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Abstract

Hippo signaling functions to limit cellular growth, but the aberrant nuclear accumulation of its downstream YAPI leads to
carcinogenesis. YAP1/TEAD complex activates the oncogenic downstream transcription, such as CTGF and c-Myc. How
YAPI1 is protected in the cytoplasm from ubiquitin-mediated degradation remains elusive. In this study, a member of
Angiomotin (Motin) family, AMOTL1 (Angiomotin Like 1), was screened out as the only one to promote YAP1 nuclear
accumulation by several clinical cohorts, which was further confirmed by the cellular functional assays. The interaction
between YAP1 and AMOTLI1 was suggested by co-immunoprecipitation and immunofluorescent staining. The clinical
significance of the AMOTLI-YAPI-CTGF axis in gastric cancer (GC) was analyzed by multiple clinical cohorts.
Moreover, the therapeutic effect of targeting the oncogenic axis was appraised by drug-sensitivity tests and xenograft-
formation assays. The upregulation of AMOTLI is associated with unfavorable clinical outcomes of GC, and knocking
down AMOTLI1 impairs its oncogenic properties. The cytoplasmic interaction between AMOTL1 and YAPI protects each
other from ubiquitin-mediated degradation. AMOTL1 promotes YAPI1 translocation into the nuclei to activate the
downstream expression, such as CTGF. Knocking down AMOTL1, YAP1, and CTGF enhances the therapeutic efficacies of
the first-line anticancer drugs. Taken together, AMOTLI1 plays an oncogenic role in gastric carcinogenesis through
interacting with YAP1 and promoting its nuclear accumulation. A combination of AMOTLI, YAP1, and CTGF expression
might serve as a surrogate of Hippo activation status. The co-activation of the AMOTL1/YAPI-CTGF axis is associated
with poor clinical outcomes of GC patients, and targeting this oncogenic axis may enhance the chemotherapeutic effects.

Introduction

Gastric cancer (GC) ranks as the fourth common malig-
nancy globally [1]. It is a heterogeneous disease with
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suffering from GC is up to 30%. Studies have indicated that
multiple signaling pathways promote gastric oncogenesis
[3-5]. Recent findings have revealed the emerging role of
Hippo signaling in carcinogenesis [5—7], whose dysregula-
tion drives tumor initiation and progression [8, 9]. Yes-
associated protein 1 (YAP1), the downstream of the Hippo
pathway, has been identified to promote tumorigenesis in
different kinds of tumor types. Previously, our group has
identified the cancer-driving role of YAP1 in GC through its
nuclear accumulation [10]. Targeting YAP1 by small
molecules might serve as an intervention strategy for GC
patients [11, 12].

As a transcription co-activator, YAP1 cooperates with
transcriptional factors to bind with targeted DNA regions, thus
transducing the proliferative signals through activating the
downstream transcription [8]. TEAD family, mainly TEAD1/
4, has been proved as the predominant transcriptional factor of
YAPI in gastric tumorigenesis [13]. Under normal circum-
stances, the upstreams of the Hippo pathway, MST1/2 and
LATS1/2, sequester YAP1 and promote YAP1 degradation in
the cytoplasm. However, during gastric carcinogenesis, YAP1
is overexpressed in the cytoplasm. How YAP1 manages to be
translocated into the nucleus and avoids to be degraded in the
cytoplasm has not been well elucidated in GC.

Among the interactants of YAP1, Angiomotin (Motin or
AMOT) family has been reported for its functions during
tumorigenesis [14]. This family consists of three members
in mammalian cells: AMOT, AMOT-Like 1 (AMOTLI1),
and AMOT-Like 2 (AMOTL2). They all possess the PPXY
motifs, which endow the members with the ability to bind
with the WW domains of YAP1 [14]. Nevertheless, the
behavior of Motin—YAP1 interaction displays controversial
consequences [14]. In GC, their roles have not been
explored. Therefore, the current study aims to identify the
role of the Motin and its involvement in the Hippo pathway
in gastric oncogenesis.

Results

Abundant AMOTL1 in GC indicates poor clinical
outcomes

To explore the interactive components of YAPI, mass
spectrometry results from other published reports have been
analyzed [15, 16]. AMOTL1 and AMOTL2 are confirmed
as the most common binding partners for YAP1 (Fig. 1a).
Furthermore, AMOTL1 was predicted to interact with the
WW domain of YAPI (cBioportal) (Fig. 1b). Given the
contradictory roles of the family members in oncogenesis
[14], their expression pattern was examined in primary
gastric samples (GENT database) and gastric cell lines.
Apparently, AMOT is downregulated in GC (n =368, P<
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0.001), while AMOTL1 (=368, P=0.007) and
AMOTL2 (n =368, P=0.023) are abundantly expressed
(Fig. 1c¢). Meanwhile, the paired samples in another Chinese
cohort (n=45, NCBI/GEO/GSE63089) suggested that
AMOTLI1 (P =0.012) is enriched in tumor samples, but the
alteration of AMOTL?2 in paired GC (P =0.771) shows no
difference (Fig. 1d). In GC cell lines, AMOT was barely
expressed, but the levels of AMOTL1 and AMOTL?2 were
relatively high (Supplementary File: Fig. Sla). From the
protein level, AMOTLI1 exhibited abundance in 7 out of 12
GC cell lines compared with normal controls (Fig. 1e). Its
upregulation might be positively regulated by putative
transcriptional factors, STATSA (r=0.264, P<0.001, n =
415) and PBX1 (r=0.597, P<0.001, n=415) (Supple-
mentary File: Fig. S1b). In primary samples (TCGA and
KM plotter cohorts), AMOT and AMOTL?2 expressions are
insufficient to indicate prognosis (n =397, P>0.05; Sup-
plementary file: Fig. Slc, d). However, high expression of
AMOTLI1 predicts poor survival in GC patients (n = 394,
P =0.007, TCGA cohort; n =522, P <0.001, multiple GSE
cohorts, Fig. 1f). AMOTL1 was predominantly localized in
the cytoplasm, which was detected by immunohistochem-
istry in tissue microarray. Its high expression correlates with
unfavorable outcomes (n =273, P<0.001, HK cohort,
Fig. 1g). In GC cases, the expression level of AMOTLI is
highly correlated with the advanced stages (n =205, P =
0.025, TCGA cohort, Supplementary file: Fig. Sle; Sup-
plementary file: Tables S1, S2) and is also associated with
poor overall survival (n =205, P=0.025, TCGA cohort,
Fig. 1h). In addition, enrichment of AMOTLI is found in
advanced-stage GC cases (P=0.002, NCBI/GEO/
GSE62254, Fig. 1i) instead of the early-stage GC (n =175,
P =0.054, TCGA cohort, Supplementary file: Fig. SIf).
Given the concordant findings of AMOTLI in multiple
primary GC cohorts, its functional role and molecular
mechanisms were further investigated.

AMOTL1 knockdown (KD) retards oncogenic
features of GC cell lines

Given the abundance of AMOTLI in GC, small-interfering
RNA (siRNA)-mediated KD was applied to analyze its
function in vitro. Based on a prominent AMOTLI KD
efficiency from both mRNA (**P<0.001, Fig. 2a) and
protein levels (Fig. 2b) in AGS and MKN28 cells, cellular
proliferative rate (**P <0.001; MTT proliferation assays,
Fig. 2c), monolayer colony formation assay (**P <0.001,
Fig. 2d), and cell-invasive abilities (**P <0.001, Fig. 2e)
were all significantly inhibited. A third GC cell line, BGC-
823, was also applied to verify the suppressive effect of
siAMOTLI1 (Supplementary File: Fig. S2a, b, upper panel).
Rescue experiments were performed to confirm the KD
veracity of siAMOTLIls (¥**P<0.001, Fig. 2f). To
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investigate the mechanism of growth suppression, cell-cycle
distribution after stAMOTLI1 transfection was examined. A
high percentage of GO/Gl-phase cells was detected in
siAMOTLI1 transfectants (*P <0.05, Fig. 2g). Moreover,

GO0/G1-phase cell-cycle arrest was confirmed by the upre-
gulation of p21/p27 and the decrease in pRb by Western
blot analysis (Fig. 2b). Apart from cell-cycle arrest, the
results from 7AAD and Annexin V double staining
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<« Fig. 1 AMOTLI1 is overexpressed and correlated with poor sur-

vival in GC. a Multiple published mass spectrometry results indicated
that AMOTL1 and AMOTL2 are the common binding partners of
YAPI. b Based on the TCGA database, the network analysis revealed
the putative interactive capability between AMOTLI and YAPI.
¢ Overall primary cases (GENT database, n =368) suggested that
AMOT (P<0.001) is decreased in normal tissues, while AMOTLI1
(P=0.007) and AMOTL2 (P =0.023) are upregulated in GC.
d Paired samples (NCBI/GEO/GSE63089) indicated that AMOTLI1
(P =10.012) is abundant in GC, yet the alteration of AMOTL2 is not
statistically significant. e In total, 7 out of 12 GC cell lines possess
overexpression of AMOTLI, compared with the other two normal
gastric epithelial cell lines. f High AMOTLI expression predicts poor
survival in GC patients (overall cases, P =0.007, n =394, TCGA
cohort; first progression survival, P <0.001, n =522, multiple GSE
cohort). g The figures of IHC represent score 0 (Normal/Weak), score
12 (Intestinal type), and score 12 (Diffuse type), respectively (scale
bars are 200 um). A cut-off value of 8.5 was set accordingly (upper
right), and AMOTL]1 upregulation is associated with worse outcomes
(disease-specific survival, P<0.001, n=273, HK cohort) (lower
right). h The hazard of overexpressed AMOTLI is more obvious
among GC patients in the advanced stage, compared with that in the
early stage (overall cases, P = 0.025, n =205, TCGA cohort). i GSEA
demonstrates a positive correlation between AMOTL]1 enrichment and
advanced stage of GC (P =0.002). ES enrichment score; NES nor-
malized enrichment score.

indicated that AMOTL1 KD also enhanced both late- and
early-stage apoptosis (**P <0.001, Fig. 2h). Regarding the
oncogenic function of AMOTLI in GC cells, mechanistic
studies were conducted to identify the underlying signaling
pathway. The stimulation assays were performed. The cells
were deprived of serum from 24 h to achieve synchroniza-
tion, followed by 10% FBS medium stimulation for 15 min.
pERK1/2 was decreased in cells with siAMOTLI1 trans-
fectants compared with siScramble controls (Fig. 2i), indi-
cating that AMOTL1 KD weakened the MAPK-mediated
signal transduction for proliferation.

AMOTL1 co-localizes with YAP1 in the cytoplasm
and promotes YAP1 nuclear translocation

The interaction between AMOTL1 and YAP1 was validated
by co-immunoprecipitation (co-IP) in GC cell lines (Fig. 3a,
b). MKN45, a cell line with YAP1 homozygous deletion,
was also applied to investigate the AMOTL1-YAPI inter-
play. Furthermore, the mutants of YAPl (WW domain,
YAPWIPAP0A - Addgene #17792) and AMOTLI (PPEY
domains, AMOTL1Y*"*, AMOTL1Y*"°, and AMO-
TL1Y313AY3704) were applied to confirm if they still interact
as previously reported [14]. As a consequence, the mutation
of either both PPEY domains in AMOTL1 or the WW
domain in YAP1 abolished the interaction between these
two proteins (Fig. 3c, d). For a more detailed investigation
of the interaction, immunocytochemistry staining was per-
formed to detect the protein localization. As indicated by
Fig. 3e, YAPl and AMOTLI were co-localized in the
cytoplasm. As YAPI lies in the center of the Hippo cascade,
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we checked the localization of YAPI in a high or low cell-
density condition. Under high cellular density, both endo-
genous and exogenous YAP1 was predominantly retained
in the cytoplasm, while low cellular density allowed YAPI
to translocate to the nucleus (Fig. 3f). In addition, only
siAMOTLI1, instead of siAMOT and siAMOTL2, inhibited
YAPI cytoplasm-to-nuclear translocation (Fig. 3g; N.S., not
significant; *P <0.01, Fig. 3h). To take a step further,
siAMOTLI1 decreased the nuclear entrance for both endo-
genous and exogenous YAP1 (Supplementary File:
Fig. S2c, d), which were quantified by fluorescent-density
ratio of nuclei versus cytoplasm. On the contrary, over-
expression of AMOTLI1 increased YAP1 nuclear aggrega-
tion (Fig. 3i; *P <0.01; **P <0.001, Fig. 3j). There are two
states of YAPI in cells: functional YAP1 and nonfunctional
YAPI1 (phosphorylated YAP1, pYAP1) [17]. We extracted
the proteins in the cytoplasm after siAMOTLI transfection,
and found that AMOTL1 KD activates pYAP1 (Fig. 3k).
Given the evidence, we proposed that AMOTL1 might have
a protective effect on YAP1 from degradation, and therefore
allows the nuclear translocation of YAPI.

AMOTL1 prevents YAP1 from ubiquitin-mediated
degradation

In GC cell lines AGS, MKN28, and MKN45, with growing
dosages of the AMOTLI1 transfection, the YAPI protein
amount was increased according to AMOTLI1 (Fig. 4a).
Further, we tried to elucidate whether AMOTLI regulates
the expression level of YAP1. Cyclohexamide (CHX), an
inhibitor of protein biosynthesis, leads to protein degrada-
tion along with time. CHX was used to induce protein
degradation in GC cells. In the absence of ectopic
AMOTLI1, YAPI was degraded with time. However, in the
existence of AMOTLI1, the total amount of YAP1 was
preserved, and the half-life of the YAP1 protein was
extended (Fig. 4b). Next, we would like to elucidate how
AMOTLI1 prevents YAP1 from degradation. There are two
main pathways of protein degradation: Ubiquitin/Protea-
some System (UPS) is a major one, and Lysosomal Pro-
teolysis is a minor one. To confirm whether UPS governs
the YAPI1 degradation, we transfected HA-tagged ubiquitin
(HA-Ub) into GC cell lines to monitor UPS, and added
MG132 to inhibit proteasome. With the increasing exo-
genous AMOTLI, the ubiquitination-mediated YAPI
degradation was significantly eliminated. It indicated that
AMOTL1 may contribute to keep YAP1 from degradation
(Fig. 4c¢). On the other hand, with an increasing amount of
exogenous YAP1, AMOTLI proteins were also remained in
a dose-dependent manner (Fig. 4d). Under the treatment of
CHX, endogenous YAP1 was dismissed and AMOTL1 was
also decreased along with the treatment time. However,
exogenous YAPI attenuated the degradation of AMOTLI1
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Fig. 2 Knocking down AMOTLI1 exerts anti-tumor effects. a The
KD efficiency of siAMOTL! was confirmed by qRT-PCR.
b AMOTLI KD, p21, and p27 were upregulated, whereas pRb was
reduced. ¢ MTT assay suggested that siAMOTL1 suppressed GC
cellular growth (**P <0.001). d Monolayer colony formation assay
indicated a slower proliferation of GC cells after AMOTL1 KD (**P
<0.001). e Cellular invasive ability was retarded by AMOTLI

in GC cells (Fig. 4e). An increasing amount of YAP1 was
also found preventing AMOTLI1 from ubiquitin-mediated
degradation (Fig. 4f). In addition, the ubiquitination of

deactivation (**P<0.001). f Re-expression of AMOTLI1 partly
restored the KD effect of siRNAs on AGS. g siAMOTLI resulted in
Gl-phase arrest in GC cell lines (*P<0.05). h AMOTL1I KD
increased cellular apoptosis (¥**P < 0.001). i During the starvation/FBS
stimulation, GC cells with siAMOTL1 exhibited lower levels of ERK,
pERK, CCND1, and pRb, while the expressions of p21 and p27 were
elevated.

YAPI1 was much stronger than that of AMOTL1 (Supple-
mentary File: Fig. S2e), suggesting a more crucial protec-
tion role of AMOTL1 in YAPI-driven GC. Through
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connective tissue growth factor
(CTGF) was confirmed to be the main downstream target of
YAPI in GC (Fig. 4g and Supplementary file: Table S3).
YAP1 KD decreased its downstream target CTGF, while

expression profiling,
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AMOTL1 KD caused the reduction of YAP1 as well as
CTGF in GC cell lines; meanwhile, overexpression of
AMOTL1 upregulated both YAP1 and CTGF (Fig. 4h and
Supplementary File: Fig. S2b, lower panel). Taken together,
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Fig. 3 AMOTLI1 binds with YAP1 in GC and promotes YAP1
nuclear accumulation. a Through co-IP assay, AMOTLI1 binds with
YAPI in multiple GC cell lines. b Both endogenous and exogenous
YAPI also interact with AMOTLI in GC cells. ¢ Point mutations were
designed based on the protein structures of AMOTL1 (PPEY domains)
and d YAP1 (WW domain). Mutants failed to interact with each
other physically. e Immunocytochemistry staining indicated a co-
localization of YAP1 and AMOTLI1 proteins in the cytoplasm among
low-density cells. f With or without exogenous YAP1 protein, the
Hippo pathway is activated when cells are in a high density, which was
illustrated by the cytoplasmic retention of YAPI. g, h A weaker
nuclear signal of YAP1 was detected in the siAMOTL1 group com-
pared with stAMOT and siAMOTL2 groups, which were quantified by
fluorescent-density ratio of nuclei versus cytoplasm (Nuclei/Cyto)
(N.S. not significant; *P <0.01). i, j In GC cells, overexpression of
AMOTLI1 raised nuclear YAP1 accumulation. k AMOTLI1 knock-
down increased YAP1 phosphorylation.

our data indicated that interaction between AMOTLI1 and
YAPI stabilizes each other in the cytoplasm, and the sta-
bilization ensures YAPI nuclear accumulation and tran-
scriptional potential.

Co-overexpression of YAP1-AMOTL1-CTGF indicates
poor clinical outcomes

Based on a TCGA cohort, the overabundance of CTGF
mRNA was associated with worse outcomes (n =321, P<
0.001, Fig. 5a). Our Hong Kong cohort also showed a
similar result from the protein level (n =268, P <0.001,
Fig. 5b). CTGF was predominantly expressed in the cyto-
plasm both in intestinal and diffuse types of GC. Besides,
the clinical information of the TCGA cohort suggested that
both AMOTL1 (P=0.016) and CTGF (P =0.008) are
related to worst-survival cases, respectively (Cox regression
analysis, Supplementary File: Table S4). Given their prog-
nostic potential, we combined these two biomarkers through
unsupervised clustering to check whether the combination
could distinguish the survival situation. However, the
combination did not present a better differentiation (n=
321, P=0.023, Fig. 5c). The less power of differentiation
might be caused by the exclusion of YAP1. As the down-
stream effector of Hippo, YAP1 links AMOTLI and CTGF
during gastric carcinogenesis. Our previous findings
demonstrated the importance of nuclear accumulation of
YAPI in GC [10]. In the current study, we enlarged the
sample size and reconfirmed the previous conclusion that
YAPI overexpression correlates with poor survival (n=
270, P=0.002, Fig. 5d). The clinical relevance of both
AMOTL1 and CTGF protein expression (P <0.001) was
verified as well (Cox regression analysis, Supplementary
File: Table S5). Moreover, the positive correlations between
the expression of any two factors among AMOTLI1, YAPI,
and CTGF were observed both in TCGA and HK cohorts,
respectively (Fig. Se, f). In addition, we observed a

significant decrease (r = —0.958, P =0.042) of the differ-
ence between AMOTL1 and nuclear YAP1, which meant
that they are co-expressed mainly in the advanced-stage
GCs (Supplementary File: Fig. S2f). Perhaps, this might
explain why AMOTLI1 has a significant role in advanced
GC cases (Fig. 1h) instead of in the early stage (Supple-
mentary Fig. S1f). After clustering these three markers, the
cases with AMOTLI1, CTGF overexpression, and YAP1
nuclear accumulation, named “deactivated Hippo” group,
indicated unfavorable clinical outcomes (Fig. 5g).

Verteporfin quenches AMOTL1-YAP1 and represses
gastric oncogenesis

Besides the prognostic capability, there is also a therapeutic
potential that lies behind this AMOTL1/YAP1-CTGF axis.
AMOTLI1, YAPI, and CTGF were silenced, respectively, in
GC cell lines followed with the treatment of first-line anti-
cancer drugs (Cisplatin and 5-FU). Notably, silencing
AMOTLI1 resulted in a remarkable enhancement of the
sensitivity of GC cells to chemodrugs, which was char-
acterized by the reduced ICsy values (Fig. 6a). This obser-
vation hinted that deactivating AMOTL1 might be the most
efficient way of targeting this axis, and it could be accom-
panied by anti-cancer chemotherapy, especially for cisplatin
treatment. On the other hand, Verteporfin (VP) has been
widely reported to degrade YAP1 [9, 13]. After calculation
of the IC5, value of VP on two GC cell lines (Fig. 6b), we
performed Western blot analysis with different concentra-
tions of VP. The data demonstrated that increased con-
centration of VP also caused deterioration of AMOTLI and
CTGEF, while it had no obvious effect on the expression of
TEADs (Fig. 6¢). We further established CRISPR/Cas9-
based stable BGC-823 cell lines with AMOTL1 KO. Two
sgRNAs, sgRNA-A1 and sgRNA-A3, were selected for
tumor formation assays (Fig. 6d). In the xenograft experi-
ments, AMOTLI1-KO-derived tumors were significantly
smaller and lighter in weights compared with the negative
control ones (Fig. 6e). By immunohistochemistry, the
expression of AMOTLI1, YAPI, CTGF, and Ki67 was
uniformly downregulated in KO groups, while the apoptotic
marker cleaved-Caspase 3 was activated (Fig. 6f). More-
over, VP treatment was able to diminish xenograft forma-
tion significantly (Fig. 6g). Apart from the inhibition on
AMOTLI1, YAPI, and CTGF, VP suppressed cell growth
indicated by the downregulation of Ki67 and promoted cell
apoptosis in vivo (Fig. 6h).

Combining the above results, we provided the oncogenic
AMOTL1/YAP1-CTGF axis in driving gastric tumorigen-
esis. In normal gastric epithelium cells with activated Hippo
pathway, abundant YAP1 will be phosphorylated, resulting
in its cytoplasmic retention and ubiquitination-mediated
degradation. However, in GC cells, AMOTLI is
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Fig. 4 The interaction between AMOTL1 and YAP1 protects each
other from degradation. a AMOTLI prevented YAP1 from degra-
dation in a dosage-dependent manner. b The half-life of YAPI1 protein
was elongated by AMOTLI1 overexpression. ¢ YAP1 degradation is
mainly through ubiquitination, which was reduced by AMOTLI
overexpression in a dosage-dependent manner. d YAP1 also protected
AMOTLI1 from degradation dosage-dependently. e YAP1 prolonged

SPRINGER NATURE

the half-life of AMOTLI1 protein. f YAP1 prevented AMOTLI ubi-
quitination in a dosage-dependent manner. g The list of top ten genes
that were downregulated in YAP1-depleted cells. CTGF was the top
one. h Western blot analysis confirmed that both siAMOTLI1 and
siYAP1 suppressed CTGF expression, while AMOTL1 over-
expression increased YAP1 and CTGF protein levels.
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upregulated and binds to YAP1 to prevent its degradation.
This successfully raises YAP1 nuclear accumulation. Con-
sequently, through the transcriptional factor TEAD, YAP1
promotes CTGF expression during gastric tumorigenesis.
VP, a small molecule quenching AMOTL1-YAPI com-
plex, can be employed to target AMOTLI-YAP1 and
suppress tumor growth (Fig. 7).

Discussion

Hippo-YAP1 signaling is among the most prominent
intracellular pathways in gastric carcinogenesis. Hippo
functions as a tumor suppressor in GC, which is concordant
with other cancer types [18-20]. Our previous works have
delineated the role of YAP1 in GC and its regulation from
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Fig. 5 The activation of AMOTLI1-nuclear YAP1-CTGF axis is
associated with poor clinical outcomes. a High expression of CTGF
indicated poor survival in the TCGA cohort (overall cases, P <0.001,
n=2321). b In the HK cohort, the abundant CTGF also predicted poor
survival (middle) (disease-specific, P <0.001, n=268). The cut-off
value was identified according to ROC (right). ¢ Unsupervised clus-
tering of the patients in the TCGA cohort regarding both AMOTLI1
and CTGF expression (upper) was presented in a two-dimensional
coordinate (middle). The survival curve after grouping was shown
(lower) (overall cases, P =0.023, n =321, TCGA cohort). d YAPI
nuclear aggregation (left) indicates worse outcomes for the patients
(middle) (disease-specific survival, P = 0.002, n = 268). The grouping
was based on the ROC (right). e In the TCGA dataset, AMOTLI1
expression is positively correlated with YAP1 (left) (r=0.381, P<
0.001, n =415) and CTGF (right) (r =0.490, P <0.001, n =415). f In
the HK cohort, a pairwise positive association was detected within
AMOTLI, nuclear YAPI, and CTGF. g Based on the intensity of IHC
signals, co-expression of AMOTLI1, YAP1 (nuclear), and CTGF was
stratified into two groups: Normal/Weak group and Positive group,
referring to “activated Hippo” and “deactivated Hippo”, respectively.
Identical cases were demonstrated in the left panel, and clustering
analysis was shown in the right panel. Further, deactivated Hippo
group is related to worse prognosis of GC patients (middle panel)
(disease-specific survival, P <0.001, n = 268).

the post-translational level [11, 12]. Due to the dysfunction
of the Hippo pathway upstream and the regulators, the
enrichment of nuclear YAP1 drives gastric oncogenesis.
Following the nuclear existence of YAP1, we validated the
necessity of TEAD family, particularly TEAD1/4, as
Y AP1-binding partner and transcriptional factor in GC [13].
Through their interactions, YAPI transduces the pro-
liferative or oncogenic signals to the downstream, such as
CTGEF, Cyr61, and c-Myc [8]. The other group results also
supported the conclusions as well [21-23]. However, YAP1
could still be localized in the cytoplasm for degradation.
The Motin family members, AMOT, AMOTLI1, and
AMOTL2, have been reported to bind with YAPI in the
cytoplasm. The Motin family has been revealed to partici-
pate in angiogenesis [24-26] and other physiological pro-
cesses, such as embryonic development [27, 28]. During
oncogenesis, studies have also pointed out that the Motin
family binds with YAPI1, but the functional role is con-
troversial. The consequences of Motin—YAPI interplays
vary from context to context [14]. Some reports proposed
Motins as cancer promoters [29, 30], while some believed
that Motins control tumor growth by mediating YAP1
[16, 31, 32]. The functions of Motins in gastric carcino-
genesis are little known. The only related study was
focusing on AMOT, in which the authors presented a
positive correlation between decreased AMOT and abun-
dant YAPI in GC patients with worse outcomes [33]. We
found that only AMOTL1 showed a concordant over-
expression in multiple GC cohorts. In the three members,
only AMOTLI plays an oncogenic role by promoting
YAP1 nuclear translocation. After identifying the
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oncogenic property of AMOTLI in GC, we revealed the
detailed mechanisms of AMOTLI in the Hippo pathway.
AMOTLI1 acts as an oncoprotein by protecting YAP1 from
degradation in the cytoplasm. Furthermore, our data
demonstrated that the phosphorylated YAP1 (pYAP1) was
increased when AMOTL1 was knocked down, suggesting
that without the presence of AMOTLI1, YAPI1 tended to be
degraded.

It has been well established that CTGF serves as a
prognostic biomarker for GC patients, especially in cases of
the advanced stage [12, 34]. Although CTGF has been
involved in other cascades [35], it is regulated pre-
dominantly by Hippo signaling [8, 12]. As a direct down-
stream of YAP1, CTGF expression is dramatically activated
after YAPI nuclear location. The prognostic value of YAP1
was reported in our previous work [10]. In our current
cohort, a larger sample size was achieved to reconfirm our
previous conclusion. Given the central role of YAPI, we
chose three representatives in this process (cytoplasmic
stage, nuclear accumulation, and transcription effect) to
stand for the activation status of Hippo pathway. The high
binding affinity and the protective effect toward YAPI
allow AMOTL1 to represent for the cytoplasmic stage of
YAPI1. Meanwhile, CTGF is a predominant downstream
effector of YAP1 nuclear translocation, and its over-
expression represents the activation of YAPI. Through
unsupervised clustering, the cases with simultaneous
enrichments of AMOTL1, nuclear YAP1, and CTGF were
represented as “Hippo-deactivated”, which were character-
ized by the worse prognosis. In other words, activation of
this axis (AMOTLI1-nuclear YAP1-CTGF) indicates the
Hippo’s deactivation states. In fact, another study has pro-
posed the concept of Hippo “on” or “off” in an earlier time.
However, the study only obscurely referred to YAPI
“nuclear accumulation” or “cytoplasmic retention” [36].
Based on our current results, we employed the AMOTLI-
nuclear YAP1-CTGEF axis to specify the concept of Hippo
activation and deactivation.

Apart from the prognostic indicator, there is a more
important therapeutic potential that lies in the AMOTLI-
nuclear YAPI-CTGEF axis. Knocking down this oncogenic
cascade enhances the efficacies of the first-line anti-cancer
drugs (Cisplatin and 5-FU). Meanwhile, VP was reported to
be one of the small molecules that specifically target this
axis. In fact, VP has been wildly proposed to downregulate
YAPI in various types of cancers [18, 37-39], especially
the capability of VP that disrupts the interaction between
YAPI1 and transcriptional partners. However, a detailed
mechanism still remains to be explored. In our current
study, we found that VP suppressed multiple targets,
including AMOTL1, YAPI, and CTGF, which might serve
as a desirable option to help GC patients to achieve satisfied
therapeutic effects during chemotherapy.
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Fig. 6 Targeting AMOTL1-YAP1 enhances first-line chemother-
apeutic efficacies. a The efficacies of the first-line anti-cancer drugs
(Cisplatin and 5-FU) were assessed on GC cells after knocking down
AMOTLI1, YAPI, CTGF, and control, respectively. b The ICsy of VP
was evaluated on GC cell lines. ¢ VP promotes AMOTL1 and YAP1
degradation in a dosage-dependent manner. d CRISPR/Cas9 mediated
AMOTLI1 KO by targeting multiple genetic sites. e Xenograft images

of AMOTLI1-KO and the negative control groups. Weights of the mice
and the tumors were measured accordingly (N.S., not significant).
f Representative IHC images of AMOTLI1, YAP1, CTGF, Ki67, and
cleaved-Caspase 3 on the xenograft samples from different groups.
g VP administration decreased xenograft formation (P = 0.008). h IHC
staining images of AMOTLI1, YAPI, CTGF, Ki67, and cleaved-
Caspase 3 on the xenografts in PBS and VP treatment groups.
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Fig. 7 Overall schematic presentation. When Hippo is activated, it
promotes YAP1 to degrade ubiquitination in the cytoplasm. In GC
cells, abundant AMOTLI1 protects YAPI, reduces its phosphorylation,
and promotes its nuclear translocation. In the nucleus, YAPI binds
with transcriptional factor TEAD to activate the downstream CTGF
expression and thus to drive gastric carcinogenesis. The administration
of small-molecule VP blocks the interaction of AMOTLI and YAP1
and quenches their oncogenic properties.

Conclusion

In the current study, we proposed the oncogenic AMOTLI-
nuclear YAP1-CTGF axis in gastric carcinogenesis. It not
only serves as a prognostic indicator for GC patients, but
also provides a rational therapeutic target in this persona-
lized medicine era.

Materials and methods
Cell lines and clinical samples

Sources and culture methods of the 12 human GC cell lines
(AGS, BGC-823, KATOIII, MGC-803, MKN1, MNK28,
MKN45, NCI-N87, SGC-7901, SNUI1, SNUI16, and
TMKI1) and two normal gastric epithelial cell lines were
described before [40]. All 278 selected patients were diag-
nosed as GC between 1995 and 2006 at the Prince of Wales
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Hospital, and their formalin-fixed paraffin-embedded tissues
were used in this study. Pathological diagnoses were per-
formed by more than two pathologists. The CUHK Clinical
Research Ethics Committee approved the usage of human
samples and Reference No. is CREC 2018.343.

RNA extraction and qRT-PCR

The related procedures have been indicated [13]. The pri-
mers for each gene are as follows: AMOT: F: 5-ATT TTG
CTC TGG ATG CTG CT-3/, R: 5-TGG CCA TCA AGA
TTT CTT CC-3’; AMOTLI: F: 5-CGG GGA ACT TGT
GAG CCT G-3/, R: 5-CTG GGG AAA AGT AGG TGG
AGT-3'; AMOTL2: F: 5'-GCT CGT TGA GTG AAC GGC
T-3/, R: 5'-CAT GAG CTA GTA CAA CAT GAG GG-3'.

Immunohistochemistry and immunocytochemistry
staining

AMOTL1 (HPA0O01196, Sigma), YAP1 (ab52771, Abcam),
CTGEF antibody (sc-14939, Santa Cruz), Ki67 (550609, BD
Pharmingen), and cleaved-Caspase 3 (#9664, CST) were
commercially available. The immunohistochemistry and the
scoring of the results were performed as previously
described [13]. For immunocytochemistry studies, AGS
was cultured on coverslips in a six-well plate. After removal
of the medium and three times of PBS washing, the cells
were fixed with 4% paraformaldehyde at room temperature
for 15 min. Followed by three times of PBS washing, the
cells were then permeated with 0.1% Triton X-100 at room
temperature for 15 min, and another PBS washing three
times. Room-temperature blocking was done with 2% BSA
for 45 min; then cells were incubated with the primary
antibody (1:200) at 4 °C overnight. Again, after one time of
PBS washing, the cells were incubated with goat anti-mouse
IgG secondary antibody (Alexa Fluor 594, 1:400, Thermo
Fisher Scientific) in the dark at room temperature for 1h.
After washing, nuclei were stained with 4/,6-diamidino-2-
phenylindole (DAPI, Thermo Fisher Scientific). Images
were captured with a microscope (Carl Zeiss Axio Imager 2,
Oberkochen, Germany).

Plasmid construction

pcDNA3.1-Myc-His-AMOTL1 (Changsha Yingrun Bio-
technology, China), p2xFlaghYAP1 (#17791, Addgene),
pEGFP-C3-hYAPI1 (#17843, Addgene), p2xFLAGhYAP1-
WW mutant (#17792, Addgene), pL-CRISPR.EFS.GFP
(#57818, Addgene), and pENTR1A (A10462, Invitrogen)
were commercially available. The SFB-tagged destination
(DEST) vector, together with the package plasmids pMD2G
and pSPAX2, was a kind gift from Prof. Wenqi Wang
(Department of Developmental and Cell Biology,
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University of California, Irvine, USA). HA-tagged Ubi-
quitin plasmid was generously given by Prof. Jun Yu
(Institute of Digestive Disease, the Chinese University of
Hong Kong). Based on pcDNA3.1-Myc-His-AMOTL1, the
target fragment AMOTL1 (NM_130847) was generated
using the following primers: F: 5-AAC CAA TTC AGT
CGA CGC CAC C AT GGA TCC CGG GCA GCA G-3/,
R: 5-AAG CTG GGT CTA GAT ATC TAA CCA TGT
AAG AAA GCT TTC TIT ATC TAG CTIT GG-3'.
According to homologous recombination, between site Sall
(R3138S, NEB) and EcorV (R3195S, NEB), the fragments
were subsequently inserted into pENTR1A, from which the
DEST vectors were created with the LR Clonase
(#11791020, Invitrogen).

For the stable KO experiment, gRNAs and genomic
cleavage detection (GCD) primers were designed on
CHOPCHOP  (http://chopchop.cbu.uib.no/) as follows:
AMOTLI: gRNA-Al: GCC ATG ATC GCC TCA TGT
GGA GG; GCD primers: F: GTG TGA ATG GGG TTG
ATT GTC, R: CTG GTT ACC TTT CAC CGC AG;
gRNA-A2: GAC CAT CTC GTG GAG CAT CCC G@G,
GCD primers: F: CAC CTG AGT ACC CCT TCA AGA C,
R: CTA TTG AAT TTT GAA AAG CCG C; gRNA-A3:
GTC AGC ACG CCA AGA ACC GCA GG; GCD primers:
F: AAA CCT CAC TCA AGA AGA CCC A, R: CAT GTA
GTA ACC ATG GCC CAC; gRNA-A4: CGA GGA ACT
GCC CAC TTA CGA GG; GCD primers: F: CAA GAA
CAC CAG GTG GAC AAT A, R: AGT TCG GGA CTT
CTG ACT GGT. The gRNA oligos were annealed and
combined into pL-CRISPR.EFS.GFP (BsmBI, R0580S,
NEB) with Quick Ligase (M2200S, NEB).

Expression profiling

AGS was treated with siScramble and siAMOTLI,
respectively, followed by RNA extraction. The RNA sam-
ples were sent to Macrogene (Korea) for expression
microarray analysis as indicated [12].

Western blot analysis

The primary antibodies of TEAD1 (sc-376113), TEAD4
(sc-134071), and CTGF (L-20) (sc-14939) were from Santa
Cruz (Dallas, TX, USA). YAP1 (ab52771) antibody and
HA tag (ab18181) were achieved from Abcam (Cambridge,
MA, USA). AMOTL1 (HPA001196) and Flag-tag (F3165)
antibodies were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Other primary antibodies were from Cell Sig-
naling (Danvers, MA, USA), including p21 (#2946), p27
(#2552), pRb (Ser807/811) (#9308), Erk (#9102), pErk
(#9101), Myc (#2278), cyclin D1 (#2978), c-Myc (#9402),
and GAPDH (#2118). Anti-Mouse IgG-HRP (Dako,
Glostrup, Denmark, 00049039, 1:30,000) and anti-Rabbit

IgG-HRP (Dako, 00028856, 1:10,000) were used for sec-
ondary antibodies. The related protocol was suggested
before [13].

Cell transfection and functional assays

siAMOT (S100295386), siAMOTL1 (SI03156286), and
siAMOTL2 (SI04195030) were commercially obtained
from Qiagen (Valencia, CA). All transfection assays were
performed using Lipofectamine™ 2000 Transfection
Reagent (Invitrogen). The related procedures, including
flow cytometry for cell-cycle distribution and apoptosis
analysis, have been indicated previously [40]. For the
CRISPR/Cas9-mediated knockout (KO) assay, 293TN cells
were transfected with pL-CRISPR.EFS.GFP (gRNA
sequence inserted), pSPAX2, and pMD2G. The medium
was applied for BGC-823. Detection of the GFP signal in
BGC-823 cells indicated a successful viral transfection.
Both Western blot and DNA sequencing were used to verify
KO efficiency.

Drug-sensitivity tests

The drug-sensitivity tests were performed according to the
cell viability rate, and were evaluated by the corresponding
ICs5y values. We treated cells with negative control, and
siAMOTLI, respectively, with Cisplatin, 5-FU, and VP
(Sigma-Aldrich, St. Louis, MO, USA), respectively. Con-
trols were treated with an equal amount of vehicle DMSO
(Sigma-Aldrich, St. Louis, MO, USA).

Animal studies

Xenograft-formation assays were performed as the previous
work [13]. Tumor sizes were measured every other day after
1 week. Tumor weights were acquired on day 21. All
procedures were approved by the Department of Health,
Hong Kong, and CUHK Animal Ethics Committee. The
Reference No. is 17-492 in DH/SHS/8/2/1 Pt.4.

Statistics

The statistical methods in this study for comparison and
correlation were as previously described [13]. The student ¢
test was used to compare the expression level of AMOT
family in the TCGA cohort, as well as the functional dif-
ferences between siRNA and control-treated cells. Survival
was indicated by Cox regression. All statistical analyses
were performed by SPSS software (Version 22.0, SPSS
Inc.). A two-tailed P value of <0.05 was considered sta-
tistically significant, and the P value <0.001 was highly
significant. Unsupervised clustering was performed through
the R project.
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