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Abstract
Background: Mast cell (MC)-derived serine proteases have been implicated in a variety of
inflammatory processes. We have previously shown that rat peritoneal MC (PMC) express mRNA
for protease activated receptor 2 (PAR-2), a G-coupled receptor activated by trypsin-like
proteases. Recent evidence also suggests that MC-induced inflammation can be mediated through
PAR. Therefore, we hypothesized that specific PAR-2 agonist peptides (PAR-2ap) induce protease
release from PMC.

Results: Western blot analysis of PMC supernatants revealed that a PAR-2ap, tc-LIGRLO (10 µM),
stimulated the release of rat MC protease (RMCP)-1, RMCP-5 and carboxypeptidase-A. The
release was evident by 20 min but further increased up to 8 h. To study the biological effects of
protease release we tested supernatants from tc-LIGRLO, tc-OLRGIL (inactive control peptide)
and antigen-activated PMC for proteolytic activity by seeding with TNF (150 pg/ml), incubating for
8 h at 37°C, and measuring TNF remaining in the supernatants. Supernatants from tc-LIGRLO-
stimulated PMC degraded 44 % of seeded TNF (n = 5). Moreover, this TNF proteolysis was
dependent on the concentration of tc-LIGRLO used to stimulate PMC, and was significantly
inhibited (94 %) by soybean trypsin inhibitor. Antigen and tc-OLRGIL induced no significant release
of such proteolytic activity.

Conclusions: These data indicate that a PAR-2ap induces the release of proteases from mast cells,
which may degrade extracellular cytokines and other substrates thus modulating the inflammatory
response.

Background
Protease activated receptor-2 (PAR-2) has been identified

on a variety of cell types including eosinophils [1], neu-
trophils [2], neurons and smooth muscle cells [3]. It can
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be activated by a variety of serine proteases including MC
tryptase [4], pancreatic trypsin [5], and coagulation fac-
tors [6] to induce inflammatory, mitogenic and chemotac-
tic functions. Serine proteases cleave PAR-2 at a specific
site in the extracellular NH2-terminus unmasking a new
NH2-terminus (tethered ligand) and changing the confor-
mation of the receptor to allow the tethered ligand to
interact with the activation site on the 2nd extracellular
loop of the receptor. Peptides that are similar in sequence
to the tethered ligand domains of PAR-2, such as SLIGRL-
NH2 (SLI) or tc-LIGRLO-NH2 (tc-LIG) are able to interact
directly with the activation site and act as potent agonists
[7].

A growing number of studies have identified a role for
PAR-2 in inflammation. There is a delayed onset of
inflammation in PAR-2 knock out mice [8], and PAR-2-
activating peptides (PAR-2ap) stimulate leukocyte rolling,
adherence, and recruitment in rat mesenteric postcapillary
venules [9]. Furthermore, PAR-2 activation of human air-
way epithelial cells mediates the release of the eosinophil
survival-promoting factor GM-CSF and matrix metallo-
proteases [10,11].

The ability of serine proteases to activate MC and the
observation that MC express PAR-2 [12,13], suggest that
PAR-2-induced proinflammatory functions in vivo could
be MC-mediated. The administration of PAR-2ap or
trypsin into the rat hind paw enhanced vascular permea-
bility and caused edema formation, which can be abol-
ished by repeated pre-treatment with compound 48/80,
known to deplete the MC of its granular content [14]. By
contrast, Vergnolle et al., 1999 [15] showed that edema
induced by injection of PAR-2ap was only slightly reduced
in rats pre-treated with compound 48/80, and the pre-
treatment of rats with cromolyn, a MC stabilizer, had no
effects on PAR-2ap induced inflammation of the paw.
These studies showed that the administration of PAR-2ap
induces an acute inflammatory response characterized by
persistent edema and granulocyte infiltration, but the
involvement of MC in these responses requires further
investigation.

Activation of PAR-2 on the surface of mast cells could act
as part of an autocrine and paracrine positive feedback
loop through the release of serine proteases that could
activate further PAR-2 on mast cells or other neighboring
cells. Therefore, we investigated the direct effects of PAR-
2ap on the release of serine proteases from purified PMC
and the effects of these released proteases on extracellular
protein degradation. In particular we studied the release
of rat mast cell protease-1 (RMCP-1), RMCP-5 and car-
boxypeptidase A (CPA).

Results
The PAR-2ap, tc-LIG, induces release of RMCP-1, RMCP-
5 and CPA from PMC
To identify proteases released by mast cells following
PAR-2ap stimulation we activated PMC with tc-LIG (10
µM), and analyzed the supernatants for various mast cell
proteases by western blotting, using antisera against the
amino-terminal sequences of RMCP-5 and MC-CPA and
an antiserum against RMCP-1 protein. In supernatants
from tc-LIG-treated PMC one band for RMCP-1 (30 kDa),
two bands for RMCP-5 (34 and 35 kDa), and three bands
for CPA (40, 41 and 42 kDa) were detected (Fig. 1A). The
PAR-2ap tc-LIG induced most of the protease release in
the first 20 min. However, proteases accumulated in the
conditioned media up to 8 hr (Fig 1B). The release of all
three proteases was dose-dependent and was detectable in
supernatants of PMC stimulated with tc-LIG at concentra-
tions 0.1 µM and higher (Fig 1C). PMC activation with
48/80 (0.5 mg/ml) induced the release of all three pro-
teases in similar levels to 0.5 µM of tc-LIG (Fig. 1C).

Nippostrongylus brasiliensis antigen (Nippo Ag) (10 We/ml)
induced no detectable release of any of the three proteases
studied (Fig 1A). Nippo Ag-activated cells under these con-
ditions released 10 ± 2% of β-hex; level similar with that
released by 0.1 µM of tc-LIG (12 ± 2%), which however,
was associated with protease release (Fig 1C). This
amount of β-hex release was the highest we could obtain
following PMC activation with Nippo Ag, under the condi-
tions used in our experiments.

PAR-2ap-induced proteolytic activity released from mast 
cells degrades TNF
On further comparing Fcε RI with tc-LIG-induced PMC
activation we noted that Fcε RI-mediated activation
induced TNF release while tc-LIG-mediated activation did
not induce significant TNF release following PMC activa-
tion for up to 8 hr (Fig 2). One possible hypothesis to
explain this effect was that TNF released by tc-LIG acti-
vated PMC was degraded by some of the proteases we
showed to be released from mast cells at the same time.

Therefore, we examined the ability of supernatants of
PAR-2ap-activated PMC to degrade extracellular proteins.
We used a bioassay for released protease activity, employ-
ing TNF as the cytokine to be degraded. PMC were incu-
bated with no activators (sham treatment), tc-LIG (10
µM), tc-OLR (10 µM) or compound 48/80 (0.5 µg/ml) for
20 min or 8 hr at 37°C and the supernatants were col-
lected. These supernatants or media were then seeded
with 150 pg/ml of rat recombinant TNF and incubated for
an additional 8 hr. At the end of the incubation TNF was
measured by ELISA and the proteolytic activity was calcu-
lated as % degraded TNF (as discussed in the methods sec-
tion). Proteolytic activity in the supernatants of sham-
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Release of RMCP-1, -5 and CPA from PMC following activation with tc-LIG (PAR-2ap), compound 48/80 and AgFigure 1
Release of RMCP-1, -5 and CPA from PMC following activation with tc-LIG (PAR-2ap), compound 48/80 and Ag. (A) Superna-
tants from tc-LIG (10 µM), Ag (10 We/mL) and sham-treated (spon) mast cells were concentrated (10 ×) and Western blot 
analysis preformed for CPA, RMCP-1 and RMCP-5. Left panel shows Coomassie blue staining of the same gel and right panel 
Western blot with normal rabbit serum as a negative control. (B) Release of RMCP-1, RMCP-5 and CPA following 20 min and 
8 h activation of PMC with tc-LIG (10 µM). (C) Dose response for the release of RMCP-1, -5 and CPA by tc-LIG-stimulated or 
compound 48/80-stimulated PMC. In all cases representative blots from three experiments with similar results are shown.
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treated cells was subtracted from that in the supernatants
of activated PMC. Supernatants from sham-treated PMC
showed significant loss of seeded TNF (17 ± 7 % at 20 min
and 22 ± 5 % at 8 hr) as compared to media. At both 20
min and 8 hr of treatment supernatants from tc-LIG-
treated MC (10-0.1 µM) showed a greater loss of seeded
TNF compared to supernatants of sham-treated MC (p <
0.05), suggesting tc-LIG-mediated activation induced the
release of proteolytic activity. Proteolytic activity, follow-
ing subtraction of spontaneous proteolytic activity
released, was 44 ± 5 % at 8 hr and 30 ± 4 % at 20 min fol-
lowing PMC activation with 10 µM of tc-LIG (Fig. 3A and
3B respectively). Supernatants from tc-OLR- or Nippo Ag-
treated cells showed no significant loss of TNF over that
which occurred in sham-treated cells (Fig. 3A and 3B).

We also examined the ability of another PAR-2ap, SLI and
its PAR-2cp, LSI, to release proteolytic activity from PMC
(Fig. 3C). A small but significant increase in proteolytic
activity over spontaneous release was induced by SLI (40
µM, 7 ± 1 %, p < 0.05). However, net SLI-mediated prote-
olytic activity released was not significantly different than
that released by the inactive control peptide, LSI (40 µM,
7 ± 5 %).

To study whether tc-LIG-mediated TNF proteolytic activity
was a result of serine protease activity, the supernatants
were mixed with the broad spectrum serine protease
inhibitor, SBTI (1 mg/ml) before seeding with TNF. SBTI
inhibited TNF loss from the supernatants of tc-LIG (10
µM) stimulated PMC by 82% (Fig. 4), confirming that tc-

TNF release from PMC (1 × 106 cells) after 8 hr incubation with PAR-2ap (tc-LIG, 10 µM), PAR-2cp (tc-OLR, 10 µM) and Ag (10 We/ml)Figure 2
TNF release from PMC (1 × 106 cells) after 8 hr incubation 
with PAR-2ap (tc-LIG, 10 µM), PAR-2cp (tc-OLR, 10 µM) 
and Ag (10 We/ml). (Mean ± SEM, n = 4). Star indicates sta-
tistically significant difference from spontaneous (p < 0.05, n 
= 4).
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PAR-2ap, PAR-2cp compound 48/80 and Ag-mediated 
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traction of activity released by sham-treated cells (17 ± 7 %). 
(B) TNF-degrading proteolytic activity released from PMC by 
various doses of tc-LIG (20 min). Values in the graph indicate 
proteolytic activity after the subtraction of activity released 
by sham-treated cells (22 ± 5 %). (C) TNF-degrading proteo-
lytic activity released by SLI (PAR2-ap, 40 µM), LSI (PAR2-cp, 
40 µM) and tc-LIG (10 µM) treated PMC (20 min). Values in 
the graph indicate proteolytic activity after the subtraction of 
activity released by sham-treated cells (23 ± 7 %). Values are 
shown as "mean ± SEM" (n = 3–5). Star indicates statistically 
significant difference from spontaneous (p < 0.05).
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LIG-induced loss of TNF was by the proteolytic activity of
serine proteases.

Discussion
We have previously shown that PMC express PAR-2
mRNA, that can be regulated by cytokines and PAR-2ap
[13]. We have also shown that RMCP-1, RMCP-5 and CPA
are stored in PMC and are the most prominent proteases
produced by PMC [16]. In the present study we demon-
strated that tc-LIG, a PAR-2ap, induces the release of
RMCP-1, RMCP-5 and CPA from mast cells. Compound
48/80 induced comparable release of proteases form
PMC, but FcεRI-mediated activation did not. We also
showed that these, and possibly other proteases released
at the same time from PMC, are capable of degrading TNF.

In this study, we provided the first direct evidence for ser-
ine protease release from PMC measured by Western blot
analysis of the supernatants, in addition to proteolytic
activity assays. The sizes of released RMCP-1 (~30 kDa),
RMCP-5 (2 close bands, ~34 kDa) and CPA (3 close
bands, ~41 kDa) are similar to the sizes of the stored
forms of these proteases that we published previously
[16]. The different bands for RMCP-5 and CPA are likely
due to differential glycosylation, as has been shown
before [16]. PAR-2 ap have been shown to release pro-
teases from gastric pepsinogen secreting cells [17] and
from epithelial cells [10]. A recent report showed release
of tryptase from human colon mast cells following PAR-
2ap-mediated activation [18]. In that case the concentra-

tion of PAR-2ap needed was higher than in our experi-
ments and the effect was similar with FcεRI-mediated
activation, while in our experiments proteases were
released by PAR-2ap but not with Nippo Ag.

Previous studies have shown that activation of MC to
release protease activity may be induced by a variety of
agents both in vivo and in vitro. The release of RMCP-2 by
rat mucosal mast cells has been reported to be induced by
antigen challenge in parasitic infections, and during ana-
phylaxis [19-21]. The release of RMCP-2 mouse counter-
part, MMCP-1, can be increased during parasitic
infections [22]. Furthermore, rat CPA can be released by
48/80, Ca2+ ionophore and antigen activation of PMC
[23].

In our experiments FcεRI-mediated PMC stimulation did
not release detectable levels of RMCP-1, RMCP-5 or CPA,
or any proteolytic activity with the ability to degrade TNF.
It is possible that FcεRI-mediated activation induces low
levels of protease release which is undetectable by West-
ern blotting. Furthermore, the lack of demonstrable pro-
teolytic activity in the supernatants does not necessarily
indicate that proteases are not released since it may be due
to an FcεRI-mediated simultaneous release of protease
inhibitors stored in the MC. Indeed, MC produce and
release secretory leukocyte protease inhibitor (a chymase
inhibitor) and latexin (a CPA inhibitor) [23,24]. Finally,
FcεRI-mediated activation may selectively release pro-
teases different from the ones released by 48/80 or PAR-
2ap.

Given that RMCP-1 and RMCP-5 are present in the super-
natants of tc-LIG-stimulated MC, it is likely that these pro-
teases are involved in the TNF degradation. However,
antibodies to RMCP-1 inhibited TNF degradation by
supernatants of sham treated cells but did not affect the
additional degradation of supernatants from tc-LIG
activated MC (unpublished observation). We cannot rule
out that PAR-2ap activated PMC release other proteases,
including the tryptases RMCP-6 and RMCP-7 [25], which
may contribute to TNF-degradation. It is also interesting
that chymases and CPA, which are released in parallel,
have synergistic effects [26]. Other proteases from leuko-
cytes are known to be able to degrade TNF. These include
cathepsin G [27], neutrophil elastase [28,29] and by pro-
teases released from bacteria [39]. The same proteases can
also degrade other cytokines, such as endothelin [31,32],
lymphotoxin [27] and IFNγ [30].

Our data further suggest that MC may regulate TNF func-
tion by releasing proteases that can directly degrade this
cytokine. Given that both TNF and serine proteases are
stored and released from MC, our present findings suggest
an important mechanism by which MC may regulate TNF

Effect of SBTI on the proteolytic activity in supernatants of tc-LIG-stimulated mast cellsFigure 4
Effect of SBTI on the proteolytic activity in supernatants of 
tc-LIG-stimulated mast cells. Supernatants from PMC stimu-
lated by tc-LIG, tc-OLR, and Ag for 8 hr were incubated with 
or without SBTI (1 mg/mL) before 150 pg/mL of TNF was 
added and % degradation calculated. Values indicate proteo-
lytic activity after the subtraction of spontaneous release (17 
% ± 7). Star indicates statistically significant difference from 
spontaneous (p < 0.05, n = 4–5). (Mean ± SEM).
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function in vivo. It may be that such proteolytic activity
directed against TNF, and possibly other cytokines, is an
important anti-inflammatory function for mast cell serine
proteases.

The expression of PAR-2 by mast cells and the involve-
ment of MC in PAR-2-mediated inflammation has been
controversial. In vitro, MC tryptase can stimulate hista-
mine release by human tonsillar [33] and guinea pig [34]
MC, but not from foreskin mast cells. The tryptase inhibi-
tor APC366 inhibits IgE-dependent MC activation, and
also inhibits calcium ionophore-induced histamine
release [33]. Tryptase-mediated bronchoconstriction in
sheep is histamine mediated [35], indicating that tryptase
induces lung MC activation. PAR-2 has been identified on
human [12] and rat [13] mast cells. MC have been impli-
cated in rat paw oedema caused by PAR-2ap or trypsin
administration [14], but other reports failed to confirm
this observation [15]. Taken together these reports
strongly suggest a role for tryptase and possibly PAR-2 in
MC activation.

In a previous study we have shown that only one of two
PAR-2ap (tc-LIG) activates β-hex release from PMC [13].
The other peptide, SLI, although it is a potent and selective
PAR-2 agonist, was unable to induce release of β-hex as
had also been shown before [36], although others showed
that higher concentrations of SLI can induce the release of
β-hex and to a greater extend histamine from rat PMC
[37]. However, our study was the only one to use tc-LIG.
In this study again only tc-LIG induced the release of pro-
teases from PMC. SLI induced slightly increased release of
proteolytic activity compared to sham treated cells but
this release was not significantly different than the release
induced by the control peptide LSI. We have previously
shown that SLI is sensitive to proteases and its effects on
MC increases in the presence of amastatin, an ami-
nopeptidase inhibitor [13]. In contrast tc-LIG possesses a
trans-cinnamoyl group, which acts to stabilize the peptide
and prevent its degradation by aminopeptidases. It is
unlikely that the different sensitivity to proteases can
explain fully the difference between the effects of the two
PAR-2ap peptides. It is also unlikely that the trans-cin-
namoyl modification on tc-LIG is solely responsible for tc-
LIG-mediated activation of MC, because it is also present
on the reverse sequence peptide tc-OLR, but does not have
the same effects with tc-LIG on protease release, as shown
in this study, or in the release of β-hex, as we showed
before.

Compound 48/80 along with other cationic compounds
can activate MC by directly interacting with a pertussis
toxin sensitive component [38]. Our previous work sug-
gested that tc-LIG may activate MC through a 48/80-like
mechanism, but appears to also possess a second mecha-

nism of signalling that is distinct from that of 48/80 [13].
Thus, we cannot rule out the possibility that tc-LIG-medi-
ated release of proteolytic activity may be mediated in part
through a 48/80-like mechanism. Indeed, 48/80 induced
similar levels of proteolytic activity and protease release to
tc-LIG.

Recently, a new receptor activated by the PAR-2 activating
peptide tc-LIGRLO-NH2 has been identified
pharmacologically in murine vascular smooth muscle
[39]. In that case, tc-LIG induced vasoconstriction, while
the other PAR-2 activating peptide, SLI, did not have sim-
ilar effects. The structure or the exact function of this
receptor is not known. In our case also tc-LIG had a signif-
icant effect on protease release from mast cells while SLI
had a very small effect. These data suggest that mast cells
may express the same receptor as the one identified phar-
macologically in smooth muscle cells.

Conclusions
Our study provides evidence that a PAR-2ap, tc-LIG, acti-
vates MC to release proteases and proteolytic activity that
could potentially have both pro- and anti-inflammatory
functions. We further showed that these proteases may
degrade extracellular proteins and affect the inflammatory
environment in areas of mast cell activation. Although the
presence and function of PAR-2 on MC is still controver-
sial, our findings indicate that PAR-2 may be part of an
autocrine loop. PAR-2 activation leads to the release of
serine proteases which in turn may further activate more
PAR-2 receptors on mast cells and also on other cells.

Methods
Reagents
Compound 48/80, 4-methylumbelliferyl-N-acetyl-β-D-
glucosaminide (β-hexosaminidase (β-hex) substrate) and
soybean trypsin inhibitor (SBTI) were purchased from
Sigma Chemical Co. (St. Louis, MO). PAR-2ap and PAR-2
control peptides (PAR-2cp) were synthesized by the Pep-
tide Synthesis Facility, Faculty of Medicine, University of
Calgary. These peptides were determined to be ≥ 95 %
pure by mass spectrometry and HPLC. Polyclonal RMCP-
5 and CPA antibodies were produced and characterized as
described previously [16]. Briefly, RMCP-5 (15 amino
acids) and CPA (12 amino acids) NH2-terminal sequences
were synthesized at Zymogenetics Inc, Seattle, WA, and
used to immunize rabbits to develop specific polyclonal
anti-protease antibodies. Professor H. Miller, Edinburgh,
Scotland, kindly provided rabbit antibody to RMCP-1.

Animal sensitization
Outbred male Sprague-Dawley rats (weight 250–500 g)
were purchased from Charles River Canada Inc., (St. Con-
stant, Quebec). Rats were maintained in an isolation
room with filter-topped cages to minimize unwanted
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infections. For the experiments where MC were activated
through their IgE receptor, rats were sensitized to Nippos-
trongylus brasiliensis, by a single subcutaneous injection of
3000 third-stage larvae in 0.5 mL of saline as described
previously [40]. The experimental protocol was approved
by the University of Alberta Animal Care Committee in
accordance with the guidelines of the Canadian Council
on Animal Care.

Harvesting and enrichment of peritoneal mast cells
Fifteen mL of ice-cold Hepes-buffered (10 mM, pH 7.3)
Tyrodes buffer supplemented with 0.1% BSA was injected
into the peritoneal cavity of each rat for the isolation of
PMC. MC in peritoneal lavage fluids were enriched by
centrifugation through a discontinuous density gradient
of Percoll, as described previously [41]. Recovered MC
were >95 % pure. Cell viability was >97 %.

Mast cell activation
After isolation and enrichment, PMC were rested in RPMI
(Invitrogen, Burlington, Ontario) supplemented with 5%
FBS for 2 hr at 37°C. After incubation, the cells were
washed twice by centrifugation (150 g) and resuspended
in RPMI at 1 × 106 cells/mL. Cells were placed in 1.5 mL
Eppendorf tubes or in 48 well plates, incubated at 37°C
for 10 min, and then the same volume of pre-warmed
(37°C) PAR-2ap or controls in complete RPMI were
added, to give a final cell concentration of 0.5 × 106 cells/
mL. The cells were incubated for different times (20 min
to 8 hr) depending on the experiment.

To measure spontaneous release of mediators by PMC,
cells were mixed with media alone. As positive controls,
either compound 48/80 (0.5 µg/mL) or Nippostrongylus
brasiliensis Antigen (1–100 worm equivalents (WE)/mL
[40]) were mixed with cells under the same conditions.
After incubation, tubes were placed on ice for 10 min and
then centrifuged (150 g) to separate supernatant from
cells. The supernatants were collected in tubes and the
same volume of fresh media was added to the pellets,
which were then resuspended. Cell viability was assessed
at different times. Cell pellets and supernatants were
stored at -70°C until assayed for their content of cytokines
or proteolytic activity.

SDS-PAGE and western blot analysis
Supernatants were concentrated (10×) using Centricon
(YM-10) centrifugal filter devices (Millipore, Bedford,
MA). For Western blot analysis, proteins were transferred
electrophoretically (25 V, 35 min) to a polyvinylidene dif-
luoride (PVDF) membrane (Bio-Rad Laboratories, Missis-
sauga, ON) using the Semi-Dry Trans Blot System. The
membranes were blocked in Tris-buffered saline contain-
ing 0.02% Tween, 5% w/vmilk (Bio-Rad Laboratories)
and 5 % v/vgoat serum (Invitrogen) for 1 hr. The mem-

branes were probed with 1/1000 dilution of anti-RMCP-
1, 1/600 anti-CPA, 1/5000 anti-RMCP-5 and then incu-
bated with donkey anti-rabbit IgG HRP-conjugated anti-
body (1:5000). Protein bands were detected by enhanced
chemiluminescence using ECL Western blotting detection
system (Amersham Pharmacia Biotech, Quebec, Canada).

β-hexosaminidase (β-hex) assay
β-hex was measured in the supernatants and cell pellets,
as described [42]. Results are expressed as β-hex released
as a percent of total β-hex (pellet + supernatant). Values
shown have been corrected for the spontaneous β-hex
release.

Proteolytic activity assay and protease inhibition assay
To measure release of proteolytic activity, supernatants
from stimulated PMC (containing secreted TNF) were
transferred to a 96-well plate. After 2 min incubation,
exogenous TNF or medium was added to the supernatants
and mixed to give a final concentration of 150 pg/ml.
Plates were incubated at 37°C for 8 hr and then TNF con-
tent was measured by ELISA. Percent TNF proteolysis was
calculated by the following formula:

% TNF degraded = 1 - (TNF recovered / (rat recombinant
TNF seeded + measured TNF release) × 100)

For protease inhibition experiments SBTI (1 mg/ml) was
added to the supernatants before seeding with TNF. The
supernatants were then processed as above and used to
measure TNF degradation.

TNF measurements
Supernatants from activated PMC were analysed for TNF
using a rat TNF ELISA kit (Endogen, Woburn, MA),
according to manufacturer's instruction. The sensitivity of
the TNF assay was < 10 pg/ml. To exclude the possibility
that proteases contained in PMC supernatants interfere
with ELISA determination of TNF we incubated the TNF
antibody coated wells with PMC supernatants washed
them and then added specified amounts of TNF for deter-
mination. Pre-incubation with PMC supernatants did not
affect the ability to measure TNF, indicating that the pro-
teases in PMC supernatants do not degrade the antibodies
of the assay.

Statistics
All values are given as mean ± standard error of mean
(SEM) for the numbers of experiments noted and statisti-
cal analyses were performed using the Student's t-test and
ANOVA.

Abbreviations
β-hex β-hexosaminidase
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CPA carboxypeptidase-A

LSI LSIGRL-NH2 (PAR2-cp)

MC mast cell

PAR protease-activated receptor

PAR-ap protease-activated receptor-agonist peptide

PAR-cp protease-activated receptor-control peptide

PMC peritoneal mast cells

RMCP-1,5 rat mast cell protease-1, 5

SBTI soybean trypsin inhibitor

SLI SLIGRL-NH2 (PAR2-ap)

tc-LIG trans-cinnamoyl-LIGRLO-NH2

tc-OLR trans-cinnamoyl-OLRGIL-NH2

Nippo Ag Nippostrongylus brasiliensis Antigen

WE worm equivalent.
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