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Abstract: GF/rubber composites have sound insulation characteristics, heat resistance, good corro-
sion resistance, and high mechanical strength. The compounding machine’s long working hours
will inevitably wear the metal on the end face of the compounding machine. The wear of the end
face metal will increase the gap between the chamber and the end face, which will lead to material
leakage, reduce the mixing effect, and eventually affect the performance of GF/rubber composites.
To ensure the implementation of GF/rubber composites, it is necessary to study the frictional wear
behavior of GF/rubber composites on metals. In this paper, the effect of blending rubber with differ-
ent amounts of GF on the frictional wear of metal on the end face was analyzed from the perspective
of the formulation process, and the ratio of corrosion wear and abrasive wear was calculated for the
first time.

Keywords: GF/rubber composite; end metal; wear amount; wear ratio

1. Introduction

Glass fiber is a kind of material with excellent performance, which has many types,
low price, and high mechanical strength. It is widely used in the reinforcement of polymer
materials. The composites obtained by adding glass fibers have excellent properties. It has
been reported that the composite material of glass fiber and rubber has good comprehen-
sive properties and can improve its anti-skid performance [1–5]. As it is widely used in
many fields, glass fiber is increasingly valued. Glass fibers are commonly used as reinforce-
ment materials in composite materials, electrical insulation materials, thermal insulation
materials, circuit substrates, etc. An overview diagram of GF is shown in Figure 1.

Li Hong [6] reviewed the development of continuous glass fibers in recent years,
focusing on high-performance glass fibers. In particular, the article presents recent advances
in the characterization of glass structures using NMR spectroscopy, Raman spectroscopy,
and molecular dynamics simulation techniques.

Yang Chuanqi [7] used the mechanical blending method to prepare glass fiber (GF)/natural
rubber (NR)/butadiene rubber (BR) composites and studied the influence of glass fiber
partially replacing silica on the vulcanization properties, mechanical properties, wear re-
sistance, and skid resistance of composites. The performance of the filler was compared
with that of silica and nanometer attapulgite. The results show that adding glass fiber can
shorten the curing time and increase the compound’s hardness, tear strength, and wet
friction coefficient. When the amount of glass fiber is 6 phr, the comprehensive performance
of the binder is higher than that of silica and nanometer attapulgite filler.

Wang Wenjie [8] used glass fiber (GF) as a filler and nitrile butadiene rubber (NBR) as a
matrix to prepare NBR/GF composites by the mechanical blending method and studied the
effect of the amount of glass fiber on the properties of the composites. It was found that with
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the increase of the glass fiber dosage, the vulcanization rate of the compound decreased
gradually, and the tensile strength and 100% fixed elongation stress of the vulcanized
compound increased first and then decreased. The maximum tensile strength and 100%
fixed elongation stress were increased by 33% and 550%, respectively.
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Figure 1. SEM image of GF. ((a) magnification is 10 µm, (b) magnification is 5 µm).

Chen Jiabin [9] prepared glass fiber/silicon rubber composite materials, studied the
failure characteristics of glass fiber/silicon rubber composite materials by the tensile test,
analyzed the stress/strain curve of the composite material, and used the finite element
method to numerically simulate the composite material. The study found that the glass
fiber/silicone rubber composite specimen mainly manifested as a fiber debonding fracture
with fiber pulling out under the action of tensile load.

Lv Fuling [10] prepared nano-magnesium hydroxide/glass fiber/silicon rubber com-
posites by mechanical blending. The dispersion state of nano-fillers in the silicone rubber
matrix was investigated, and the changing laws of physical and mechanical properties,
heat resistance, and flame-retardant properties of composites with different filler dosages
were compared. The results show that additional magnesium hydroxide and glass fiber
dosage ratios can improve silicone rubber’s physical and mechanical properties. Among
them, tensile strength, tear strength, compression set, and hardness have been enhanced.
Combining the two fillers improves the composite’s thermal stability and flame retardant
properties to a certain extent.

Hao Qiangqiang [11] prepared glass fiber/nitrile rubber composites by the mechanical
blending method, studied the effect of glass fiber content and length on the wear resistance
and mechanical properties of the composites, and observed the wear surface of the compos-
ites with a scanning electron microscope. The results show that the optimum addition mass
of chopped glass fibers in the nitrile rubber matrix is 3 phr, and the length is 6 mm. Under
these conditions, the prepared composites have the best wear resistance and comprehensive
mechanical properties, and the wear surface is the flattest and is smooth.

The preparation of GF/rubber composites is carried out in the compounding machine.
With the development of GF/rubber composites, the use time of the compounding machine,
which is the equipment for preparing GF/rubber composites, has increased dramatically,
bringing about the wear and tear of the compounding machine. This paper studies the
frictional behavior of GF/rubber composites with different ratios and end metals during
the mixing process.
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2. Experiment
2.1. Instruments

The experimental equipment used in this experiment is shown in Table 1.

Table 1. Experimental instruments.

Experimental Instruments Country of Production Manufacturers

Hake mixer China Qingdao University of Science and Technology
BL-6157 double-roll rolling mill China Dongguan Baolun Precision Testing Instrument Co.

DisperGRADER Dispersion Meter America Alpha Corporation
LEXT OLS5000 3D laser

measurement microscope Japan Products of Olympus Corporation

CSM-friction and abrasion tester Switzerland Tribometer Corporation
RPA2000 Rubber Processability Analyzer America Alpha Corporation

ZT-2588S Steam Generator China Zhiteng Company

2.2. Formulation

Table 2 shows the formulae. To calculate the silylation reaction index, adding the C1
group without TESPT as a control is necessary.

Table 2. Formulation.

Raw Material C1 C2 C3 C4 C5 C6

TSR20 15 15 15 15 15 15
BR9000 25.5 25.5 25.5 25.5 25.5 25.5

RC2557S 82 82 82 82 82 82
Silica115MP 45 45 45 45 45 45

GF 0 0 1 3 5 7
ZnO 2 2 2 2 2 2

TESPT 0 6 6 6 6 6
DPG 0.8 0.8 0.8 0.8 0.8 0.8
SAD 2 2 2 2 2 2
4020 2 2 2 2 2 2
CZ 1.8 1.8 1.8 1.8 1.8 1.8
S 1.3 1.3 1.3 1.3 1.3 1.3

The following were used: Butadiene Rubber 9000 (BR9000), China Hainan Natural
Rubber Industry Group Co., Ltd., (Haikou, China); Polymeric Styrene Butadiene Rubber
(RC2557S), Dongguan Futai Rubber Trading Co., Ltd., (Dongguan, China); Natural Rubber
(TSR20), China Hainan Natural Rubber Industry Group Co., Ltd., (Haikou, China); Bis-
[γ-(triethoxysilyl)propyl]tetrasulfide (TESPT), Antioxidant 4020, Zinc Oxide ZnO, Stearic
Acid SAD, 1,3-Diphenylguanidine (DPG), accelerator CZ, and sulfur S, products of China
Henan Longji Chemical Co., Ltd., (Puyang, Chian); Glass Fiber (GF), Wanlong Composite
Materials Co., Ltd., (Qingdao, Chian); Silica115MP has a specific surface area of 115 m2/g,
7–40 nm particle size, and solid powder, Solvay Silica Co., Ltd., (Brussels, Belgium); GF
diameter is 12–23 µm, length is 0.2–0.6 mm, and the surface is not treated.

2.3. Mixing Procedure

The GF/rubber composites were obtained after 5 min by mixing according to the
mechanical compounding process in Table 3. The obtained GF/rubber composite was
over-rolled in the BL-6157 double-roller mill, and the setting was set to a width of the
double-roller of 8 mm, and the GF/rubber composite specimens with a thickness of 8 mm
were obtained. The obtained GF/rubber composite specimens were cut according to the die
of CSM to obtain friction specimens with a diameter of 100 mm and a thickness of 8 mm.
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Table 3. Mechanical blending process.

Hake Mixer

Time (s) T (◦C) Ingredients

0 70 BR9000, RC2557S, TSR20
40 TESPT, GF, DPG, SAD, 4020, ZnO, 1/2 Silica
70 1/2 Silica

150 120 Sweep
240 135 Sweep, Sampleing
300 145 Discharge

2.4. Test Methods
2.4.1. Rubber Processing Properties

This test was performed on the RPA 2000, and the test conditions were set as follows.
The silica Durocher Stabilized Cool Down scan test conditions were 0.01 Hz scan frequency,
0.28–40% scan strain range, and 60 ◦C temperature, and the dynamic modulus G’ curve
with strain was obtained [12–17].

(1) Payne effect: The phenomenon in which the elastic modulus of a filler compound
decreases as the strain amplitude decreases [18–20].

(2) Silanization reaction index: Characterize the extent to which the silanization
reaction proceeds. The calculation method is shown in Table 4. The test principle of the
degree of silanization reaction is shown in Figure 2.

X =
Area of silylation zoon

Area of the largest silylation region
=

∫
G′REF(05)−

∫
G′S(05)∫

G′REF(05)−
∫

G′S(06)

Table 4. Testing method.

Stage Frequency/Hz T/◦C Strain Test Items

1 0.1 60 0.28% G’ (01)
2 1 60 0.28–40% G’ (02)
3 1 60 0.28–40% G’ (03)
4 0.1 60 0.28% G’ (04)
5 1 60 0.28–40% G’ (05)
6 1 60 0.28–40% G’ (06)

Polymers 2022, 14, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Distribution of silanization reaction degree. 

2.4.2. Friction Test 
The Hake mixer is shown in Figure 3. The CSM friction and wear testing machine 

was used to conduct friction experiments. 

 
Figure 3. Hake internal mixer. 

The CSM was parameterized before the experiment. The rotation speed of the CSM 
was the same as that of the Hake mixer, which was set to 70 r/min, the pressure was set to 
5 N, and the friction time of the CSM was set to 30 min. Previous studies have shown that 
the most severe wear occurs at the end of the experiment, so the CSM temperature was 
set to 150 °C. The CSM friction and wear tester is shown in Figure 4 [21–25]. 

Figure 2. Distribution of silanization reaction degree.



Polymers 2022, 14, 2849 5 of 15

2.4.2. Friction Test

The Hake mixer is shown in Figure 3. The CSM friction and wear testing machine was
used to conduct friction experiments.
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Figure 3. Hake internal mixer.

The CSM was parameterized before the experiment. The rotation speed of the CSM
was the same as that of the Hake mixer, which was set to 70 r/min, the pressure was set to
5 N, and the friction time of the CSM was set to 30 min. Previous studies have shown that
the most severe wear occurs at the end of the experiment, so the CSM temperature was set
to 150 ◦C. The CSM friction and wear tester is shown in Figure 4 [21–25].
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(3) Metal surface observation: The metal grinding head was placed on the stage and
the LEXT OLS5000 3D microscope was used to emit a laser to scan the metal surface to
obtain metal surface data [26–28].

(4) Dispersion: The rubber sample was tested with a DisperGRADER disperser, and
the dispersion value was obtained through equipment analysis.

3. Mechanistic Study
3.1. Silylation Reaction Mechanism

The silanization reaction is divided into two steps, as shown in Figures 5 and 6.
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Figure 6. Two-stage reaction.

Figures 5 and 6 show the silanization process. Due to limited technical conditions, the
quality of ethanol and water produced during blending cannot be measured. To ensure
the reliability of the test results, friction and wear experiments were carried out on CSM.
According to the proportion of the silanization reaction, the high-temperature ethanol–
water mixed vapor was sprayed onto the metal surface. The mixing conditions of the mixer
were qualitatively simulated [29–37].

3.2. Friction Mechanism between GF/Rubber Composite and Metal

The forms of friction between GF/rubber composites and metals are mainly classified
as abrasive and corrosive wear, and this study focuses on these two aspects:

(1) SiO2 particles have the characteristics of extremely easy agglomeration, while SiO2
particles are complex and irregular surfaces, so SiO2 particle aggregates are the leading
cause of abrasive metal wear [38–44].

(2) The high-temperature ethanol–water mixed vapor will cause corrosion wear to
the metal.

4. Experimental Results
4.1. Dispersion Analysis
4.1.1. Payne Effect

The stress–strain curves of GF/rubber composites with different ratios are shown in
Figure 7, and the Payne effects of GF/rubber composites with different ratios are shown in
Table 5.
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Table 5. Payne effect.

Formula C1 C2 C3 C4 C5 C6

Payne effect 939.19 875.45 700.99 547.01 1099.81 1339.08

The data from Figure 7 were extracted in Table 5. From Table 5, it can be seen that
the Payne effect of GF/rubber composites without TESPT addition was more significant.
With the increase of GF content in the rubber matrix, the Payne effect of the composites
first decreased and then increased. When the GF content was 3 phr, the Payne effect of the
composite was the lowest. The Payne effect of the GF/rubber composite increased sharply
when the added GF exceeded 3 phr.

GF has a unique spatial structure, and its surface can adsorb SiO2 particles in the
rubber matrix. This promotes the dispersion of SiO2 particles in the rubber matrix and
reduces the number of SiO2 particle agglomerates. Therefore, the Payne effect of GF/rubber
composites decreases with GF addition. GF is a spatial filamentous structure, which is
easy to agglomerate with each other in the rubber matrix, which hinders the dispersion of
SiO2 particles. Meanwhile, the total surface area decreases after GF accumulation, and the
adsorption of SiO2 particles is weakened. All of this leads to an ever-increasing Payne effect.

4.1.2. Dispersion Degree of GF/Rubber Composite

From Figure 8 and Table 6, it can be seen that the GF/rubber composite had the lowest
dispersion and the best dispersion when the content of GF was 3 phr. Adding too much or
too little GF will increase the distribution of GF/rubber composites. This corresponds to
the Payne effect of GF/rubber composites.
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Table 6. Dispersion values.

Rubber Compounds C1 C2 C3 C4 C5 C6

Dispersion 5.28 5.97 6.58 7.78 6.61 4.69

4.2. Silylation Reaction Index

The silylation reaction indices of GF/rubber composites with different ratios are shown
in Figure 9. The silanization index is in Table 7.

It can be seen from Figure 9 that when the amount of GF added is 3 phr, the silanization
index of the composite material is close to 1, and the silanization reaction is most advanced
at this time. The silanization reaction of the composites with the remaining amount of GF
was decreased. This is consistent with the previous analysis of the Payne effect.
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Table 7. Silylation reaction index. 

Compounding Rubber C2 C3 C4 C5 C6 

Silylation reaction index 0.339 0.532 0.819 0.331 0.081 

It can be seen from Figure 9 that when the amount of GF added is 3 phr, the silaniza-

tion index of the composite material is close to 1, and the silanization reaction is most 

advanced at this time. The silanization reaction of the composites with the remaining 

amount of GF was decreased. This is consistent with the previous analysis of the Payne 

effect. 
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Table 7. Silylation reaction index.

Compounding Rubber C2 C3 C4 C5 C6

Silylation reaction index 0.339 0.532 0.819 0.331 0.081

4.3. Different Ratios of GF/Rubber Composite with Metal Friction and Wear
4.3.1. Friction Coefficient

It can be seen from Figure 10 that the friction coefficient when the composite mate-
rial rubs against the metal first decreased and then increased. The friction coefficient of
GF/rubber composites was the smallest when the GF addition was 3 phr. It can be seen
from Figure 10 that the friction coefficients of the experimental groups added with 0, 1,
5, and 7 phr GF increased by 22.4%, 18.5%, 20.8%, and 29.1%, respectively, relative to the
experimental group with 3 phr of GF added. With the increase of GF content in the rubber
matrix, SiO2 particles are continuously adsorbed on the surface of GF, which promotes the
dispersion of SiO2 particles and reduces the number of SiO2 particle agglomerates in the
rubber matrix. SiO2 particles have high physical hardness. The SiO2 particle aggregates
have complex and irregular shapes, making the composite material have serious friction
against the metal during the friction process, and the friction coefficient is significant. When
the content of GF in the rubber matrix exceeded 3 phr, the aggregates of SiO2 particles in the
rubber matrix continued to increase, which made the friction between the composite mate-
rial and the metal intensify during the friction process and the friction coefficient increased.

Polymers 2022, 14, x FOR PEER REVIEW 10 of 16 
 

 

4.3. Different Ratios of GF/Rubber Composite with Metal Friction and Wear 
4.3.1. Friction Coefficient 

It can be seen from Figure 10 that the friction coefficient when the composite material 
rubs against the metal first decreased and then increased. The friction coefficient of 
GF/rubber composites was the smallest when the GF addition was 3 phr. It can be seen 
from Figure 10 that the friction coefficients of the experimental groups added with 0, 1, 5, 
and 7 phr GF increased by 22.4%, 18.5%, 20.8%, and 29.1%, respectively, relative to the 
experimental group with 3 phr of GF added. With the increase of GF content in the rubber 
matrix, SiO2 particles are continuously adsorbed on the surface of GF, which promotes the 
dispersion of SiO2 particles and reduces the number of SiO2 particle agglomerates in the 
rubber matrix. SiO2 particles have high physical hardness. The SiO2 particle aggregates 
have complex and irregular shapes, making the composite material have serious friction 
against the metal during the friction process, and the friction coefficient is significant. 
When the content of GF in the rubber matrix exceeded 3 phr, the aggregates of SiO2 parti-
cles in the rubber matrix continued to increase, which made the friction between the com-
posite material and the metal intensify during the friction process and the friction coeffi-
cient increased. 

 
Figure 10. The average coefficient of friction of GF/rubber composites with different ratios against 
metal. 

4.3.2. Metal Surface Topography 
Figure 11 shows the height profile of the metal grinding head before and after sand-

ing. 

C2   

C3   

Figure 10. The average coefficient of friction of GF/rubber composites with different ratios against metal.



Polymers 2022, 14, 2849 10 of 15

4.3.2. Metal Surface Topography

Figure 11 shows the height profile of the metal grinding head before and after sanding.
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Figure 11. Height profile of metal grinding head before and after friction.

It can be seen from Figure 11 that a large number of contour peaks were ground after
the metal surface of the C2 group was rubbed. There were many pits on the metal surface,
and the wear was more serious. A part of the height profile peaks of the metal surface
before and after friction in the C3 group was smoothed, which was reduced compared to
the C2 group. After the metal surface of the C4 group was rubbed, a few height peaks
were filed, the number of pits appeared less, and the wear was lighter. The metal surface
of group C4 had more height peaks being ground after friction, the metal surface profile
changed significantly, and the wear was more serious. The height profile of the metal
surface before and after friction in the C6 group changed significantly, and a large number
of height peaks were filed.

4.3.3. Metal Wear

From Figure 12, it can be seen that with the increase of GF addition, the wear amount
of GF/rubber composites on metal decreased and then increased, and the GF/rubber
composite with a 3 phr GF addition had minor wear on metal. There was no adsorption of
GF on SiO2 particles in the composite material without GF added, and the dispersion of
SiO2 particles could not be promoted, so the metal wear was severe.
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During the mixing process of the composites with 1 part of GF added, some SiO2
particles were adsorbed on the surface of GF, which reduced the number of SiO2 particle
agglomerates in the composites. The SiO2 particle aggregates have complex and irregular
shapes, making the composites produce severe friction with the metal during the friction
process. With the reduction of SiO2 particle agglomerates in the composites, the abrasive
wear of the composites to metals was gradually weakened. With the increase of the degree
of the silanization reaction, the amount of high-temperature ethanol–water vapor increased,
which increased the proportion of corrosion wear.

When 3 phr of GF was added, the surface area of GF that could adsorb SiO2 particles
increased, and GF could adsorb more SiO2 particles, which better promoted the dispersion
of SiO2 particles and further reduced the number of silica aggregates. Therefore, the
GF/rubber composite with 1 phr of GF and the GF/rubber composite with 3 phr of GF had
minor wear on the metal. As can be seen from Figure 12, the experimental group added
3 phr of GF, relatively. The wear amount of the experimental groups with 0, 1, 5, and 7 phr
of GF added increased by 60%, 38.7%, 116%, and 146.7%, respectively.

4.3.4. Wear Ratio

The abrasive wear amount of the metal grinding head is shown in Figure 13.
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No high-temperature steam was sprayed during this experiment, and there was no
corrosion and wear of metal, so the data measured in this experiment were the amount
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of abrasive wear. As can be seen from Figure 13, the experimental group added 3 phr of
GF, relatively. The abrasive wear of the experimental groups with 0, 1, 5, and 7 phr of
GF increased by 66.7%, 42%, 124.6%, and 165.2%, respectively. Compared with the above
experiment, the wear ratio was obtained, and the wear ratio image is shown in Figure 14.
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Figure 14. The proportion of abrasive wear and corrosion wear.

The increase in the degree of silanization reaction increased the amount of high-
temperature ethanol–water mixed vapor, which increased the proportion of corrosive
wear. When the GF addition amount was 3 phr, the contact area between GF and SiO2
particles reached the maximum, and the SiO2 particles were best dispersed. Therefore,
the GF/rubber composite with a 3 phr GF addition had the most significant degree of
silanization reaction and the highest percentage of corrosion and wear. Compared with the
experimental groups with 0, 1, 5, and 7 phr of GF added, the corrosion wear rate with 3 phr
of GF increased by 115.2%, 56.4%, 116.8%, and 748%, respectively.

4.3.5. Roughness

From Figure 15, it can be seen that the amount of roughness change on the metal
surface decreased and then increased with the increase of GF addition, which is related to
the adsorption of GF to SiO2 particles. As can be seen from Figure 15, the experimental group
added 3 phr of GF, relatively. The roughness variation of the experimental groups with 0,
1, 5, and 7 phr of GF increased by 191.8%, 97.4%, 103%, and 232%, respectively. With the
increase of GF addition, the number of silica aggregates decreased. Silica is more complex
and wears seriously on metal, so the surface roughness of metal gradually decreased. When
the content of GF in the composite matrix exceeded 3 phr, the agglomeration of SiO2 particles
in the composite material increased continuously, and the wear of the composite material
to the metal increased. This resulted in severe wear on the metal surface and increasing
roughness variation.
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5. Conclusions

This study found that GF has a large surface area, and its surface can adsorb nano-
SiO2 particles. With the increase of GF content in the composite matrix, the degree of the
silanization reaction of the composite material first increased and then decreased. The
amount of high-temperature ethanol–water mixed vapor corresponds to the degree of the
silanization reaction. The proportion of abrasive wear of GF/rubber composites to metals
decreased and then increased, and the proportion of corrosive wear increased and then
decreased. With the increase of GF addition, the contact area between GF and SiO2 particles
gradually increased, the dispersion of SiO2 particles was enhanced, the number of silica
aggregates decreased, and the amount of GF/rubber composites to metal wear decreased.
When the addition amount of GF was 3 phr, the GF/rubber composite had the lowest wear
on metal. When the addition amount of GF exceeded 3 phr, there was a large amount
of accumulation between GF, the contact area between GF and SiO2 particles gradually
decreased, the dispersion of SiO2 particles decreased, the number of silica aggregates
increased, and the wear amount of GF/rubber composites on metal increased. In the long
run, the strengthening and transforming infrastructure in the Middle East and Asia-Pacific
will increase the demand for GF. This study plays a vital role in reducing the wear of the
internal mixer, improving the life of the internal mixer, and ensuring the performance of
GF-modified rubber.
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