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Abstract Fluorescent calcium indicators are often used to investigate neural dynamics, but the

relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be

detected when the soma almost fills the microscope’s field of view, but calcium indicators are used

to image populations of neurons, necessitating a large field of view, generating fewer photons per

neuron, and compromising AP detection. Here, we characterized the AP-fluorescence transfer

function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous

calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or

GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of

population imaging studies, only a minority of 1 AP and 2 AP events were detected (often <10%

and ~20–30%, respectively), emphasizing the limits of AP detection under more realistic imaging

conditions.

Introduction
Genetically encoded calcium indicators (GECIs) are widely used with two-photon laser scanning

microscopy to report neuronal activity within local populations in vivo (Luo et al., 2018). This optical

approach is minimally invasive and enables simultaneous measurement of activity from hundreds or

even thousands of neurons at single-cell resolution, over multiple sessions. Using a contemporary

GECI such as GCaMP6s, fluorescence changes associated with isolated spikes (action potentials,

APs) in vivo can be detected when imaged at sufficiently high spatiotemporal resolution

(Chen et al., 2013) (http://dx.doi.org/10.6080/K02R3PMN). Yet undetected APs are common in

population imaging experiments (Theis et al., 2016; Berens et al., 2018).

Inferring the underlying AP train or firing rate from calcium imaging remains challenging for sev-

eral reasons. First, population imaging studies necessarily employ a large field of view containing

many neurons. In contrast, the AP to calcium-dependent fluorescence transfer function is typically

characterized with a soma filling the field of view of the microscope, to maximize photon flux from

the soma and thereby signal-to-noise ratio. Second, there is no ground truth spiking information

available for most neurons in a population. Spiking information, often from a cell-attached recording,

can be used to refine the spike inference model and thereby optimize AP detection. Third, the AP to

calcium-dependent fluorescence transfer function may be different for each neuron due to various

intrinsic and extrinsic factors, such as neuron-to-neuron differences in indicator expression.

Compared to viral expression, transgenic mouse lines offer convenience (e.g. bypassing virus

injection and associated procedures) and achieve more uniform GECI expression in genetically
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defined neuronal populations (Madisen et al., 2015; Daigle et al., 2018). Using our intersectional

transgenic mouse lines that enable Cre recombinase-dependent expression of GCaMP6s or

GCaMP6f, we simultaneously characterized the spiking activity and fluorescence of individual GECI-

expressing pyramidal neurons in layer 2/3 of mouse primary visual cortex (V1). We then tested the

performance of several spike inference models, detecting APs under optimal conditions (models

refined using the spiking information, with the soma filling the field of view) and under the less opti-

mal conditions typical of population imaging experiments. Our results provide insight into the rela-

tionship between spiking activity in vivo and fluorescence signals and will aid the interpretation of

existing and future calcium imaging datasets.

Results
To characterize the single-cell transfer function between observed fluorescence signals and underly-

ing APs in vivo, we performed simultaneous calcium imaging and cell-attached recordings in V1 L2/3

excitatory pyramidal neurons in anesthetized mice (Figure 1A,B). To directly compare our results to

virally expressed GCaMP6f and GCaMP6s (Chen et al., 2013) (http://dx.doi.org/10.6080/

K02R3PMN), we used a small field of view (19.3–27.3 � 19.3–21.5 mm; scanning rate 141.3–158.3

frames per second [fps]). 2–10 min recordings were obtained from 213 neurons, all with fluorescence

excluded from the nucleus. Quality control code was deployed to exclude from further analysis

recordings with artifacts such as motion, photobleaching, somatic dye from the recording pipette,

electrophysiological or fluorescence baseline instability, and abrupt changes in AP waveform (see

’Materials and methods’). The dataset for further analysis was from 48 neurons from mice of four

transgenic lines, two expressing GCaMP6s and two GCaMP6f in excitatory neurons in layer 2/3 and

deeper layers of cortex (Table 1).

We analyzed events with fluorescence transients separated from those of adjacent events, con-

taining a total of 5427 APs (28% of APs; Figure 1—figure supplement 1C). An event was defined as

eLife digest Neurons, the cells that make up the nervous system, transmit information using

electrical signals known as action potentials or spikes. Studying the spiking patterns of neurons in

the brain is essential to understand perception, memory, thought, and behaviour. One way to do

that is by recording electrical activity with microelectrodes. Another way to study neuronal activity is

by using molecules that change how they interact with light when calcium binds to them, since

changes in calcium concentration can be indicative of neuronal spiking. That change can be

observed with specialized microscopes know as two-photon fluorescence microscopes. Using

calcium indicators, it is possible to simultaneously record hundreds or even thousands of neurons.

However, calcium fluorescence and spikes do not translate one-to-one.

In order to interpret fluorescence data, it is important to understand the relationship between the

fluorescence signals and the spikes associated with individual neurons. The only way to directly

measure this relationship is by using calcium imaging and electrical recording simultaneously to

record activity from the same neuron. However, this is extremely challenging experimentally, so this

type of data is rare.

To shed some light on this, Huang, Ledochowitsch et al. used mice that had been genetically

modified to produce a calcium indicator in neurons of the visual cortex and simultaneously obtained

both fluorescence measurements and electrical recordings from these neurons. These experiments

revealed that, while the majority of time periods containing multi-spike neural activity could be

identified using calcium imaging microscopy, on average, less than 10% of isolated single spikes

were detectable. This is an important caveat that researchers need to take into consideration when

interpreting calcium imaging results.

These findings are intended to serve as a guide for interpreting calcium imaging studies that look

at neurons in the mammalian brain at the population level. In addition, the data provided will be

useful as a reference for the development of activity sensors, and to benchmark and improve

computational approaches for detecting and predicting spikes.
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one or more APs within 250 ms, with no APs in the preceding or subsequent 300 ms for GCaMP6f

or 1 s and 500 ms for GCaMP6s (Figure 1C).

visual stimuli

screen

2-p microscope
recording
pipette

pipette

cell-attached
 recording

GCaMP6
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C

2 APs 1 AP 3 APs
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C
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Figure 1. Simultaneous calcium imaging and electrophysiology in vivo. (A) Experimental design. (B) Fluorescence

and Vm traces from an exemplar Emx1-s neuron. (C) 5 s of data from the neuron in panel B, showing a 2 AP, a 1

AP, and a 3 AP event. Pre- and post-AP exclusion windows, used to separate events, are illustrated for each

event. AP, action potential.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mouse age, cell depth, and firing rate.

Table 1. Dataset.

Sample size for each mouse line (see also Figure 1—figure supplement 1).

Mouse line Acronym GECI Mice Cells Recording duration APs per neuron

Emx1-IRES-Cre;
Camk2a-tTA;Ai94

Emx1-s GCaMP6s 5 21 241 ± 32 s 478 ± 121

Camk2a-tTA; tetO-GCaMP6s tetO-s GCaMP6s 1 4 347 ± 108 s 348 ± 71

Cux2-CreERT2;
Camk2a-tTA;Ai93

Cux2-f GCaMP6f 3 12 300 ± 79 s 484 ± 112

Emx1-IRES-Cre;
Camk2a-tTA;Ai93

Emx1-f GCaMP6f 4 11 201 ± 23 s 219 ± 38
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Calcium transients differ across mouse lines
Fluorescence measured from the soma is contaminated with fluorescence from the surrounding neu-

ropil, due to the extended nature of the microscope point spread function. Neuropil contamination

is often removed by subtracting a scaled version of the neuropil fluorescence from the somatic fluo-

rescence, with the scale factor referred to as the r value (Kerlin et al., 2010; Akerboom et al.,

2012). The r value can affect AP detection, with under-subtraction of neuropil leading to false posi-

tives (events detected when there was activity in the neuropil but not the soma) and over-subtraction

leading to false negatives (failure to detect somatic activity). We examined the effects of r on detec-

tion of 1 AP events, with electrical recordings providing ground truth (Figure 2 and Figure 2—fig-

ure supplement 1). For many GCaMP6s neurons, the receiver operating characteristic (ROC) curve

changed little with r (Figure 2A), indicating that APs were detected with few false positives with little

effect of neuropil subtraction. Neuropil subtraction exerted a stronger influence on event detection

in GCaMP6f neurons, where the ROC curve changed with r (Figure 2A), permitting identification of

the optimal r as that which maximized the area under the ROC curve and, thereby, the true/false

event detection ratio. Optimal r for Emx1-f and Cux2-f neurons was approximately normally distrib-

uted with mean ± SEM of 0.82 ± 0.07 (20 neurons, Figure 2B). Our results indicate that the value of r

has a modest effect on event detection in GCaMP6f neurons in mouse V1. The effect of neuropil

subtraction may be greater during coordinated activity across the whole network, such as during

strong sensory stimuli.

After neuropil subtraction (see ’Materials and methods’), we averaged trials by number of APs, fit

a sum of exponentials to estimate rise and decay time constants and calculated peak DF/F (mean

fluorescence over 100 ms around the maximum within 300 ms for GCaMP6f and 500 ms for

GCaMP6s) for events with 1–5 APs (Figure 3). 28–55% of detected APs were in events with 1–5 APs

(Figure 1—figure supplement 1) and >70% of these analyzed APs were in multi-AP events. As

expected, peak DF/F increased approximately linearly with 1–5 APs, and peak DF/F and decay time

constant were greater with GCaMP6s than GCaMP6f (Figure 3C). Peak DF/F was comparable to or

slightly greater than in previous studies with GCaMP6s and GCaMP6f, possibly because we sub-

tracted more of the neuropil fluorescence with a slightly greater r value (r = 0.8 vs. 0.7; Chen et al.,

2013).
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Figure 2. Neuropil subtraction optimized for 1 AP (action potential) detection. (A) Effect of changing neuropil

subtraction on detection for exemplar GCaMP6s and GCaMP6f neurons. Upper plots: family of receiver operating

characteristic (ROC) curves. Each curve illustrates detection probability for true APs against probability of false

positives as detection threshold is changed, for 1 AP events. False positives were calculated from time windows

with no APs. Each ROC curve represents a different value of r. Lower plots: area under the ROC curve as a

function of r. Gray symbols represent value of r for which r * Fneuropil(t) was greater than Fcell_measured(t), resulting in

a negative F0 and inversion of the DF/F trace. (B) Distribution of r values for 20 GCaMP6f neurons.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Simulated effect of neuropil subtraction on event detection.
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As expected, photon shot noise was the dominant noise source in images from all mouse lines.

The pixelwise slope of the least squares fit between the variance and mean of the photon flux was

1.04 ± 0.01 (mean ± SEM), consistent with the noise following a Poisson process (intercept

�0.08 ± 0.2, 48 neurons). Trial-to-trial variability in the amplitude of the 1 AP-evoked fluorescence

was substantial and exceeded photon shot noise in most neurons (Figure 3—figure supplement 1).

The sources of non-Poisson variability in our results are unclear, but negligible motion was visible in

the movies after motion correction. Likely the variability results primarily from trial-to-trial differences

in the AP-evoked calcium concentration, assuming GCaMP6f and GCaMP6s are expressed at suffi-

cient concentrations to report resting changes in calcium concentration in all four mouse lines.

Increasing field of view reduces optimized event detection
GCaMP6 indicators have been widely adopted because they exhibit greater AP-evoked DF/F than

previous GCaMP indicators, but still some APs may go undetected (Chen et al., 2013). Under ideal

conditions, almost all APs can be detected (with probability close to 1 at a false positive probability

of 1%; Chen et al., 2013). However, many imaging experiments are performed with a field of view

of hundreds of micrometers and this large field of view limits the dwell time per soma and thereby

the photon flux per soma and signal-to-noise ratio. What event detection rate might be expected

when imaging a large field of view, sufficient to include hundreds of somata? How much does field

of view affect event detection?

We calculated detection probability for 1 AP and 2 AP events, using AP times from electrophysi-

ology recordings to optimize event detection for each neuron (Chen et al., 2013). In high spatial
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Figure 3. Action potential (AP)-evoked calcium transients in four mouse lines. (A) Example fluorescence traces (DF/F, with r = 0.82 neuropil subtraction)

for 1 AP, 2 AP, and 3 AP events for an exemplar Emx1-s neuron (forty-two 1 AP events, thirty-eight 2 AP events, sixteen 3 AP events) and an exemplar

Emx1-f neuron (twenty-three 1 AP events, twelve 2 AP events, eleven 3 AP events). (B) Mean fluorescence traces and fits (sum of two exponentials) for

1–5 AP events for the two neurons in A. (C) Mean ± SEM peak DF/F, rise time constant, and decay time constant for four mouse lines. Number of

neurons for 1–5 AP events were: 15, 16, 14, 9, 6 for Emx1-s; 4, 4, 4, 0, 0 for tetO-s; 10, 10, 10, 5, 4 for Emx1-f; 9, 9, 7, 4, 2 for Cux2-f. Asterisks indicate

differences between mouse lines (p<0.05, one-way ANOVA).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Trial-to-trial variability of 1 AP (action potential) events.
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and temporal resolution images, the probability of 1 AP event detected spanned a wide range

(probability 0.07–1 and 0.11–0.95 for GCaMP6s and GCaMP6f, at 1% false positive probability,

Figure 4A-C). As expected (Dana et al., 2014; Wei et al., 2019), most 1 AP events were detected

in GCaMP6s and GCaMP6f neurons, but with lower average probability in GCaMP6f neurons (1 AP

detection probability 0.70 ± 0.06 for 18 Emx1-s neurons, 0.80 ± 0.03 for three tetO-s neurons,

0.40 ± 0.08 for nine Cux2-f neurons, 0.60 ± 0.08 for 11 Emx1-f neurons, mean ± SEM at 1% false pos-

itive probability). 2 AP events were reliably detected in all four mouse lines (Figure 4C; detection

probability 0.90 ± 0.06 for Emx1-s, 1.0 ± 0.0 for tetO-s, 0.66 ± 0.07 for Cux2-f, 0.80 ± 0.05 for Emx1-

f, at 1% false positive probability). In high spatial and temporal resolution images, in all four mouse
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Figure 4. Downsampling affects event detection. (A–C) Event detection from images at high spatial and temporal

resolution. (A) Receiver operating characteristic (ROC) curves for 1 AP events in 42 neurons, organized by mouse

line. Neuropil subtraction was performed with r = 0.8 where possible (see ’Materials and methods’). Numbers of

neurons were 18 Emx1-s, 3 tetO-s, 11 Cux2-f, 9 Emx1-f. (B) Mean ROC curves for the four mouse lines. (C) Event

detection probabilities for 1 AP and 2 AP events. Bars represent mean ± SEM. (D–F) Equivalent plots for the same

neurons after downsampling.
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lines, it was possible to detect most but by no means all 1 AP and 2 AP events with a false positive

probability of only 1%.

In these transgenic mice, 1 AP detection probabilities were lower than in previously reported neu-

rons with virally expressed GCaMP6s and GCaMP6f (0.99 and 0.84 at 1% false positive probability in

Chen et al., 2013). There are several possible reasons for this difference. In the transgenic mice

used here, GCaMP expression is widespread throughout neocortex, which may result in labeling of

greater numbers of axons and dendrites that

contribute to the neuropil signal. Furthermore,

GCaMP6 expression may be weaker in the four

TIGRE1.0 mouse line crosses examined here

than with strong promoter-driven adeno-associ-

ated virus (AAV) vectors as used in Chen et al.,

2013. The newer TIGRE2.0 reporter lines drive

GCaMP expression that is comparable to that

from strong promoter-driven AAVs

(Daigle et al., 2018), likely enabling 1 AP and

2 AP detection rates in transgenic mice that are

comparable to those achieved with viral expres-

sion of GCaMP6.

Our recordings were obtained with a small

field of view, at a high frame rate and centered

on the soma (~19.3�19.3 mm, ~158 Hz,

Figure 5A,B). In an attempt to simulate com-

monly used imaging conditions, we down-

sampled our images in space and time to mimic

imaging with a 412 � 412 mm field of view at

30.3 Hz, as used in the Allen Brain Observatory

(Figure 5C,D). The baseline fluorescence noise

from downsampled images was comparable to

that in the Allen Brain Observatory (Figure 5E)

and is presumably comparable to images in

many two-photon datasets with populations of

hundreds of neurons.

As expected, event detection probabilities

were lower for downsampled images than for

the original, high-resolution images (Figure 4D–

F). 1 AP and 2 AP event detection probabilities

were 0.32 ± 0.05 and 0.55 ± 0.08 for 18 Emx1-s

neurons, 0.43 ± 0.07 and 0.89 ± 0.06 for three

tetO-s neurons, 0.16 ± 0.04 and 0.24 ± 0.04 for 9

Cux2-f neurons, 0.21 ± 0.04 and 0.42 ± 0.09 for

11 Emx1-f neurons (mean ± SEM at 1% false pos-

itive probability). Even for 2 AP events, detection

probability is <0.5 when imaging with GCaMP6f

and a field of view of several hundred

micrometers.

In summary, 1 AP and 2 AP events were

detected with high probability when images

were acquired with high spatial and temporal

resolution and when analysis was performed with

an event detection algorithm optimized for each

neuron using known AP times. Even with known

AP times to optimize detection for each neuron,

event detection was severely impaired by a

reduction in spatial and temporal resolution to
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The online version of this article includes the following

figure supplement(s) for figure 5:

Figure supplement 1. Example fluorescence traces
from image quality control procedures, implemented
during image downsampling.
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mimic a typical two-photon population imaging experiment.

Modest effect of field of view on event detection under typical imaging
conditions
In a typical two-photon population imaging experiment, no electrophysiology recording is available

to optimize event detection. Often, the shape of the calcium transient is estimated from published

indicator rise and decay times or derived from a representative sample of fluorescence transients.

What are typical event detection and false positive probabilities under these sub-optimal

conditions when the underlying AP times are unknown? Is performance degraded equally for high

and for low resolution images?

We compared event detection from high-resolution and downsampled images using three spike

inference algorithms: unconstrained non-negative deconvolution (NND; Friedrich et al., 2017), non-

negative deconvolution with an L0 constraint to enforce event sparseness (Exact L0; Jewell et al.,

2020), and a biophysical model that explicitly accounts for intracellular calcium dynamics (MLspike;

Deneux et al., 2016). These three algorithms are among the highest performing spike inference

algorithms (Berens et al., 2018).

For each neuron, the algorithms were deployed to estimate the number of APs in each image of

the movie. All three algorithms estimated AP numbers that approximately recapitulated the number

of APs measured with electrophysiology, but the number of APs per frame was typically not an inte-

ger due to imperfect spike inference (Figure 6A,D). We characterized performance using the Pear-

son correlation coefficient and the Matthews correlation coefficient, which compare measured and

estimated AP number at each time point and the presence or absence of an event at each time

point, respectively. Pearson correlation coefficients were ~0.4 when calculated with 33 ms time bins,

increasing toward 0.7 as bin size was increased to 500 ms (Figure 6—figure supplement 1), compa-

rable to published results (Berens et al., 2018). Mean Pearson and Matthews correlation coefficients

were similar across inference algorithms and mouse lines and differed little between high-resolution

and downsampled images (Figure 6B,E).

We plot ROC curves to more directly examine the relationship between detected events and false

positives. Since spike inference is generally useful only where false positive rates are low, we focused

on false positive probabilities in the range of 0–0.05. Performance differed greatly between neurons,

but mean ROC curves were similar across mouse lines, with only modest differences between algo-

rithms, between GCaMP6s and GCaMP6f lines, or between high-resolution and downsampled con-

ditions (Figure 6C,F).

Naturally, detection probability increased with the number of APs per event. At a false positive

probability of 0.01, detection probability was commonly <0.1 for 1 AP events, increasing approxi-

mately linearly with AP number, often to ~0.8 for 5 AP events (Figure 7A,B). With 1 AP events being

the most common event type in all four mouse lines (Figure 7C), it was possible to detect only a

minority of events with a low false positive probability. Using these spike inference algorithms,

although detection probabilities were commonly slightly lower for downsampled than for high-reso-

lution images, the difference was modest, indicating that the decreased SNR of population imaging

had little effect on event detection in our dataset.

Using our dataset, we compared event detection with three algorithms: unpenalized NND, NND

with L0 constraint and mathematically guaranteed globally optimal solution (Exact L0), and the bio-

physically inspired MLspike model. For NND, performance was poor at 30 Hz and considerably

improved by upsampling to 150 Hz (Figure 7—figure supplement 1). Upsampling of low frame rate

data, often to 100 Hz, is a common practice in the field (Theis et al., 2016; Berens et al., 2018;

Pachitariu et al., 2018). For MLspike, performance was poor without use of the autocalibration pro-

cedure to optimize the model for each neuron (Figure 7—figure supplement 2). MLspike thus con-

trasted with deconvolution-based algorithms, for which fixed parameters are more effective

(Pachitariu et al., 2018). For Exact L0, neither upsampling nor optimization for each neuron was

necessary for optimal mean performance across neurons.

Pachitariu et al., 2018 found that unpenalized NND matched and often exceeded the perfor-

mance of algorithms with sparsifying constraints such as NND with an approximate L0 constraint (no

mathematical guarantee of globally optimal solution). Consistent with the conclusions

of Pachitariu et al., 2018, Exact L0 lagged the performance of NND for some metrics and geno-

types (Figure 7 A, B) but was indistinguishable or even superior for others (Figure 6B, E). The
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Figure 6. Performance of spike inference algorithms on high-resolution and downsampled images. (A) Results

from an exemplar Cux2-f neuron, at high resolution. Fluorescence and action potential (AP) rate from

electrophysiology (black). Below, APs per image frame estimated with three spike inference algorithms: MLspike

(blue), Exact L0 (purple), and non-negative deconvolution (NND, orange). (B) Pearson correlation coefficient (r) and

Matthews correlation coefficient (MCC) for the three algorithms for each mouse line. 300 ms bins. (C) Receiver

operating characteristic (ROC) curves, reporting probabilities of detecting true and false events in each time bin.

Thin lines: individual neurons. Thick lines: mean across neurons. 300 ms bins. (D–F) Equivalent plots for

downsampled images.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effect of bin duration on measures of spike inference algorithm performance.
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performance of MLspike was broadly equivalent to that of NND, but the loss of performance due to

downsampling was less with MLspike, resulting in outperformance of MLspike on downsampled

images. Our results point to MLspike as a compelling choice for spike inference in population imag-

ing experiments. Our results also suggest that there is ample room for improvement of spike infer-

ence models since event detection by the three spike inference models falls far short of the

performance of the ground truth-optimized approach employed in Figure 4 (Figure 7—figure sup-

plement 3).

In summary, relative to small field-of-view imaging, population imaging conditions decreased the

probability of spike event detection with an event detector optimized to each individual neuron

using ground truth AP information (Figure 4). With blind spike inference, many events went unde-

tected even under near-ideal imaging conditions with a small field of view, and event detection was

not substantially worse under population imaging conditions (Figure 6, Figure 7, Figure 7—figure

supplement 3). The results of Figures 6 and 7 are likely representative of event detection in many

GCaMP6 imaging experiments, where ground truth AP information is not available and blind spike

inference is employed. Our results indicate that even though GCaMP6 indicators are bright and sen-

sitive enough to enable the detection of most 1 AP events in superficial cortical pyramidal neurons

in vivo if the detection procedure is optimized using ground truth AP information, most events
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Figure 7. Performance of blind spike inference algorithms for 1–5 AP (action potential) events. (A) Mean ± SEM

detection probabilities at 1% false positive probability for high-resolution images. (B) Mean ± SEM detection

probabilities at 1% false positive probability for downsampled images. (C) Frequency of 0–5 AP events for 250 ms

bins for each mouse line.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Upsampling enhances performance of unconstrained non-negative deconvolution (NND).

Figure supplement 2. Autocalibration enhanced performance of MLspike.

Figure supplement 3. Comparison of spike inference with blind and ground truth action potential (AP)-optimized
algorithms.
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containing 1, 2, and sometimes greater numbers of APs go undetected in our (and likely in many

other) imaging experiments with GCaMP6.

Discussion
Calcium imaging is widely used to report neuronal spiking activity in vivo. However, accurate spike

inference from calcium imaging remains a challenge, and there are relatively few ground truth data-

sets with simultaneous calcium imaging and electrophysiology to aid the development of more accu-

rate spike inference algorithms. In a recent challenge, ~40 algorithms were trained and tested on

datasets consisting of 37 GCaMP6-expressing neurons, underscoring the need for additional

GCaMP6 calibration data (Berens et al., 2018). In addition to supporting efforts toward spike infer-

ence, an improved understanding of the relationship between spiking and observed fluorescence

signals is necessary to further broaden the utility and impact of calcium imaging. To these ends, we

contribute a ground truth dataset consisting of 48 V1 L2/3 excitatory neurons recorded at single-cell

resolution (available at https://portal.brain-map.org/explore/circuits/oephys) and characterized their

AP-to-calcium fluorescence transfer function. Complementing existing datasets with viral GECI

expression (Chen et al., 2013; Theis et al., 2016; Dana et al., 2016), our work facilitates interpreta-

tion of existing and future calcium imaging studies using mainstream transgenic mouse lines, such as

the Allen Institute’s Brain Observatory Visual Coding dataset (http://observatory.brain-map.org/visu-

alcoding) (de Vries et al., 2020).

Previous studies have established that most APs can be detected with GCaMP6 indicators under

near-optimal conditions (Chen et al., 2013). Yet undetected APs are common in population imaging

experiments (Theis et al., 2016; Berens et al., 2018). To investigate why APs are often missed dur-

ing population imaging, we compared event detection in 250 ms time windows with a neuronal

soma occupying most of the image, near-optimal conditions for AP event detection, and event

detection when the soma occupies just a small percentage of the field of view, less ideal conditions

that are common in population imaging studies. Importantly, we downsampled images to simulate

population imaging conditions, enabling comparison for the same APs under different imaging

conditions.

Our results indicate that, in GCaMP6 transgenic mice, most APs can be detected under near-opti-

mal conditions, while detection is less effective during population imaging. These conclusions are

similar to those of previous studies with viral GCaMP6 expression, but our results also reveal two

reasons for the difference in detection. Unsurprisingly, the reduced signal-to-noise ratio of popula-

tion imaging, relative to single soma imaging, results in less effective event detection. However, a

high signal-to-noise ratio, achieved by imaging one soma, was no guarantee of effective event

detection. Effective detection also required optimization of detection for the neuron of interest,

using known AP times to identify events with different AP numbers and so generate kernels of the

appropriate amplitude and time course. Parameter tuning in the absence of known AP times, with

the MLspike autocalibration routine, improved event detection but not to the high standard of

ground truth-optimized detection. Unfortunately, measuring AP times for every neuron with electro-

physiology is rarely feasible, severely limiting the percentage of events one might reasonably expect

to detect with GCaMP6 in most imaging experiments.

Our results point to several practices that might be adopted to maximize spike detection. First,

minimize the field of view, hence maximizing photon flux per neuron. Second, tune the spike infer-

ence model for each neuron independently, where possible. Third, compare the results of several

spike inference models. The three models employed here produced similar AP detection rates,

whether applied to high-resolution or to downsampled images. Similarly, Pachitariu et al., 2018

observed that the L0 constraint failed to improve performance of the NND model. Nonetheless,

each model has strengths and weaknesses. For example, a model may detect more APs than

another but at the cost of a greater false positive rate. As a result, model performance may diverge

for some AP rates and patterns. In the worst case, comparing models provides some protection

from errors in implementation. Fourth, ensure that traces are sampled (or upsampled) at a suffi-

ciently high rate when employing NND and use autocalibration with MLspike; both make a substan-

tial difference to model performance. Finally, exercise caution when interpreting the inferred spike

rates. Commonly, many APs are not detected using even the most accurate spike inference models.
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In summary, in this study we present a ground truth dataset from anesthetized mice with simulta-

neous electrophysiology and calcium imaging. Analysis of this dataset revealed that only a small frac-

tion of isolated APs were detected under typical population imaging conditions and with existing

spike inference algorithms. By making our data freely available, we hope that it will serve the com-

munity as a further resource to better understand the quantitative link between calcium-evoked fluo-

rescent imaging signals and spiking activity.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
Mus musculus

B6.129S2-Emx1tm1(cre)Krj/J,
Emx1-IRES-Cre

Jackson Laboratory RRID:IMSR_JAX:005628
RRID:MGI:2684610

Genetic reagent
Mus musculus

B6(Cg)-Cux2tm3.1
(cre/ERT2)Mull/Mmmh,
Cux2-CreERT2

MMRRC RRID:MMRRC_032779-MU
RRID:MGI:5014172

Genetic reagent
Mus musculus

B6.Cg-Tg(Camk2a-tTA)
1Mmay/DboJ,
Camk2a-tTA

Jackson Laboratory RRID:IMSR_JAX:007004 RRID:MGI:2179066

Genetic reagent
Mus musculus

B6;DBA-Tg(tetO-GCaMP6s)
2Niell/J, tetO-GCaMP6s

Jackson Laboratory RRID:IMSR_JAX:024742
RRID:MGI:5553332

Genetic reagent
Mus musculus

B6;129S6-Igs7tm93.1
(tetO-GCaMP6f)Hze/J,
Ai93(TITL-GCaMP6f)

Jackson Laboratory RRID:IMSR_JAX:024103
RRID:MGI:5558086

Genetic reagent
Mus musculus

B6.Cg-Igs7tm94.1
(tetO-GCaMP6s)Hze/J,
Ai94(TITL-GCaMP6s)

Jackson Laboratory RRID:IMSR_JAX:024104
RRID:MGI:5607576

Software, algorithm MATLAB R2016b http://www.mathworks.com/
products/matlab/

RRID:SCR_001622

Software, algorithm Python 3.7.4 http://www.python.org/ RRID:SCR_008394

Software, algorithm LabVIEW 2015 http://www.ni.com/labview/ RRID:SCR_014325

Experimental procedures were conducted in accordance with NIH guidelines and approved by

the Institutional Animal Care and Use Committee (IACUC) of the Allen Institute for Brain Science

under protocol number 1509.

Mice
Two-photon-targeted electrophysiology and two-photon calcium imaging were conducted in 2-

to 5-month-old male and female transgenic mice: five Emx1-IRES-Cre;Camk2a-tTA;Ai94 (Emx1-s)

mice, one Camk2a-tTA;tetO-GCaMP6s (tetO-s) mouse, three Emx1-IRES-Cre;Camk2a-tTA;Ai93

(Emx1-f) mice, and four Cux2-CreERT2;Camk2a-tTA;Ai93 (Cux2-f) mice. All four lines drive GCaMP

expression primarily in excitatory neurons. In Cux2-CreERT2 mice, Cre and GCaMP expression are

enriched in layer 2/3 (Franco et al., 2012; Harris et al., 2014). In Emx1-IRES-Cre and Camk2a-tTA

mice, GCaMP is expressed throughout cortical layers (Gorski et al., 2002; Wekselblatt et al.,

2016). Images showing the pattern of Cre and GCaMP expression in these mouse lines are available

via the Transgenic Characterization pages of the Allen Mouse Brain Connectivity Atlas and Allen

Brain Observatory: https://connectivity.brain-map.org/transgenic, http://observatory.brain-map.org/

visualcoding/transgenic.

Mice of some of the genotypes used here, most notably Emx1-f, can exhibit epileptiform activity

(Steinmetz et al., 2017), including overt seizures. Mice with seizures were excluded from the study.

However, the spiking patterns of neurons from GCaMP6s and -f lines commonly differed, suggesting

that one or more transgenes affected cell or circuit activity (Figure 1—figure supplement 1C).
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Surgery
Mice were anesthetized with either isoflurane (0.75–1.5% in O2) or urethane (1.5 g/kg, 30% aqueous

solution, intraperitoneal injection), then implanted with a metal head-post. A circular craniotomy was

performed with skull thinning over the left V1 centering on 1.3 mm anterior and 2.6 mm lateral to

the lambda. During surgery, the craniotomy was filled with artificial cerebrospinal fluid (ACSF) con-

taining (in mM): NaCl 126, KCl 2.5, NaH2PO4 1.25, MgCl2 1, NaHCO3 26, glucose 10, CaCl2 2, in

ddH2O; 290 mOsm; pH was adjusted to 7.3 with NaOH to keep the exposed V1 region from over-

heating or drying. Durotomy was performed to expose V1 regions of interest (ROIs) that were free

of major blood vessels to facilitate the penetration of recording micropipettes. A thin layer of low-

melting-point agarose (1–1.3% in ACSF, Sigma-Aldrich) was then applied to the craniotomy to con-

trol brain motion. The mouse body temperature was maintained at 37˚C with a feedback-controlled

animal heating pad (Harvard Apparatus).

Calcium imaging
Individual GCaMP6+ neurons ~100–300 mm below the pial surface of cortex were visualized under

adequate anesthesia (stage III-3) using a Bruker (Prairie) two-photon microscope and Chameleon

Ultra II Ti:sapphire laser (Coherent). Fluorescence excited at 920 nm wavelength, with <70 mW laser

power measured after the objective, was collected in two spectral channels using green (510/42 nm)

and red (641/75 nm) emission filters (Semrock) to visualize GCaMP6 and the Alexa Fluor 594-contain-

ing micropipette, respectively. Fluorescence images of 96–136 � 96–107 pixels and a 19.3–27.3 �
19.3–21.5 mm field of view were acquired at 141.3–158 frames per second through a 16�
water immersion objective lens (Nikon, NA 0.8). Recordings included periods with and without visual

stimuli. Mean ± SEM number of pixels per neuron was 1136 ± 46.

Electrophysiology
Two-photon-targeted cell-attached recording was performed following established protocols

(Margrie et al., 2003; Kitamura et al., 2008; Knoblich et al., 2019). Long-shank borosilicate (KG-

33, King Precision Glass) micropipettes (5–10 MW) were pulled with a P-97 puller (Sutter) and filled

with ACSF and Alexa Fluor 594 to perform cell-attached recordings on GCaMP6+ neurons. Micro-

pipettes were installed on a MultiClamp 700B headstage (Molecular Devices), which was mounted

onto a Patchstar micromanipulator (Scientifica) with an approaching angle of 31˚ from horizontal

plane. Minimal seal resistance was 20 MW. Data were acquired under ‘I = 0’ mode (zero current

injection) with a Multiclamp 700B, recorded at 40 kHz using Multifunction I/O Devices (National

Instruments) and custom software written in LabVIEW (National Instruments) and MATLAB (Math-

Works). Isoflurane level was intentionally adjusted during recording sessions to keep the anesthesia

depth as light as possible, resulting in fluctuation of the firing rates of recorded neurons.

Visual stimulation
Whole-screen sinusoidal static and drifting gratings were presented on a calibrated LCD monitor

spanning 60˚ in elevation and 130˚ in azimuth to the contralateral eye. The mouse’s eye was

positioned ~22 cm away from the center of the monitor. For static gratings, the stimulus consisted

of four orientations (45˚ increment), four spatial frequencies (0.02, 0.04, 0.08, and 0.16 cycles per

degree), and four phases (0, 0.25, 0.5, 0.75) at 80% contrast in a random sequence with 10 repeti-

tions. Each static grating was presented for 0.25 s, with no inter-stimulus interval. A gray screen at

mean illuminance was presented randomly a total of 60 times. For drifting gratings, the stimulus con-

sisted of eight orientations (45˚ increment), four spatial frequency (0.02, 0.04, 0.08, and 0.16 cycles

per degree), and one temporal frequency (2 Hz), at 80% contrast in a random sequence with up to

five repetitions. Each drifting grating lasted for 2 s with an inter-stimulus interval of 2 s. A gray

screen at mean illuminance was presented randomly for up to 15 times.

Neuron selection
We obtained recordings from 213 neurons and developed a numerical routine to exclude neurons

with questionable electrophysiology or fluorescence movies, such as abrupt changes in baseline volt-

age or AP waveform or image artifacts such as those due to motion, photobleaching, or other slow

baseline changes. Neurons were accepted for analysis if they passed both electrophysiology and
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image quality control criteria. Electrophysiology quality control is described in the next section and

imaging quality control in the ‘Image downsampling’ section; 145 and 10 neurons were eliminated in

the electrophysiology and image quality control steps, leaving 58 neurons. Of these, 10 were

excluded from further analysis: red indicator had entered the soma from the pipette in seven instan-

ces, two neurons segmented poorly during image analysis, and one had a truncated electrophysiol-

ogy recording. The final dataset consisted of 48 neurons.

Electrophysiology quality control
Electrophysiology traces were first baseline-subtracted to remove slow drift (third-order Savitzky-

Golay filter over 20,001 samples using MATLAB sgolayfilt). APs were detected as peaks of amplitude

more than 10 times the Quiroga threshold (QT), the median(|V(t)|/0.6745).

To develop a numerical routine, a group of human annotators identified 48 ‘high-quality’ electro-

physiology recordings. We then compiled a large set of descriptive statistics, listed below, and calcu-

lated the distribution of each of these statistics in the reference dataset, thereby defining an

acceptable range expected of high-quality recordings. Each descriptive statistic was subsequently

computed for recordings from all 213 neurons. Each recording was passed for further analysis if for

all metrics it fell within the range spanned by the manually selected dataset of 48 recordings.

For each electrophysiology recording, we calculated 35 descriptive statistics.

Metrics computed on continuous electrophysiological data:

(1) Median relative deviation of the membrane potential (MRDM), the ratio between the median

absolute deviation (MAD) and the median: MRDM = MAD(Vm)/median(Vm).

(2) Mean of the baseline (BL).

(3) Coefficient of variation of the baseline: std (BL)/mean (BL).

(4) Mean of the baseline noise, approximated by the QT (Jewell et al., 2020).

(5) Stability of the QT: thousand 10 s intervals were uniformly sampled from each recording, and

the QT was computed on each sample. Quiroga noise stability (QNS) was defined as the coefficient

of variation over the 1000 QT samples.

(6) r2 of linear regression (MATLAB regression function) of the 1000 QT samples against the start

times of the 10 s segments on which the QT was computed.

(7) Slope of linear regression (MATLAB regression function) of the 1000 QT samples against the

start times of the 10 s segments on which the QT was computed.

(8) r2 of linear regression (MATLAB regression function) of the baseline against time.

(9) Slope of linear regression (MATLAB regression function) of the baseline against time.

(10) The number of samples for which the baseline-subtracted trace exceeds the QT divided by

the number of samples for which it dips below the negative of the QT.

Metrics computed on the AP time series. Only recordings with >3 APs were included:

(11) Number of APs.

(12) Maximum likelihood inter-AP interval (MATLAB lognfit function).

(13) Mean AP amplitude.

(14) AP amplitude coefficient of variation.

(15) AP amplitude median relative deviation.

(16) Relative AP amplitude range: (max[amplitude] – min[amplitude])/median(amplitude).

(17) AP amplitude max/min ratio: max(amplitude)/min(amplitude).

(18) Signal-to-noise ratio (SNR), median(amplitude)/QT.

Metrics computed on 2-ms-long AP waveforms, AP time ±1 ms smoothed with MATLAB smooth

function with sgolay option:

(19) ’Left’ width-half-max (LWHM), the mean width at half the amplitude before the detected AP

time.

(20) ’Right’ width-half-max (RWHM), the mean width at half the amplitude after the detected AP

time.

(21) Full width at half amplitude (FWHM). FWHM = LWHM + RWHM.

(22) Coefficient of variation of LWHM.

(23) Coefficient of variation of RWHM.

(24) Coefficient of variation of FWHM.

(25) r2 of linear regression (MATLAB regression function) of AP amplitude against AP time.

(26) Slope of linear regression (MATLAB regression function) of AP amplitude against AP time.
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(27) r2 of linear regression (MATLAB regression function) of AP FWHM against AP time.

(28) Slope of linear regression (MATLAB regression function) of AP FWHM against AP time.

Firing rate-based metrics. Firing rate was estimated by convolution of the AP train with a 1-s-long

box-car window (MATLAB conv function):

(29) Mean firing rate (FR).

(30) Coefficient of variation of FR.

(31) r2 of linear regression (MATLAB regression function) of firing rate against time.

(32) Slope of linear regression (MATLAB regression function) of firing rate against time.

(33) Pearson correlation (MATLAB corrcoef function) of BL vs. FR.

(34) Pearson correlation (MATLAB corrcoef function) between the baseline at AP time points and

AP amplitude.

(35) Pearson correlation (MATLAB corrcoef function) between the baseline at AP times and the

AP FWHM.

Neuropil subtraction, high-resolution images
To approximate somatic fluorescence (Fcell_true) without neuropil contamination, a scale version of

the neuropil fluorescence (Fneuropil) was subtracted from each somatic fluorescence trace, after

(Akerboom et al., 2012): Fcell_true(t) = Fcell_measured(t) – r * Fneuropil(t). We determined the optimal

scale factor (r) for neurons with GCaMP6f to be 0.82 (see ’Results’ section). We therefore used

r = 0.8 as our default scale factor. For some neurons, Fneuropil was large enough relative to Fcell_meas-

ured that r = 0.8 resulted in negative fluorescence. For these neurons, we set r to 0.7, 0.6, or 0.5. For

our dataset of 48 GCaMP6s and GCaMP6f neurons, we set r to 0.8 for 40 neurons, to 0.7 for four

neurons, to 0.6 for three neurons, and to 0.5 for one neuron.

Neuropil subtraction, downsampled images
Neuropil subtraction was performed as described for the Allen Brain Observatory (de Vries et al.,

2020).

Trace analysis
Electrophysiology and calcium imaging data were analyzed using custom MATLAB and Python

scripts. For electrophysiology, Vm was filtered between 250 Hz and 5 kHz, and automated AP detec-

tion was performed using a threshold criterion (5�std of Vm).

For calcium imaging, in-plane motion artifacts were corrected (Dombeck et al., 2007), and neu-

ron/ROI selection was performed using a semi-automatic algorithm (Chen et al., 2013) (kindly pro-

vided by Karel Svoboda, Janelia Research Campus). Ring-shaped ROIs were used to select

GCaMP6-positive excitatory neurons, with GCaMP6 expression typically excluded from the nucleus

and restricted to the cytoplasm.

To construct AP-calcium fluorescence response curves, we first identified all isolated AP events.

For GCaMP6s, isolated events were separated from previous and subsequent events by �1000

and �500 ms, respectively. For GCaMP6f, isolated events were separated from previous and subse-

quent events by �300 ms. One result of finding isolated events is that only a minority of APs were

used to construct AP-calcium fluorescence response curves. Within each event, APs were summed

over 250 ms. Fluorescence traces were aligned to the first AP in each event, with t = 0 preceding

the AP by <1 frame (6.3 ms at 158 Hz). For each event, DF/F = (F-F0,local)/F0,global, where F0,local was

the mean fluorescence over 100 ms before the first AP, and F0,global was the minimum F0,local across

trials. For GCaMP6s and GCaMP6f, peak DF/F was calculated by first finding tmax, the time of the

maximum DF/F � 500 ms and 300 ms after the first AP, respectively. Peak DF/F was the mean DF/F

from tmax - 50 ms to tmax + 50 ms. Bursts of >5 APs were excluded from analysis due to the low fre-

quency of such events.

Fluorescence-to-photon conversion
Mean and variance of the fluorescence, calculated pixelwise for each image, were linearly related,

consistent with shot noise-limited imaging.

The resulting slope and offset of the least squares fit were used to convert fluorescence to num-

ber of photons: photons = (F – [–offset/slope])/slope (http://github.com/AllenInstitute/QC_2P). To
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account for different pixel dwell times along the resonant scanning axis, photon gain and offset

were computed pixel-by-pixel along the resonant axis.

Trial-to-trial variability
For each neuron, fluorescence was summed over all somatic pixels and converted to photons. For

each 1 AP event, mean photon count 0.1–0 s before the AP was subtracted. tmax, the time of the

maximum photon count, was calculated from the mean 1 AP trace. Photon count in each trial was

determined at tmax, and the 95% confidence interval was calculated as mean (across trials)±1.96 *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meanpeak
p

. The percentage of trials with peak fluorescence outside the 95% confidence interval

was used as a measure of trial-to-trial variability.

Ground truth-optimized event detection
We compared fluorescence traces of the response (1 AP or 2 AP events) to that of 0 AP events

(Chen et al., 2013). For each recording, the mean response trace was used as the template vector.

The template vector was normalized after subtracting the mean to create the unit vector, and the

scalar results of projecting the response and noise traces on the unit vector were computed: ri and ni
for response and noise scalars, respectively. The detection threshold was defined as the xth percen-

tile of ni values, where 1–x represented the false positive probability (e.g. x = 95 for 95th percentile

or 5% false positive probability), and the detection probability (true positive probability) was the

fraction of ri values above the detection threshold.

Image downsampling
Fluorescence movies were sub-sampled by a factor of 4 in space and 5 in time (to pixel size 0.80 mm

and frame rate 30.3 Hz) to match the sampling rate and approximate number of pixels per soma of

the Allen Brain Observatory (de Vries et al., 2020). To assess the effect of downsampling on subse-

quent processing, 20 different approaches were tried in parallel (downsampling starting with the 1st,

2nd,. . ., 4th pixel � 1st, 2nd,. . ., 5th frame, respectively). 4 � 5 internally identical blocks, one block

for each downsampling strategy, were tiled for a total of 400 almost identical ROIs per recording.

Segmentation to find somatic ROIs, demixing of traces from nearby somata, neuropil subtraction,

and the calculation of DF/F were performed as described for the Allen Brain Observatory (de Vries

et al., 2020).

In cases where only the neuron of interest was found during segmentation, trace extraction would

yield a family of 400 self-similar traces and the median was used for subsequent analysis. To catch

cases where segmentation yielded additional objects that were not part of the neuron of interest,

additional QC steps were required. The traces were first clustered using DBSCAN (Ester et al.,

1996; Schubert et al., 2017), and each cluster median was compared against white noise of the

same mean and standard deviation (KS test) and rejected as artifact if it was not significantly differ-

ent (p<0.05). In cases where multiple clusters were significantly different from noise, this was either

due to multiple neurons being present in the field of view or due to residual motion artifacts result-

ing in multiple translated copies of the same neuron. To disambiguate these two possibilities, the

top three clusters were merged: sums were computed for all six possible combinations (sampled

without replacement) of (up to) three most distinct cluster medians, and the combination most signif-

icantly correlated with the measured electrophysiological AP train was selected for subsequent anal-

ysis. Correlation significance was determined by building a null distribution of correlations between

the cluster medians and 1000 random Poisson trains with a rate matching that of the recorded AP

train. If there was no more significant correlation between any cluster median (or sum thereof) and

the measured AP train than the 0.5th percentile of the null distribution (i.e. p>0.005), the recording

was failed. Finally, we eliminated from further analysis <10 neurons with an abrupt and sustained

(seconds) rise in spike rate and subsequent loss spiking activity out of concern that this activity pat-

tern might indicate a breached plasma membrane.

To compare the noise characteristics of the downsampled images to the Allen Brain Observatory,

we computed the robust standard deviation, a median-based method with outlier removal (de Vries

et al., 2020). For the Allen Brain Observatory, we analyzed fluorescence over periods in which there

were no apparent AP-evoked changes in fluorescence.
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