed PCD in the style. The causal mutation was mapped to OsCNGC13. An inver-
sion of a DNA segment caused a truncation of this gene, resulting in the OsCNGC13-D
protein with only 440 amino acids with five transmembrane domains but lacking the pore-
forming region and the cytosolic C-terminal domain, which contains important regulatory
domains such as cyclic nucleotide-binding domain (CNBD) and calmodulin binding domain
(s) (CaMDB) [11]. The truncated protein does not act as a dominant negative because it did
not bind to wild-type (WT) OsCNGC13 (although this aspect may need to be confirmed by
additional experiments), but rather the expression of the truncated transcript seems to lead to
a down-regulation of WT OsCNGC13, potentially through an RNA interference (RNAi)
mechanism.

Thus, the dominant nature of sssI-D can be explained by haploinsufficiency of WT
OsCNGC13. The levels of WT transcript are decreased in heterozygous plants as well as in
OsCNGC13-D-overexpressing plants, while knocking out OsCNGC13 phenocopies the sss1-D
mutant phenotype.
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Increased expression of OsCNGC13 was detected in WT pistils 30 minutes after pollination.
Patch-clamp whole cell recordings in HEK293 cells detected inward Ca2+ but not K+ currents.
Furthermore, an increase in [Ca2+]cyt at the bottom of the style after pollination was shown,
which was absent in sssI-D plants. Taken together, they concluded that a Ca2+ signal in the
pistil mediated by OsONGC13 is required for normal pollen tube growth.

CNGC-mediated PCD in pollen tube growth and immunity

What makes this finding relevant for the broader CNGC research field is the connection
between Ca2+ influx and PCD. At 30 minutes after pollination, TUNEL staining revealed
small patches of dying cells in the style that widen the intercellular space, allowing the pollen
tube to grow through the ECM (Fig 1). Prior to this study, several CNGCs had been connected
to PCD and plant immunity, particularly A*tCNGC11 and 12 (Fig 1) of group I and AtCNGC2
and 4 of group IVb [12]. OsCNGC13 is the rice ortholog of AtCNGC19, which belongs to
group IVa. This is the first report to connect a group IVa channel to PCD.

So far, the role of AftCNGC1I9 has not been well established. It has been connected to NaCl
stress responses [13], and gene expression studies show that it is up-regulated after pathogen
treatment(s). Furthermore, AtCNGCI9 KO lines also exhibit enhanced susceptibility against
the necrotrophic pathogen Botrytis cinerea [12]. Interestingly, OsCNGC1I3 is also induced by a
pathogen, Pseudomonas fuscovaginae [14], suggesting a role in immunity as well. This may
indicate that the biological function of IVa CNGCs is conserved among different plant species,
thus it will be interesting to know whether AfCNGC19 and 20 are also involved in PCD and/or
pollen tube growth.

What can we learn regarding function and regulation of CNGCs?

Group IV CNGCs are the most divergent group of CNGCs, with two subclasses, IVa and IVb.
The closest paralog to AtCNGC19—which is the orthlog of OsCNGC13—and sole other IVa
group member is AtCNGC20, which is the ortholog of OsCNGC12 [14]. Loss-of-function
mutants of AtCNGC2 or 4, which make up group IVb, show a clear morphological phenotype
and display constitutive cell death [15]. The barley lesion mimic phenotype of the necl mutant
is also caused by a mutation of the barley ortholog of Af*CNGC4, indicating functional conser-
vation in monocots [16]. Interestingly, Af*CNGC2 has been connected to reduced fertility. Pol-
len tubes in cngc2 mutant pistils exhibited large rates of premature pollen tube termination
prior to reaching the ovules, which was even more pronounced under increased Ca2+ concen-
trations [17].

The group IVa CNGCs differ from other CNGCs in two aspects. First, they possess a sub-
stantially larger N-terminal cytosolic domain (172-204 amino acids versus 40-100 for other
CNGCs). Interestingly, a CaMBD is predicted for the AtCNGC19/0OsCNGC13 N- termini
(http://calcium.uhnres.utoronto.ca/ctdb/pub_pages/search/index.htm), although no CaM
binding has been shown yet. Since they also possess a C-terminal isoleucine glutamine (IQ)
domain (a type of CaMBD) [18], they may have a similarly complex regulation by calmodulin,
as previously shown for AtCNGCI12 [11].

Second, class IVa CNGCs have 10 additional amino acids in their CNBD between the phos-
phate binding cassette (PBC) and the hinge motifs, suggesting that this group is regulated dif-
ferently than the other CNGCs [19].

In summary, the 2017 study by Xu et al. [2] connects [Ca2+]cyt accumulation, ECM com-
position, and PCD in the style after pollination, paving the way for further research into how
signal transduction in the style allows the pollen tube to penetrate the style and TT. Further-
more, it demonstrates a function for another member of the CNGC family. Most of the family
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members (20 in Arabidopsis, 16 in rice) have not been functionally characterized, though there
has been significant progress recently [20]. Future research challenges include uncovering the
regulation of CNGC channel function by cyclic nucleotides (or other ligands) and the Ca2+
sensor protein, calmodulin, as well as determining whether CNGCs form homo- or hetero-tet-
rameric channels.
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