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Abstract 

Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, 
time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning 
models are emerging as a promising solution to perform de novo drug design, i.e., to generate drug-like molecules 
tailored to specific needs. However, stereochemistry was not explicitly considered in the generated molecules, which 
is inevitable in targeted-oriented molecules. This paper proposes a framework based on Feedback Generative Adver-
sarial Network (GAN) that includes optimization strategy by incorporating Encoder–Decoder, GAN, and Predictor 
deep models interconnected with a feedback loop. The Encoder–Decoder converts the string notations of molecules 
into latent space vectors, effectively creating a new type of molecular representation. At the same time, the GAN 
can learn and replicate the training data distribution and, therefore, generate new compounds. The feedback loop 
is designed to incorporate and evaluate the generated molecules according to the multiobjective desired property 
at every epoch of training to ensure a steady shift of the generated distribution towards the space of the targeted 
properties. Moreover, to develop a more precise set of molecules, we also incorporate a multiobjective optimization 
selection technique based on a non-dominated sorting genetic algorithm. The results demonstrate that the proposed 
framework can generate realistic, novel molecules that span the chemical space. The proposed Encoder–Decoder 
model correctly reconstructs 99% of the datasets, including stereochemical information. The model’s ability to find 
uncharted regions of the chemical space was successfully shown by optimizing the unbiased GAN to generate 
molecules with a high binding affinity to the Kappa Opioid and Adenosine A2a receptor. Furthermore, the generated 
compounds exhibit high internal and external diversity levels 0.88 and 0.94, respectively, and uniqueness.
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Introduction
In drug development, for a new drug to reach the final 
step and get approved, an estimated $2.8 billion has been 
spent, and between 10 and 15 years of research were nec-
essary [1, 2]. This is due to the fact that most drug can-
didates fail before reaching the last step of the process, 
with recent estimates pointing to a success rate of only 

2% [3]. Such a low success rate implies that this is not just 
an expensive process but a high-risk one from a finan-
cial point of view, as most investments will fail. The high 
dimensionality of the chemical space has been identified 
as one of the main challenges, since it has been estimated 
that between 1033 and 1060 could be synthetically accessi-
ble [4, 5] and only a small fraction of this chemical space 
has been explored [6]. As the evaluation of the chemical 
space is a prohibitively expensive process, it is crucial to 
find new strategies that can effectively narrow down the 
search space. Deep Learning (DL) methodologies have 
been gaining momentum as a promising solution for de 
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novo drug design, whose goal is to generate novel molec-
ular compounds that exhibit specific properties, such as 
being active towards a predefined biological target [7]. 
Two steps can be typically identified in this process: the 
first concerns creating a model that can replicate the 
chemical space. In contrast, the second focuses on opti-
mizing the aforementioned model so that it is able to 
generate new molecules that exhibit specific properties.

Recurrent Neural Networks (RNNs) were the first DL-
based technique that was successfully applied to drug 
generation. This type of network can learn and capture 
the syntax of sequences of data, which is the case of 
molecules, represented as Simplified Molecular Input 
Line Entry Strings (SMILES). Gómez-Bombarelli et  al. 
proposed chemical VAE (CVAE), which transforms a 
SMILES sequence to and from fixed-sized continuous 
vectors [8]. In fact, a chemical Variational Autoencoder 
(VAE) was first used in this context by Gomez-Bom-
barelli et al. to transform the SMILES discrete data into 
a real-valued continuous vector [8]. In this work, a model 
that can predict specific properties from the latent vec-
tor was also trained. Gupta et al. and Segler et al. imple-
mented a SMILES generator by using LSTM cells [9, 10]. 
The former also showed that its method could be applied 
to low-data drug discovery and fragment-growing while 
advocating that transfer learning avoids introducing 
errors or unwanted bias compared to RL. Olivecrona 
et al. and Liu et al. resorted to this methodology to gen-
erate new molecules. They then optimized the model 
with the REINFORCE algorithm [11], a policy-based 
Reinforcement Learning (RL) method, in order to bias it 
towards the space of desired properties [12, 13]. Popova 
et al. approached this problem by pre-training two inde-
pendent networks: a stack-augmented RNN Generator 
and a Predictor, which are then used jointly through RL 
to optimize the generator. They showed that their model 
could be effectively biased towards physical properties 
like the melting temperature and partition coefficient, 
specific biological activity, and chemical complexity [14]. 
Zheng et al. trained an RNN model with GRU cells on a 
biogenic dataset that includes stereo-chemical informa-
tion to learn the grammar of these SMILES strings with 
higher complexity. They then fine-tuned it by employing 
Transfer Learning [15].

The approaches mentioned above can suffer from expo-
sure bias [16, 17], which prompted the appearance of other 
DL-based alternatives for targeted generation of compounds, 
mainly adversarial approaches. A Variational Autoencoder 
(VAE) was first used in this context by Gomez-Bombarelli 
et al. to transform the SMILES discrete data into a real-val-
ued continuous vector [8]. In this work, a model that can 
predict specific properties from the latent vector was also 
trained. Blaschke et  al. studied and compared VAEs and 

adversarial autoencoders and were able to show that both 
methodologies result in the preservation of the chemical 
similarity of the input molecules [18].

A generative adversarial network (GAN) is a particular 
type of neural network model where two networks are 
trained simultaneously, with one concentrated on image 
generation and the other centered on discrimination [19]. 
The generator generally catches the distribution of true 
examples for new data sample generation. The discrimina-
tor is usually a binary classifier that distinguishes between 
produced and true samples as accurately as feasible. An 
original deep neural network (DNN) architecture called 
a reinforced adversarial neural computer was employed 
for de novo drug design of novel small-molecule organic 
structures based on a GAN and reinforcement learn-
ing [20]. This work uses a differentiable neural computer, 
a category of neural network with increased generation 
capabilities due to the addition of an explicit memory 
pool mitigating typical issues found in adversarial settings, 
as the generator. This model generated structures that 
match the distributions of key chemical descriptors, and 
the lengths of SMILES strings in the training dataset [20]. 
LatentGAN is another deep-learning architecture that 
combines an autoencoder, and a GAN for de novo drug 
design [21]. Prykhodko et al. used an autoencoder to find 
a numerical representation of the SMILES Strings that can 
be used to train a Generative Adversarial Network (GAN), 
surpassing the differentiation problem that would arise 
if the discrete SMILES data were directly used [21]. Even 
with the augmentation technique, the proposed autoen-
coder could only reconstruct 82% of the molecules prop-
erly. The author also showed that Transfer Learning could 
optimize the generation process.

There are also applications of Graph Neural Networks in 
de novo drug design, such as Xiong et al.’s work that con-
siders three aspects: molecule scoring, molecule genera-
tion, optimization, and synthesis planning [22]. Also, the 
author in [23] adopted Transformer to generate molecules. 
The network takes an amino acid sequence as input and 
generates molecules with the predicted capacity to bind 
the protein target. The model outputs valid structures with 
reasonable values of computed physicochemical charac-
teristics, a drug-likeness metric, and a synthetic accessibil-
ity score.

Among proposed approaches in this topic, the RL-based 
approaches are the most common, but have a tendency to 
focus on local minima and therefore return very similar 
and sometimes duplicate molecules. Applying a Genera-
tive Adversarial Network (GAN) that includes an optimi-
zation strategy is an alternative approach that increases the 
diversity inside the generated compounds and resolves the 
problem of exploitation exploration of the reinforcement 
technique.
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Moreover, stereochemistry, which is of the utmost 
importance in drug design and action, has not yet been 
appropriately considered. In fact, stereochemistry is 
extremely important in drug development, and introduc-
ing this information helps improve the applicability of 
existing models. To the best of our knowledge, the data 
with stereochemistry information filtered from the train-
ing dataset in the state-of-the-art, as it decreases the per-
centage of validly generated molecules and only has been 
considered by Zheng et al. [15].

Additionally, drug design is inherently a multiobjec-
tive problem where molecules must have several prop-
erties to satisfy. The compounds must represent a set of 
characteristics that ensure their effectiveness, selectivity, 
permeability, synthesizability, and solubility. However, a 
complete system that generates valid molecules and opti-
mizes multiple traits has remained elusive.

The aforementioned issues are addressed in this work 
by proposing a framework to generate candidate drug 
molecules. The framework includes an autoencoder with 
compound SMILES embedding, feedback GAN with 
gradient penalty for sequence generation, and an LSTM 
property predictor for feedback to GAN. Moreover, we 
integrate a multiobjective optimization strategy based on 
a non-dominated sorting genetic algorithm to generate a 
more accurate set of molecules. The method was applied 
to designing inhibitors for the kappa opioid receptor 
(KOR) and Adenosine A2a receptor (ADORA2A).

Methods
The general proposed framework is illustrated in Fig.  1 
and comprises an autoencoder, more specifically, an 
Encoder–Decoder architecture based on RNNs [24, 25], 
a Wasserstein GAN with gradient penalty (WGAN-GP) 

Fig. 1 The general workflow. This model is composed of an Encoder–Decoder (A and B) that converts SMILES into latent space vectors that are 
then used as real data in the training of a WGAN-GP network that comprises a Generator (D) and Critic (E). The feedback-loop, Predictor (F), and 
selecting Pareto optimal molecules by NSGA-II algorithm (G) are only active during the optimization step
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[26], a Predictor and an optimization step based on 
feedbackGAN [27]. The Encoder–Decoder architecture 
allows the model to learn a context vector (Fig. 1C) which 
is a new fixed-length representation of SMILES strings 
that can be mapped back to the original molecule. There-
fore, the encoder (Fig. 1A) can be used to transform an 
entire dataset of SMILEs into an equivalent dataset that 
consists of context vectors. This new equivalent data-
set is used as real data to train the WGAN-GP so that, 
once trained, the generator (Fig. 1D) is able to generate 
new samples that follow the same distribution as the con-
text vector’s dataset. In order to obtain the correspond-
ing SMILES strings, these samples must then be passed 
through the decoder (Fig. 1B). By combining a GAN with 
an autoencoder, it becomes possible to train the WGAN-
GP, surpassing the differentiation problem associated 
with discrete data, such as SMILES strings [28]. In this 
manner, the generator is able to generate molecules that 
span the entire chemical space. However, in drug design, 
the goal is to generate compounds that exhibit multiple 
desired properties. In order to do so, an optimization 
step based on feedbackGAN [29] was devised that slowly 
forces the generator to focus on specific regions of the 
chemical space. Unlike the previous steps, this is a goal-
specific step, as it requires Predictor Module (Fig.  1F) 
for the desired properties that can identify interesting 
compounds and select a set of Pareto front molecules 
with non-dominated score vectors (Fig. 1G). These com-
pounds are then included in the training data. This leads 
to a slow but effective shift in the generated distribution 
towards the desired region of the chemical space. In this 
step, the best of the generated molecules are selected by 
the novel application of a non-dominated sorting algo-
rithm, a proven multiobjective optimization method. 
We optimize different criteria of drug candidates such as 
the binding affinity pIC50, topological polar surface area 
(TPSA) [30] of a molecule, the partition coefficient, the 
solubility (LogP) and synthetic accessibility score (SAS) 
[31].

Datasets
To train the Encoder–Decoder and the WGAN-GP, a 
dataset containing SMILES strings from the ChEMBL 
[32] and Zinc Biogenic [15] databases is used, including, 
molecules with and without stereo-chemical information 
containing the corresponding tokens.

For training and testing the predictor module, we 
used the Kappa Opioid Receptor (KOR), A2a receptor 
(ADORA2A), Ubiquitin specific protease 7 (USP7) [33] 
and Tyrosine-protein kinase JAK2 (commonly called 
JAK2) and their corresponding pIC50 values.

Table 1 shows the detailed information of the datasets 
that been used throughout this article, which are available 

at https://github.com/larngroup/GAN-Drug-Generator. 
Once the best architecture and set of hyperparameters 
had been defined, the general model was trained on two 
other more complex datasets: composed_dataset_1 and 
composed_dataset_2 which contain 100,000 and 500,000 
drug-like molecules, respectively, that were retrieved 
from the datasets mentioned in Table 1. This resulted in 
datasets that include a wider variety of compounds and 
molecules with and without stereochemistry.

Data preprocess
Stereochemistry is the study of stereoisomers, which are 
molecules with the same chemical formula and bound 
atom sequence but differ in the three-dimensional orien-
tations of their atomic arrangement. Isomers have differ-
ent geometries and therefore interact differently with the 
surrounding environment. A famous example of this phe-
nomenon is Iboprufen, where only one of the isomers of 
the active substance (sold as a mixture) is, in fact, active. 
Sometimes, however, two or more stereoisomers are very 
hard or even impossible to isolate or are interchangeable, 
and stereochemistry is generally omitted for these. But 
this is not the case for carbon stereocenters, which is the 
problem we address here. Molecules with stereochemis-
try information include chiral centers, charges, and cyclic 
connections, which are shown in SMILES notation with 
characters such as ‘ + ’, ‘−’, ‘@’, ‘/’ or ‘ \ ’, etc [34]. Moreo-
ver, the SMILES format has a form of depicting stereo-
chemistry around each stereocenter. In double bonds, the 
characters ‘/’ and ‘ \ ’ will denote orientation around it and 
only make sense if pairs (for example, ‘ /C = C/ ’) denote 
a cis and ‘ \C = C/ ’ a trans configuration). In chiral 
centers, the characters ‘@’ or ‘@@’ depict the local con-
figuration of the ligands. However, they have no direct 
correspondence to R and S isomers until we consider 
the order of appearance of atoms in the SMILES string. 
This system, although redundant, is not ambiguous in 

Table 1 Summary of the datasets used throughout the 
experiments

Dataset # Compounds Labeled Observations

ChEMBL [32] 1,178,946 No

Zinc Biogenic [15] 108,283 No

ADORA2A 4729 Yes CHEMBL251

KOR 5262 Yes CHEMBL237

JAK2 1697 Yes CHEMBL2971

USP7 [33] 1109 Yes CHEMBL2157850

bbbp [27] 1340 Yes

composed_dataset_1 100,000 No

composed_dataset_2 500,000 No
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Canonical SMILES notation. Conventionally, each char-
acter in a molecular SMILES Strings is used as a token in 
the deep model. This technique is unable to capture the 
characteristics of chiral centers, charges, and other chi-
ral properties. To preserve these features, we tokenize the 
SMILES containing regular tokens and combined tokens, 
meaning that we consider sections of the SMILES string 
that are enclosed in brackets (for example, ‘[C@@H]’ and 
‘[N+]’) as a single token, which results in an extended 
vocabulary.

Therefore, the SMILES strings are canonicalized, 
checked for duplicates, and then preprocessed. The pre-
processing step consists of the above tokenization fol-
lowed by adding ‘G’ at the beginning of each SMILES 
string and ‘A’ at the end and padding. The tokenized 
SMILES are then either One-hot Encoded (OHE), where 
each token becomes a binary vector, or passed through 
an embedding layer that converts each token into a dense 
vector. Fig. 2 shows this process in more detail.

Encoder–decoder model
The Encoder–decoder model, also known as a sequence 
to sequence model, is an autoencoder that contains 
recurrent layers, which allows it to work with sequences 
of data [35]. This type of model is typically used when 
the goal is to predict a new sequence of words that is in 
some way related to the input sequence, such as language 
translation tasks. The Encoder–Decoder learns a new 

representation of the input data, denoted by the context 
vector. This work uses this architecture to find a new con-
tinuous representation of SMILES strings that can then 
be used as training data for a GAN model, overcoming 
the inability to backpropagate through discrete data that 
arises if a GAN is trained directly on the SMILES String.

The encoder translates the input SMILES string into 
a context vector belonging to the latent space while the 
decoder, given this context vector, reconstructs the initial 
SMILES Strings. Therefore, the model is trained using 
the categorical cross-entropy between the input SMILES 
and the predicted SMILES as the loss function. The opti-
mizer uses the gradient of this loss function to update the 
network’s weights.

The proposed Encoder–Decoder model is represented 
in Fig. 3 resulted from the evaluation of several architec-
tures and numerous hyperparameters. The Additional 
file  1:  Section  2 contains a summary of these param-
eters and a detailed study of the efficiency of the model 
through grid search strategy. The optimized model con-
sists of an encoder module with an embedding layer as 
its input layer, followed by two bidirectional LSTM lay-
ers with 512 units. The final hidden and cell states are 
retrieved from the bidirectional layers and concatenated 
before going through a dense layer (with as many units as 
the desired length of the context vector, 256 in this case) 
and a Gaussian Noise layer (standard deviation of 0.1). 
This last layer is only active during training and allows 

Fig. 2 Data preprocessing of the SMILES string. A Acetylsalicylic Acid using One-hot Encoding and B a sample Adenosine Receptor BDBM21220 
through embedding method



Page 6 of 16Abbasi et al. Journal of Cheminformatics           (2022) 14:40 

the context vector to become more robust. The decoder 
uses the context vector to feed four independent dense 
layers tasked with creating the hidden and cell states that 
will be given as initial states to its two stacked LSTM lay-
ers (with 512 units) followed by a dense layer. This dense 
layer includes a softmax activation layer in order to out-
put the probabilities associated with the next token. Also, 
in between every one of the aforementioned layers, in 
both the encoder and decoder, a batch normalization 
layer is included (with batch normalization momentum 

of 0.9), which speeds up training and reduces overfitting 
by normalizing the output of the previous layer [36].

Wasserstein GAN with Gradient‑penalty
We adopted Wasserstein GAN with Gradient-penalty 
(WGAN-GP) since this type of model exhibits increased 
performance and stability [26] when compared to the 
traditional GAN as proposed by Goodfellow et  al. [28]. 
GANs cannot be directly applied to categorical data, like 
SMILES strings, due to the fact that the sampling pro-
cess at the end of the generator does not allow for the 
back propagation of the errors through that layer. How-
ever, since the proposed Encoder–Decoder model can 
find an alternative continuous representation for the 
SMILES strings, this new latent space representation 
can be used as real data to train the WGAN-GP without 

requiring intrinsic changes to the model. As the train-
ing data now consists of vectors, both the Critic and the 
Generator can be simple Feed Forward Neural Networks. 
These two neural networks have opposing objectives, 
with the critic aiming at distinguishing between gener-
ated x̃ and real data x, and the generator trying to fool 
the critic into believing that its data is real. A gradient 
penalty (weighted by � ) is included in the loss function 
(L) to prevent the critic’s gradient from deviating from 1. 
Equation 1 shows this loss function, where the third term 
corresponds to the gradient penalty.

where ǫ is uniformly sampled between 0 and 1. In prac-
tice, the gradient penalty amounts to creating a set of 
interpolated samples x̂xx (each using a real sample xxx , a gen-
erated sample x̃xx and ǫ ) that result from randomly choos-
ing points that lie on the lines that connect the batch of 
real samples to the batch of fake samples and evaluat-
ing its gradients. The gradient penalty loss term returns 
the squared distance between the gradient calculated at 
the interpolated points and 1. Therefore, it penalizes the 
critic whenever its gradient deviates from 1, thus enforc-
ing the 1-Lipschitz constraint [26].

The implemented WGAN-GP model includes a critic 
network and a generator network. The critic contains two 
dense layers with 256 units each and Leaky-Relu as the 
activation function (with α = 0.3 ) and a final dense layer 
(256 units) with no activation function. The generator 

(1)L = Ezzz∼pzzz [D(G(zzz))]− Exxx∼pdata [D(xxx)]+ �Ex̂̂x̂x∼px̂̂x̂x

[

(

�∇x̂̂x̂xD(x̂̂x̂x)�2 − 1
)2
]

If x̃xx = G(zzz) then x̂xx = ǫ ∗ x̃xx + (1− ǫ) ∗ xxx with 0 ≤ ǫ ≤ 1

Fig. 3 The detailed structure of the Encoder (A) and Decoder (B). This model is used to convert the SMILES strings into vectors in the latent space 
[context vector (C)]
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comprises five dense layers with Leaky-Relu activation 
function ( α = 0.3 ): the first contains 128 units and the 
remaining layers contain 256 units each; a batch nor-
malization (momentum of 0.9) is included between the 
aforementioned layers. The input to the generator is a 64 
dimensions vector drawn from the uniform distribution. 
Both networks are trained using the Adam optimizer 
with a learning rate of 0.0001 and drop-out value of 0.2.

Case‑study
In this study, we used Kappa Opioid Receptor (KOR) 
and A2a receptor (ADORA2A) as case studies. The 
Kappa Opioid Receptor is one of four opioid receptors 
that belong to the G-protein-coupled receptors (GPCR) 
superfamily. Research on opioid receptors, particularly 
on KOR, has been gaining momentum as it mediates 
affective disorders such as depression and anxiety, neu-
rological diseases like epilepsy, but also pain and drug 
addiction, making it a promising pharmacological tar-
get [37–40]. The ADORA2A is also a part of the GPCR 
superfamily and mediates pain, motor control, and mood 
[40]. The interest in ADORA2A, present in the cen-
tral nervous, stems from the fact that it plays a crucial 
role in modulating motor functions, maintaining a low 
level of non-motor side effects. Therefore, ADORA2A 
antagonists are an attractive non-dopaminergic option 
for treating Parkinson’s disease. The goal of the cur-
rent experiment is to find ligands that bind to the KOR/
ADORA2A and blocks their biological responses. To 
attain it, the generator of the WGAN-GP model must 
be optimized to generate compounds with a high affin-
ity to bind antagonistically. The pIC50 is used to measure 
this, which is the negative logarithm of the half-maximal 
inhibitory concentration. Thus, the higher the pIC50, the 
more potent the inhibition.

Predictor model
In order to evaluate the optimization process, a QSAR 
model, henceforth denominated by Predictor, was imple-
mented [41]. This regression model aims to predict the 
affinity of a given molecule as measured by the pIC50. 
The Predictor is an LSTM-based model that receives 
tokenized and padded SMILES strings as input, which are 
then passed through an embedding layer followed by two 
LSTM layers and two dense layers. Since this is a regres-
sion problem, the last layer has a single unit and a linear 
activation function. The use of RNN-based QSAR mod-
els is of particular interest for two reasons: first, this type 
of model works with inputs with different lengths, and 
second, it also works with SMILES strings, which means 
that there is no need to find other types of molecular rep-
resentations that might add human bias [42]. The optimal 
architecture for the Predictor consists of an embedding 
layer with 128 units, followed by two LSTM layers and a 
dense layer (128 units each), and a final layer with a single 
unit (Fig. 4).

Optimization through FeedbackGAN
After training the implemented WGAN-GP model, the 
Generator is able to produce context vectors that are 
then decoded into SMILES strings that span the chemi-
cal space. In order to optimize the proposed framework, 
a feedbackGAN based approach is devised to bias the 
model toward specific properties. FeedbackGAN is an 
optimization framework proposed by Gupta et  al. [29] 
that resorts to a feedback-loop and a function analyzer 
to optimize a GAN towards the space of desirable prop-
erties. In the context of the current problem, the Predic-
tor takes the place of the function analyzer for binding 
affinity score. Moreover, we use the RDkit tools [43] to 
calculate other properties of the generated candidate 

Fig. 4 General schema of LSTM-based Predictor architecture. This regression model aims to predict the affinity of a given molecule in the format of 
SMILES string
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molecules, such as logP, TPSA. We generate python 
scripts to calculate the SAS. After training the WGAN-
GP model, the Predictor is linked to the GAN through a 
feedback mechanism. The GAN then enters a retraining 
phase in which, at the end of each epoch, the Generator is 
used to sample a set of new molecules fed to the Predic-
tor, or RDKIT functions to be evaluated. At each epoch, 
the n training set of SMILES with the dominated scores 
are replaced by the n non-dominated score newly gener-
ated SMILES. By doing so, the training data is constantly 
being updated with new and better molecules according 
to the optimization score vector that has been consid-
ered. This results in a fine-tuned Generator that gradually 
approaches the space of the desired property.

Multiobjective molecular selection
We applied the non-dominated sorting algorithm to 
select the best-generated molecules. The goal is to apply 
a more thorough assessment to each molecule by analyz-
ing the influence of different objectives to be optimized. 
This analysis will be integrated into a Feedback dynamic 
so that the Generator can learn from its experience. It is 
necessary to obtain a promising set of lead molecules that 
consider different molecular properties simultaneously. 
These properties will include the biological affinity for 
the target, topological polar surface area of a molecule, 
the partition coefficient, the solubility (LogP), and the 
synthetic accessibility score of the generated compounds. 
This optimization step is carried out based on the most 
common multiobjective formalism for evaluating the 
molecule as a whole in multiobjective problems, as indi-
cated in the following (vector) score functions:

Definition 1 Let m be a generated molecule. Let 
PIC50(m) and SAS(m) indicate the binding affinity score 
and synthetic accessibility score respectively in the gener-
ated molecule m and let TPSA(m) and LogP(m) indicate 
the topological polar surface area (TPSA) and logP score, 
respectively. The following (vector) score functions can 
be defined:

Note that this formulation can be extended to any 
other molecular properties. At last, to select from the 
pool of compounds with maximized properties, we 
intend to apply the Pareto ranking techniques. This 
work employs the Fast Non-dominated Sorting Genetic 
Algorithm (NSGA-II) [44] to compare generated mol-
ecules and evaluate them based on the criteria outlined. 

(PIC50(m),−SAS(m))

(PIC50(m),−TPSA(m))
(

−LogP(m),−SAS(m)
)

Each generated molecule is ranked based on the num-
ber of molecules in the population that it is dominated 
by. Dominated molecules are given values between 1 
and P − 1 , where P are the total number of generated 
molecules in the generated population at each step, 
corresponding to how many other molecules they are 
inferior to. This algorithm was chosen as a ranking 
method because of its simplicity and efficiency, and 
computational complexity O(n2) . The Additional file 1: 
Section 4 provides a more detailed explanation of this 
algorithm.

Validation strategy
The validation strategy for the Encoder–Decoder model 
is based on the percentage of molecules that it can cor-
rectly reconstruct. As the training dataset only contains 
valid molecules, a correctly reconstructed (CR) SMILES 
string is automatically valid. The SMILES generated by 
the framework are syntactically and biochemically vali-
dated by RDkit tools [43], and also by four other met-
rics inspired by the Guacamole framework [45], which 
are the following: the percentage of valid molecules 
(Validity), the percentage of uniquely generated mol-
ecules (Uniqueness), i.e. non-repeating SMILES, the 
percentage of generated molecules that don’t appear 
on a reference dataset (Novelty), and finally the Kull-
back-Leibler (KL) divergence between datasets. The KL 
divergence uses several properties of the molecules also 
calculated using the RDkit tools, namely: NumRotata-
bleBonds, MolLogP, MolWt, BertzCT, TPSA, NumH-
Acceptors, MolWtNumHDonors, NumAliphaticRings, 
and NumAromaticRings. Besides these properties, it 
is also included the maximum nearest neighbor using 
ECFP4 fingerprints. Specifically, the KL divergence is 
calculated as presented by the following equation:

where k is the number of calculated features, and DKL,i is 
the KL divergence calculated between the datasets of the 
i property’s value distribution.

Finally, the Internal Diversity (Int Div) and External 
Diversity (Ext Div) are also computed. The diversity 
is evaluated by resorting to the Tanimoto Similarity, 
which computes the similarity between two molecules 
in terms of their circular fingerprints [46]. The Tani-
moto distance can be defined as 1− Ts . From it, the 
diversity between two sets of generated molecules A 
and B can be defined as the average of the Tanimoto 
distance between every single pair of molecules:

(2)S =
1

k

k
∑

i

exp
(

−DKL,i

)
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Therefore, the internal diversity is obtained by sim-
ply computing Div(A,  A) and the external diversity by 
Div(A, B), where A is the set of generated SMILES and B 
is the set of the training data.

Results and discussion
Experimental analysis on the encoder–decoder
The Encoder–Decoder model is trained using a batch size 
of 128 and the Adam optimizer (learning rate of 0.01). 
The maximum number of epochs is set to 100, but only 
the models with the best validation loss are considered 
(10 % of the data is used to validate the model). Dur-
ing the training phase, the teacher’s forcing algorithm 
is applied so that the ground truth of the current step 
is given as input to the following step in order to mini-
mize the propagation of errors. Table 2 shows the results 
obtained when training the aforementioned model with 
500,000 SMILES Strings. It can be observed that the 
model effectively learned to map SMILES strings to the 
latent space and vice-versa, with a percentage of cor-
rectly reconstructed molecules of 99.2% and 99.0% for 
the training and test data set, respectively. It is impor-
tant to note that correctly reconstructed (CR) molecules 
are automatically valid and that the validity is constantly 
higher, meaning that some molecules are reconstructed 
into valid molecules but not the same molecules that are 
given as input.

Experimental analysis on WGAN‑GP
The implemented WGAN-GP model is trained on 
100,000 molecules and for 10,000 epochs. The results of 
sampling 1,000 valid molecules using the whole frame-
work are presented in Table 3 and Fig. 5 from which it is 
possible to conclude that the GAN effectively learns the 
training data distribution as it generates data that follows 
that same distribution regarding the values of predicted 
pIC50. It is worth noting that the validity of the generated 
data is only 30.2%. This low value is attributed to the fact 
that the WGAN-GP is learning to mimic a distribution of 
continuous vectors that are then converted into a series 
of discrete tokens that need to abide by certain rules to 

(3)Div(A,B) =
1

|A| · |B|

|A|
∑

a∈A

|B|
∑

b∈B

(1− Ts)

be considered valid SMILES strings, hence the difficulty 
in generating valid molecules.

To further compare the generated data to the original 
training data in terms of general drug-like properties, 
Fig.  6 show the relationship between the Quantitative 
Estimate of Drug-Likeness (QED) and Synthetic Acces-
sibility (SA) score, and the relationship between the 
logarithm of the partition coefficient between n-octanol 
and water ( log P ) and Molecular Weight (MW), respec-
tively. By interpreting them, it is possible to conclude 
that the original and generated data are clearly overlap-
ping, which means that the GAN successfully learned the 
training data distribution in terms of several of its prop-
erties. It should be noted that to make the plots more 
perceptive, instead of resorting to the 100,000 molecules 
in the training data, only 5,000 were used, but care was 
taken to make sure that the distribution of this smaller 
set in terms of predicted pIC50 was kept the same.

Performance analysis of the predictor
The Predictor module is trained to predict the bind-
ing affinity. During training, the Adam optimizer (with 

Table 2 Performance of the Encoder Decoder model based 
on percentage of Correctly Reconstructed (CR) molecules and 
validity of the train and test sets

% CR (train) % CR (test) % Validity (train) Validity (test)

99.2 99.0 99.9 99.8

Fig. 5 Comparison of the predicted pIC 50 distributions for the 
original data and generated data by WGAN-GP model

Table 3 The performance of the WGAN GP model in 
comparison of the original data with the generated ones

Original data Generated data

Maximum 9.974 8.454

Mean 6.003 5.984

Minimum 4.548 5.083

Standard Deviation       0.684 0.577

External Diversity – 0.890

Internal Diversity – 0.887

% Unique – 100.0

% Valid – 30.2
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β1 = 0.9 and β2 = 0.999 ) with a learning rate of 0.0001 
and a batch size of 16 is applied. The maximum number 
of epochs is set to 100, but early stopping is employed, 

and all the models stop training before reaching the 
100th epoch. Figure 7 shows the scatter plot that results 
from applying the predictor to two different hold-out 

Fig. 6 Evaluation of WGAN-GP model for the original training data and generated. A Evaluation of the QED and SAS. B Evaluation of the log P and 
MW

Fig. 7 Scatter plots from applying the Predictor for the binding affinity. The plot shows the predicted pIC50 with the model versus true pIC50 and 
the regression line for the test set to different datasets
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test sets, where it can be observed that the model per-
forms constantly well for the complete range of values. 
Moreover, the Predictor module was assessed by acquir-
ing the Mean Squared Error (MSE), Coefficient of Deter-
mination (CD), the Concordance Correlation Coefficient 
(CCC), and Mathews Correlation Coefficient (MCC) on 
different datasets: USP7, JAK2, ADORA2A, and KOR. In 
the training phase, five validation splits were used, and a 
model was created for each and independently trained. 
In the testing phase, each model tried to predict the 
test dataset and a mean of the results was calculated, as 
shown in (Table 4).

Optimization with feedbackGAN
The optimization has been done through feedbackGAN 
by maximizing KOR biding affinity. This process con-
stantly updates the training data by replacing the worst 
scoring molecules with the best, which results in a grad-
ual shift of the distribution towards the desired property. 
At the end of each epoch, 200 valid molecules are sam-
pled, and 10% of the best replace the worst molecules in 
the “real data” training set. In order for the changes in the 
dataset to be significant and effectively bias the distribu-
tion that is being learned, only 5000 molecules are used 
as “real data” for the optimization process. These 5000 
molecules are sampled from the dataset used to train the 
WGAN-GP, taking into consideration the distribution 
of the original dataset in terms of pIC50. The unbiased 
WGAN-GP model is optimized for 500 epochs, consider-
ing that the best scoring molecules are the ones with the 
highest pIC50. 1000 valid molecules are sampled in inter-
vals of 50 epochs and evaluated in terms of distribution 
of predicted pIC50, validity, uniqueness, and diversity. 
These results are presented in Table 5. Figure 8 shows the 
distribution of predicted pIC50 values in terms of a prob-
ability density for intervals of 100 epochs of optimization, 
where it can be observed that the implemented strategy 
results in a successive shift of the overall distribution 
towards higher values of predicted pIC50. The same con-
clusion can be drawn from Table 5 where it is clear that 

the mean of the distributions is constantly increasing 
from 5.984 for the unbiased model to 7.283 for the model 
optimized for 500 epochs. It is important to note that the 
oscillations in the minimum and maximum values of the 
distributions are expected, as sampling is a stochastic 
process.

Although, as it has been shown, the proposed model 
was successful in maximizing the overall KOR affinity 
of the generated molecules, for them to be considered 
as potential drugs, it is also important to evaluate met-
rics such as QED, log P , MW and SAS. Figure  9 shows 
the scatter plots and distributions of these properties for 
1000 molecules generated after 500 epochs of optimiza-
tion; the red square represents the region of drug-like 
properties. From Fig.  9 (left plot) it can be concluded 
that most of the molecules are outside the desired region 
(high QED and low SAS), with most of them exhibiting 
a SAS higher than 5, which implies that they are difficult 
to synthesize. It can be observed from Fig. 9 (right plot) 
that a significant amount of the generated molecules have 
good values for both log P and MW, even though there 
is a general tendency towards higher molecular weights 
(see Additional file 1: Section 3).

Experimental analysis on performance
We assess the performance of the model by analyzing the 
feedbackGAN mechanism’s behavior given different mol-
ecule distributions as training. For the following experi-
mental analysis, the ADORA2A molecules dataset was 
used. The pipeline generates the molecules based on two 
factors: the applied goals (i.e., for the selection of “best” 
molecules) and the input training dataset of the feedback-
GAN. From the ADORA2A dataset, three different ways 

Table 4 Performance of the Predictor module on the USP7, 
JAK2, ADORA2A and KOR datasets

It shows the acquired values of Mean Squared Error (MSE), Coefficient of 
Determination (CD), Concordance Correlation Coefficient (CCC), and Mathews 
Correlation Coefficient (MCC), alongside their respective standard deviations 
(Std)

Dataset MSE ± Std CD ± Std CCC ± Std MCC ± Std

USP7 0.08 ± 0.177 0.492 ± 0.122 0.664 ± 0.088 0.736 ± 0.042

JAK2 0.063 ± 0.003 0.435 ± 0.018 0.658 ± 0.021 0.43 ± 0.042

ADORA2A 0.041 ± 0.003 0.588 ± 0.041 0.78 ± 0.02 0.586 ± 0.013

KOR 0.043 ± 0.002 0.629 ± 0.015 0.795 ± 0.007 0.664 ± 0.01

Fig. 8 Distribution of generated molecules and the predicted pIC 50. 
The plot shows the distribution of the predicted pIC50 values for the 
unbiased model and the biased model (feedbackGAN) at every 100 
epochs from the KOR dataset
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of sampling 1000 molecules were performed, named: 
Random, Tani-Inf, and Tani-Sup1. Random sampling, as 
the name implies, selects molecules randomly. Tani-Inf 
and Tani-Sup selected the molecules with the highest 
and lowest internal diversity of the ADORA2A dataset, 
respectively. The internal diversity of each molecule was 
calculated using the Eq.  3. In order to avoid obtaining a 
final sampled pIC50 distribution too different from the 
original dataset, the molecules were sampled from arbi-
trary pIC50 intervals. Then the feedbackGAN was trained 
for 500 epochs for each sampled data and subsequently 
generated, 10000 valid molecules. From Fig. 10 it can be 
observed that, independently of the sampling method, 

the generated distributions of molecules all by a moder-
ate extent converged to the same pIC50 values, but with 
different densities. In the case of the Tani-Inf, one poten-
tial hypothesis that could explain why the molecules are 
spread more sparsely is that the feedbackGAN might have 
difficulty generating molecules similar to sampled data 
(i.e., the 1000 sampled data), given that the molecules are 
very dissimilar between themselves. From this perspec-
tive, it makes sense that the sampling Tani-Sup generates 
molecules less sparse, since the initial sampled data had 
lower internal diversity between molecules. Furthermore, 
the unbiased sampling of molecules (i.e., the random 
sampling) generates molecules with a distribution that 
falls between the other sampling methods (sparsity). It is 
important to highlight that pIC50 values of each molecule 

Fig. 9 Evaluation of the log P versos MW (left) and the QED versos SAS (right) for the biased model (feedbackGAN) at 500 epochs

Table 5 Comparison of pIC50 distribution measures throughout the optimization process (maximization of KOR affinity). Max, Mean 
and Min value of pIC50 are shown in 500 epochs and for the unbiased (ub) model

ub 50 100 150 200 250 300 350 400 450 500

Max 8.454 8.341 8.852 9.340 9.354 8.911 9.149 9.000 8.939 9.241 9.179

Mean 5.984 6.501 6.719 6.791 6.851 7.015 7.074 7.168 7.204 7.273 7.383
Min 5.083 5.198 5.205 5.380 5.181 5.496 5.271 5.340 5.522 5.380 5.380

Int Div 0.887 0.890 0.890 0.887 0.891 0.886 0.885 0.885 0.883 0.878 0.877

Ext Div 0.890 0.900 0.909 0.908 0.915 0.923 0.922 0.926 0.930 0.937 0.938
% Uni. 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.8 100.0

% Valid 62.2 47.1 57.7 64.0 70.7 76.0 78.9 93.6 84.1 92.4 94.3

1 The “Tani-Inf” and “Tani-Sup” correspond to the inferior and superior Tani-
moto similarity, respectively, and not the Tanimoto distance.
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were calculated utilizing the trained predictor; therefore, 
the error might increase the further away the molecules 
are from the original dataset, which could also potentially 
explain the difference between distributions.

The molecules generated by each sampling approach are 
then evaluated by calculating the percentage of valid mol-
ecules (validity), the percentage of uniquely generated mol-
ecules (uniqueness), the percentage of generated molecules 
that do not exist in the reference dataset (ADORA2A data-
set) (novelty), and finally the Kullback-Leibler (KL) diver-
gence between the generated molecules and the reference 
dataset, using several molecule descriptors, as implemented 
in the Guacamole benchmark [45]. The latter evaluation 
metric consists of calculating, for both datasets (i.e., the 
ADORA2A and generated datasets), several descriptors 
from the RDKIT library, namely: NumRotatableBonds, 
MolLogP, MolWt, BertzCT, TPSA, NumHAcceptors, Mol-
WtNumHDonors, NumAliphaticRings, and NumAro-
maticRings. On ECFP4 fingerprints, we also compute the 
distribution of maximal closest neighbor similarities. Each 
distribution of obtained values is compared between data-
sets using the KL divergence method, and a mean is calcu-
lated. The obtained values are presented in Table 6.

Note that both the Tani-Inf and Tani-Sup sampling 
methods generate (through the feedbackGan) a higher 
percentage of valid molecules than Random sampling. 
One possible explanation can be that inputting a very dis-
similar (or similar) set of molecules can “force” the model 
to biased generate molecules in specific “drug spaces”, 
while the Random sampling method gives the model an 
unbiased exploration direction, which could explain why 
it has the lowest percentage of valid molecules. The KL 
divergence metric corroborates to a moderate extent our 
premise that different sampling methods over the origi-
nal dataset can compel the model to explore different 
“drug spaces”, as evidenced by the lowest value obtained 
by the Tani-Inf sampling comparatively to the other two 
methods.

Finally, a selection process was implemented to fil-
ter out molecules that do not have drug-like properties. 
Specifically, molecules that do not fall in the regions pre-
sented in Fig.  9 are excluded. The identification of the 
solutions that provide more adequate compromises was 
performed by employing the Pareto diagram, which is a 
method for representing the set of solutions to define the 
best trade-off between competing objectives.

The best of the molecules generated were selected 
by the non-dominated sorting algorithm based on dif-
ferent defined objective vectors (see Definition  1). 
Figure  11 shows the scatter plot for objective vector 
(PIC50(m),−SAS(m)) . The objective in this case is to 
select the molecules that have high PIC50 while minimiz-
ing the SAS or maximizing the negative of this value. The 
Additional file 1: Figures S6–S7 contains the Pareto dia-
grams for the two other defined score vectors.

Figure  12 shows a sample of five molecules from the 
ranked Pareto layers of the Pareto diagrams with/ with-
out the stereochemical information from three objective 
vectors defined in Definition  1. The selected molecules 
from the three datasets contain all the stereochemi-
cal information they need to be fully defined in their 
SMILES. Note that all stereocenters have enough infor-
mation not to leave doubts about what stereoisomer we 
are focusing on. This information is all encoded in each 
SMILES string. Predicted pIC50 is depicted in the leg-
end. The greater this value, the higher the binding affin-
ity, contrary to the SA score.

Technical notes The implementations were in a com-
puter with processors AMD Ryzen 9 3900X 12-core, 64 
GB RAM and GPU Nvidia RTX 2070 8GB of GDDR6 
VRAM using CUDA 10.1 with operating system Ubuntu 
20.04.3 LTS. The results were coded in Python 3.8.3 using 
Tensorflow 2.3. The chemistry library used throughout is 
RDKit 2020_09_2 [43].

Table 6 Performance analysis of generated molecules 
considering the sampling approach of the training dataset

Random Tani‑Inf Tani‑Sup

Validity (%) 82.81 89.89 93.22

Uniqueness (%) 96.89 94.73 97.63

Novelty (%) 100.0 100.0 100.0

KL Divergence 0.5266 0.2643 0.4915

Fig. 10 Distribution of the predicted pIC50 values for different 
sampling methods from the ADORA2A dataset
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Fig. 11 Determination of the set of selected molecules. Pareto diagram containing the approximated Pareto front in 4 layers, with the 
non-dominated scores of (PIC50(m),−SAS(m)) in red

Fig. 12 Distribution of the predicted pIC50 values for different sampling methods from the ADORA2A dataset
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Conclusion
We propose a GAN-based framework that aims at gen-
erating and optimizing new molecules. As GANs can-
not be straightforwardly applied to discrete data, which 
is the case of SMILES strings, we propose the use of an 
Encoder–Decoder model in order to obtain continuous 
representation of molecules. This model reached 98.8% 
of correctly reconstructed SMILES strings on a hold-
out test set and 99.9% on the train set, which shows an 
improvement when compared to the state of the art [21]. 
It is worth noting that our model is trained on a dataset 
that includes stereo-chemical information, which is often 
overlooked in most works due to its increased complex-
ity but is critical in drug discovery. By passing the train-
ing data, that comprises SMILES strings, through the 
Encoder, an equivalent dataset is obtained that, instead 
of SMILES, contains fixed length continuous vectors. 
The representation is then used to train the GAN, more 
specifically a WGAN-GP. This type of model is able to 
implicitly learn the distribution of the training data and 
generate new instances following that same distribu-
tion by pairing up two competing neural networks: a 
Generator and Discriminator. Once the WGAN-GP is 
trained, the Generator network is used to generate new 
vectors that are then converted into SMILES strings by 
the Decoder network. Furthermore, we have included a 
multi-optimization strategy by including an extra step 
in the feedback loop of the proposed model to make it 
capable of optimizing multiple traits collectively. In par-
ticular, we applied the non-dominated sorting algorithm 
to select the best-generated molecules, a proven multiob-
jective optimization method. We showed that the trained 
WGAN-GP was able to replicate the distribution of the 
training data in terms of the predicted binding affinity for 
the KOR while still generating molecules with high levels 
of diversity (0.890 for the external diversity and 0.887 for 
the internal diversity). Even though the low percentage of 
valid generated molecules (30.2%) and the time required 
to train the models is clearly a drawback of this method, 
it is counterbalanced by the high diversity of the gener-
ated compounds and the percentage of their uniqueness 
(100%).

Once the WGAN-GP was trained on the dataset cre-
ated by the Encoder, a feedbackGAN based optimiza-
tion strategy is employed that consisted of continuing 
the training of the model and generating new molecules 
at every epoch. These new molecules are then evalu-
ated according to their binding affinity for the KOR and 
the best scoring generated molecules replaced the worst 
scoring entries in the training data, resorting to a feed-
back loop. The obtained results proved that this strategy 
successfully resulted in shift of the generated distribu-
tion, with its mean moving from 5.984 for the unbiased 

model to 7.383 when aiming to maximize the predicted 
pIC50 of the generated molecules. Along with this, there 
was also an increase in the validity of the generated com-
pounds from 30.2% to 62.3% with the internal diversity 
oscillating around 0.88 which implies that the model did 
not suffer from mode collapse. Interestingly, the exter-
nal diversity increased as the optimization process pro-
ceeded, meaning that the framework was indeed able to 
generate novel compounds with binding affinities as high 
as 9.18. In this sense, the devised framework was effec-
tively maximized, though it should be noted that this was 
accompanied by an increase in the complexity of the gen-
erated compounds proved by the synthetic accessibility 
scores of the generated molecules.

The overall framework has the advantage that only the 
optimization step needs to be adapted to different prob-
lems and goals, simply requiring for that a problem-spe-
cific scoring metric function.
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