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Abstract. Cisplatin is one of the most effective chemotherapy 
drugs for ovarian cancer, but resistance is common. The initial 
response to platinum‑based chemotherapy is as high as 80%, 
but in most advanced patients, final relapse and death are 
caused by acquired drug resistance. The development of resis‑
tance to therapy in ovarian cancer is a significant hindrance 
to therapeutic efficacy. The resistance of ovarian cancer 
cells to chemotherapeutic mechanisms is rather complex 
and includes multidrug resistance, DNA damage repair, cell 
metabolism, oxidative stress, cell cycle regulation, cancer stem 
cells, immunity, apoptotic pathways, autophagy and abnormal 
signaling pathways. The present review provided an update of 
recent developments in our understanding of the mechanisms 
of ovarian cancer platinum‑based chemotherapy resistance, 
discussed current and emerging approaches for targeting 
these patients and presented challenges associated with these 
approaches, with a focus on development and overcoming 
resistance.
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1. Introduction

Ovarian cancer is one of the most common malignant tumors 
of the reproductive organs and has the highest mortality rate 
among all gynecological malignancies. At diagnosis, ~70% of 
patients present with advanced disease and most are resistant 
to platinum‑based chemotherapy, resulting in a low five‑year 
survival rate (1,2). Ovarian cancer can be subdivided into two 
main histological subtypes: Epithelial ovarian cancers (EOCs), 
which account for ~90% of ovarian cancers, and non‑EOCs, 
which account for ~10% of ovarian cancers (3). Epithelia 
cancers include serous [high‑grade serous carcinoma (HGSC) 
and low‑grade serous carcinoma (LGSC)], endometrioid 
(high‑grade endometrioid carcinoma and low‑grade endome‑
trioid carcinoma), clear‑cell and mucinous carcinomas (2,4). 
LGSCs usually contain KRAS and BRAF mutations (5,6), 
whereas most HGSCs have TP53 mutations and exhibit severe 
aneuploidy genome aberrations. Clear cell carcinoma is char‑
acterized by mutations in the ARID1A, PIK3CA, PTEN and 
KRAS genes, while endometrioid carcinoma, similar to its 
uterine counterpart, has mutations in ARID1A, CTNNB1, and 
PTEN, as well as microsatellite instability (7,8).

Approximately 80% of patients with ovarian cancer are 
treated with cytoreductive surgery followed by adjuvant 
chemotherapy with carboplatin and paclitaxel or cisplatin 
and paclitaxel (2,9). However, ~70% of patients with this 
treatment regimen will relapse (10) and the recurring cancer 
is often resistant to standard platinum‑based chemotherapy. 
In patients with advanced cancer, mortality is usually due 
to acquisition of drug resistance. Cisplatin is one of the 
most effective chemotherapy drugs for ovarian cancer, but 
resistance to cisplatin is common. Patient recurrence more 
than 6 months after front‑line platinum‑based therapy is 
considered platinum‑sensitive, whereas platinum‑resistant 
recurrence occurs after less than 6 months (2,11,12). During 
the six months after the completion of major platinum‑based 
chemotherapy, disease progression is usually closely related 
to platinum resistance. Due to its significant impact on patient 
survival time and quality, improving the response to platinum 
is an important challenge. At present, the standard treatment 
for platinum‑resistant or refractory ovarian cancer is pegylated 
liposomal adriamycin, weekly paclitaxel and topotecan, but 
the efficacy of this regimen is limited (13).
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To provide a thorough understanding of the mechanism 
of drug resistance, in the present review, the important 
molecular mechanisms involved in the response of ovarian 
cancer patients to platinum‑based chemotherapy, as well 
as methods to circumvent these mechanisms that have been 
studied extensively by clinical and laboratory researchers are 
explored (Fig. 1).

2. Literature review methods

A systematic literature search was conducted via electronic 
search engine PubMed for eligible studies published until 
December 31, 2021. The keywords for searches were as 
follows: ‘Ovarian cancer’, ‘chemotherapy resistance’, ‘chemo‑
resistance’. Furthermore, the referenes in retrieved articles 
were also manually reviewed for potentially relevant studies.

3. Molecular mechanisms of platinum‑based chemotherapy 
resistance in ovarian cancer

Multidrug resistance (MDR). Since the ovary is deep in the 
pelvic cavity and small in size, it is difficult to detect early 
ovarian cancer due to a lack of typical symptoms. Upon 
surgery, the tumor is confined to the ovary in less than 30% of 
patients with ovarian cancer (14); in most patients, the tumor 
has spread to the pelvic and abdominal organs. Although prog‑
ress has been made in surgical techniques and chemotherapy 
drugs in recent years, the mortality rate of ovarian cancer 
has not decreased significantly. Chemotherapy MDR is the 
main cause of treatment failure (15). MDR is a drug‑resistant 
phenotype in which cancer cells are simultaneously resistant 
to multiple drugs with different molecular targets and without 
obvious structural similarities (16). Overcoming MDR is 
a top priority in clinical and research oncology but remains 
elusive. In the present study, the latest literature on the main 
mechanisms of MDR were summarized and several new MDR 
reversal strategies were evaluated, including more effective 
and specific P‑glycoprotein (P‑gp) inhibitors.

Membrane‑bound adenosine triphosphate (ATP)‑dependent 
active drug efflux pumps can significantly decrease the intra‑
cellular concentration of the drug and thus the efficacy of 
treatment. P‑gp uses the energy of ATP hydrolysis to transport 
various structural and functional drugs out of the cell. P‑gp 
and multidrug‑resistance‑associated protein (MRP) are two 
main membrane proteins known to cause MDR in cancer. 
Inhibiting these proteins is a strategy to sensitize cancer cells 
to chemotherapy (17). Overexpression of P‑gp can also lead 
to the development of MDR in human tumors (including 
ovarian cancer). Therefore, many years of extensive research 
have focused on overcoming P‑gp‑based MDR. To date, three 
generations of P‑gp modulators have been developed. The 
second‑generation P‑gp modulator, valspodar, has exhibited 
the capacity to modulate ovarian cancer resistance in phase I, 
II and III clinical trials (18).

DNA damage repair (DDR). As MDR is one of the most studied 
mechanisms of ovarian cancer drug resistance in the early 
stages of the research process, DDR is one of the most impor‑
tant mechanisms of ovarian cancer drug resistance. At present, 
the standard treatment for advanced ovarian cancer is surgical 

cytoreduction, followed by platinum and taxane‑based chemo‑
therapy. Current research focuses on new agents, particularly 
those that target the DDR pathway (19,20). A comprehensive 
understanding of the process of DDR in ovarian cancer and its 
working principle may promote future research on treatments 
and drug resistance.

Studies have revealed that more than 50% of HGSCs 
have homologous recombination repair (HR) pathway 
defects (21‑23), which are mainly related to genetic and epigen‑
etic changes in HR pathway genes. The tumor suppressors 
BRCA1 and BRCA2, which encode proteins involved in DDR 
via homologous recombination, have been associated with an 
increased risk of ovarian cancer (24). Mutations in BRCA1/2 
are associated with high sensitivity to DNA‑damaging agents, 
including poly‑(ADP‑ribose) polymerase (PARP) inhibitors 
and platinum (25‑27). Patients with BRCA mutations have an 
improved overall response to platinum therapy, which is asso‑
ciated with a longer survival rate for ovarian cancer (28,29). 
Compared with patients who do not carry the mutation, patients 
with the mutation are less likely to have disease progression 
within 6 months after the end of the main treatment (28). 
Therefore, patients with BRCA1/2 mutations are more likely 
to have longer progression‑free survival (PFS) than patients 
without mutations.

Concurrently, the study found that upon the first relapse of 
platinum‑sensitive or platinum‑resistant patients, the response 
rates for second‑line platinum‑based or nonplatinum‑based 
chemotherapy were higher in patients carrying mutations than 
in those who did not (28). In BRCA‑mutant cancers, BRCA 
reversion mutations that restore protein function are the key 
resistance mechanism of platinum‑based chemotherapy (30).

Reversion mutations that may be caused by DNA‑damaging 
chemotherapy or genome instability are base substitutions or 
insertions/deletions. Such mutations are usually close to the 
main protein truncation mutation and restore the open reading 
frame (ORF) of the gene to allow the production of functional 
protein, transforming tumor cells from HR defective to profi‑
cient. A total of 18% of platinum‑refractory cancers and 13% 
of platinum‑resistant cancers have BRCA mutations in circu‑
lating cell‑free DNA (cfDNA) before treatment, compared 
with 2% of platinum‑sensitive cancers (31). Before treat‑
ment, patients with no BRCA reversion mutations in cfDNA 
had significantly longer PFS after treatment with rucaparib 
compared with patients with reversion mutations (32).

In cancer, the restoration of HR function promotes drug 
resistance by repairing DNA damage induced by PARP 
inhibitors and/or platinum‑based chemotherapy, destroying 
the basis of synthetic lethality and ultimately promoting cell 
survival (33). Reversion mutations in multiple HR pathway 
genes, including BRCA1, BRCA2, RAD51C, RAD51D (34) 
and PALB2, cause acquired resistance to platinum‑based 
chemotherapies and PARP inhibitors (32).

Limited DNA end resection is the key to impaired HR 
in BRCA1‑mutant cells. A loss‑of‑function CRISPR screen 
identified dynein light chain 1 protein (DYNLL1) as a factor 
responsible for platinum resistance in BRCA‑defective patients 
with HGSC by facilitating DNA end resection (35). After plat‑
inum‑based chemotherapy for BRCA1 mutant ovarian cancer, 
low expression of DYNLL1 was significantly associated with 
poor PFS.
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Strengthening DNA repair pathways is one of the 
ways that cancer cells resist the DNA‑damaging effects of 
platinum (Fig. 2). Inhibiting these DNA repair pathways 
may restore the sensitivity of cancer cells to platinum. This 
is precisely the objective of several drugs under development. 
PARP inhibitors disrupt the mechanism by which damaged 
parts of DNA are removed and the drug trabectedin binds 
directly to and damages DNA (36). TOP1 initiates the DNA 
relaxation by cleaving one DNA strand. This in turn generates 
TOP1 cleavage complexes (TOP1ccs). The selective trapping 
of TOP1ccs by topotecan stabilizes TOP1ccs which covalently 
attach to the 3'‑end of the breaks. These stalled TOP1ccs lead 
to lethal DNA double‑strand breaks when they produce colli‑
sions with DNA replication (37). The drug topotecan blocks 
the action of the enzyme TOP1, thereby helping to cause 
DNA damage, improving the sensitivity of chemotherapy and 
is already licensed to treat recurrent ovarian cancer (38). As 
apical kinases, ATM (recruited to double‑strand breaks) and 
ATR (recruited to single‑stranded DNA) regulate the DNA 
damage response, and ATR inhibitors may restore platinum 
sensitivity for the treatment of patients with recurrent BRCA1/2 
mutant ovarian cancer (39,40).

Cell cycle regulation. More than 50% of HGSCs are defec‑
tive in the HR pathway (21). For HGSCs with intact HR, the 
expansion of cyclin E1 (CCNE1), which encodes the cell 
cycle regulator cyclin E1, is the best‑characterized driving 
factor. Amplification or gain of CCNE1 is observed in 20% 
of HGSC tumors and is related to main treatment resistance 
and decreased overall survival (OS) (41). Patients with CCNE1 

amplification are unlikely to benefit from PARP inhibitors 
and are unlikely to respond to platinum drugs due to the 
mutual exclusivity of CCNE1 amplification and BRCA1/2 
mutations (42,43).

Cyclin‑dependent kinase (CDKs) are proteins required 
for appropriate progression of the cell cycle and also play a 
central role in regulating DDR (44). CCNE1 is essential for 
CDK2 activation and its overexpression can lead to prema‑
ture entry into the S phase, abrogating DNA repair during 
the G1 phase and leading to increased levels of replica‑
tion stress. Checkpoint kinase 1 and 2 (CHK1 and CHK2) 
are responsible for regulating DNA replication and DNA 
damage response (45). Thus, CCNE1 overexpression may 
increase sensitivity to CHK1 inhibition (46). Promising 
targeted strategies using WEE1 kinase inhibitors, CHK1 
inhibitors and CDK2 inhibitors are under review in clinical 
trials examining biomarkers (47). The combination of the 
CDK2 inhibitor dinaciclib and the AKT inhibitor MK2206 
exhibited a selective synergistic effect in a CCNE1‑expanded 
cell line in a xenograft model (42). Approximately 60% of 
patients with platinum‑resistant or refractory diseases receive 
clinical benefit from the CHK1 and CHK2 inhibitor, prexas‑
ertib (LY2606368) (48). Recently, a study reported that the 
CCNE1‑overexpressing HGSC model is markedly sensitive 
to combinations of cell cycle checkpoint kinase and immune 
checkpoint inhibitors (29).

CCNE1 and RB1 are cyclins related to cell cycle transi‑
tion in the G1‑S phase. Tumors with increased CCNE1 copy 
number are more resistant to platinum therapy, while RB1 loss 
is associated with high sensitivity to platinum therapy (49,50). 

Figure 1. Schematic overview of the mechanisms of platinum‑based chemotherapy resistance in ovarian cancer.
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Studies have shown that loss of RB1 protein expression is 
associated with longer OS and PFS (47,50,51).

ATM/ATR kinases play a central role in coordinating the 
DDR. Blocking the activity of key CDKs can signal DNA 
damage and cause cell cycle arrest. The combination of ATR 
inhibitor and PARP inhibitor (PARPi) has a synergistic effect 
in reducing the survival rate and colony formation in BRCA1/2 
mutant PARPi/platinum‑resistant cell models that are resistant 
to PARPi and platinum or exhibit de novo resistance (46).

CDK6 can bind to and phosphorylate FOXO3, thereby 
inducing the expression of ATR. CDK6 regulates ATR through 
FOXO3 to control platinum‑induced cell death (52). In a model 
of advanced platinum‑resistant tumors, silencing or pharma‑
cological inhibition of CDK6 increased the sensitivity of EOC 
cells to platinum without affecting RB1 phosphorylation but 
increased platinum‑induced DNA damage by increasing apop‑
tosis (52). Notably, compared with other models, CDK6 is less 
involved in regulating G1‑S transition and proliferation in EOC. 
When platinum and CDK6 inhibitor PD0332991 are combined, 
platinum induces significant cell cycle arrest in the S phase (52), 
while CDK6 inhibition induces more apoptosis (Fig. 3).

Cell metabolism. Metabolic reprogramming is emerging as 
a proposed molecular mechanism of cisplatin resistance (53). 

Accumulating evidence has suggested that the metabolism of 
tumor tissues differs from that of matched normal tissues and 
metabolic reprogramming is likely to be an important cause 
of treatment resistance (54,55). Metabolic reprogramming 
involves a series of metabolic alterations involving all major 
pathways from glucose metabolism to glutamine and lipids as 
well as mitochondrial (mt) alterations (56). The pentose phos‑
phate pathway (PPP) is an important component of glucose 
metabolism that uses glucose‑6‑phosphate as the primary 
substrate (57). The products of PPP biosynthesis are ribo‑
nucleotides and nicotinamide adenine dinucleotide phosphate; 
the latter is essential for reductive biosynthesis (57).

Overexpression and higher enzyme activity of 
glucose‑6‑phosphate dehydrogenase (G6PD) can increase 
cisplatin resistance. G6PD and transketolase have been identi‑
fied as possible targets to overcome cisplatin resistance (53). 
The enzymes that regulate glycolysis flow are transcription‑
ally regulated by three major transcription factors: p53, 
hypoxia‑inducible factor‑1 (HIF‑1) and Myc (58). HIF‑1, a 
major hypoxia‑induced transcription factor, promotes a disso‑
ciation of glycolysis and the tricarboxylic acid cycle (59). HIF‑1 
allows adaptation to hypoxia by increasing glucose transport, 
glycolysis and lactate production. In addition to stimulating 
glycolysis, HIF‑1 inhibits the function of the mt respiratory 
chain in a variety of ways. Inhibition of HIF‑1 may redirect 
aerobic glycolysis toward mt oxidative phosphorylation, 
which can sensitize cells to cisplatin through overproduction 
of reactive oxygen species (ROS), leading to apoptosis; the 
cisplatin response in ovarian cancer cells can be improved 
by targeting HIF‑1‑regulated cancer metabolism (60). Studies 
have demonstrated that metformin can modulate cell growth 
and metabolism by inhibiting mt activity, AMP/ATP balance 
disturbance and AMPK activation and can partially reverse 
platinum resistance in the PDX model (61‑63). This provides a 
new direction for reducing resistance.

Figure 2. BRCA1/2 activity in ovarian cancer is associated with the response 
to platinum chemotherapy. BRCA1/2 functions in activating the repair of 
double‑strand breaks and initiating homologous recombination, linking the 
maintenance of genomic integrity to tumor suppression. BRCA1/2 active 
cells can repair the platinum drug‑caused double‑strand DNA damage by 
homologous recombination, while BRCA1/2 inactive cells cannot, thus 
tumor cells with BRCA gene mutation are more sensitive to platinum drugs.

Figure 3. Regulation of the cell cycle by platinum treatment in ovarian 
cancer. CCNE1 and RB are cyclins associated to cell cycle transition in the 
G1‑S phase. CCNE1 is essential for CDK2 activation and its overexpression 
can lead to premature entry into the S phase, abrogating DNA repair during 
the G1 phase and leading to increased levels of replication stress. Inhibition 
of CDK6 increases the sensitivity of epithelial ovarian cancers cells to 
platinum by increasing apoptosis.
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Oxidative stress. Cell metabolism induces the production of 
ROS; a variety of chemotherapeutic drugs, including cisplatin, 
also induce the production of large amounts of ROS in tumor 
cells. The effectiveness of chemotherapy depends on the induc‑
tion of oxidative stress. Increased ROS can cause oxidative DNA 
damage, leading to genomic instability and promoting cellular 
apoptosis, senescence or autophagy. To withstand oxidative 
stress, cells activate the transcription factor Nrf2, the major 
regulator of antioxidant responsive element‑mediated genes (64).

Activation of the Nrf2 pathway is involved in the develop‑
ment of ovarian cancer and platinum resistance (65). Thus, 
targeting redox regulation is a promising strategy to over‑
come drug resistance (66). In line with this, Nrf2 inhibition 
is expected to increase chemotherapy sensitivity. Combining 
Nrf2 inhibition with chemotherapy enhances cytotoxic effects 
but produces side effects such as chemotherapy‑induced 
myelosuppression (67). Additionally, Nrf2 inhibition results 
in enhanced sensitivity toward ROS‑induced DNA damage, 
whereas PARP inhibitors inhibit this DNA repair pathway (68). 
Furthermore, PARP inhibitors increase not only DNA damage 
but also ROS (69). Studies have revealed that combined treat‑
ment with Nrf2 inhibitors and PARP inhibitors improves 
therapeutic efficacy, particularly in BRCA1 mutant cancer 
cells and no severe side effects are expected (68,69).

Mitochondria are important sites of redox activity. 
Notably, compared with cisplatin‑sensitive HGSC cells, cispl‑
atin‑resistant HGSC cells have a lower mt content and lower 
levels of mtROS, which induce cell death (70). The principle of 
anticancer treatment with chemotherapeutic drugs is usually 
to disrupt cell integrity by destroying nuclear DNA (nDNA) 
to induce cell death. In addition, mtDNA, similar to nDNA, 
is greatly affected by cisplatin. Therefore, mtDNA damage is 
evident in cisplatin‑treated cells (71,72). Furthermore, the ATP 
synthase inhibitor oligomycin A can block mt function and 
prevent the induction of mtROS during cisplatin treatment, 
thereby reducing cisplatin‑induced apoptosis (70).

In fact, several oxidative stress‑related genes, such as 
ARHGEF6, TXNRD1, GLA, GSTZ1 (73), thioredoxin (12), 
E26 oncogene homolog 1 (74,75) and ALDH (76), have been 
linked to chemoresistance in ovarian cancer. Increasing ROS 
through pharmacological methods may render ovarian cancer 
cells sensitive to cisplatin and overcome drug resistance. An 
ALDH inhibitor named CM37, has been revealed to increase 
intracellular ROS levels in ovarian cancer cells, leading to DNA 
damage and inhibition of cell survival and proliferation (76).

Cancer stem cells (CSCs). The current oncology hypothesis 
proposes that only a small percentage of cancer cells can 
spread into the tumor. These cells are called tumor promoter 
cells or CSCs and have pluripotent properties similar to those 
of normal stem cells (77,78). Previous studies have revealed 
that CSCs are a unique cell population that causes tumor 
recurrence and metastasis, leading to the formation of new 
tumors (79,80). CSCs also exist in ovarian tumors and are 
resistant to chemotherapy (81,82) Therefore, the development 
of new therapies for CSCs aims to improve the lives of patients 
with cancer, particularly those with metastatic disease, and to 
avoid the recurrence of chemotherapy‑resistant tumors.

One understudied mechanism of chemoresistance is the 
persistence of quiescent cancer cells that are not eliminated by 

chemotherapy. According to previous studies, these residual 
tumors are enriched in CSCs (83), which are more resistant 
to chemotherapy (Fig. 4) (74,84,85). There are already several 
surface markers for ovarian CSC identification, including 
MyoD, CD44, CD117 (86), CD133 (87), ALDH (76) and nuclear 
factor of activated T cells, cytoplasmic 4 (NFATC4) (88,89).

CD44 is a cell‑surface glycoprotein of the hyaluronate 
receptor that plays a role in tumor stemness, recurrence and 
drug resistance in ovarian cancer. Compared with cells cultured 
under differentiation conditions, isolated CD44+/CD117+ 
ovarian CSCs could completely regenerate the original tumor 
phenotype in mice and were more resistant to cisplatin and 
paclitaxel (90). The presence of ALDH+CD133+ CSC‑like 
cells in primary ovarian tumors is associated with shorter 
disease‑free survival and OS. In addition, compared with 
parental cells, these cells exhibit enhanced chemoresistance 
to the human primary ovarian tumor phenotype (89,91). The 
aforementioned studies revealed that CSCs are closely related 
to the chemoresistance of ovarian cancer. Metformin treat‑
ment significantly reduces the stemness of cancer by reducing 
ALDH+CD133+ CSCs in patients with ovarian cancer (92). 
Phase III clinical trials have shown that metformin is a 
favorable adjunct in the treatment of EOC.

Studies have demonstrated that act ivating the 
PI3K/Akt/mTOR signaling pathway can enhance the expres‑
sion of epithelial‑mesenchymal transition (EMT) and CSC 
markers in chemoresistant EOC cells. Accordingly, the PI3K 
inhibitor BEZ235 renders EOC cells sensitive to cisplatin 
by inhibiting the expression of EMT and CSC markers (91). 
NFATC4 is enriched in ovarian CSC‑like cells, which leads 
to chemotherapy resistance by downregulating MYC at an 
early stage, helping cells enter a quiescent state (88). The 
aforementioned studies revealed that NFATC4 is a significant 
therapeutic target for ovarian cancer that is worthy of in‑depth 
study.

Immunity. There is increasing evidence that the immune 
response may affect the prognosis of patients with ovarian 
cancer. For patients with recurrent ovarian cancer, the immune 

Figure 4. CSCs are more resistant to chemotherapy. The persistence of quies‑
cent cancer cells that are hard to be eliminated by chemotherapy and these 
residual tumors are enriched in CSCs, which are more resistant to chemo‑
therapy. CSCs are a unique cell population that causes tumor recurrence and 
metastasis, leading to the formation of new tumors. CSCs, cancer stem cells.
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system can be activated to identify and attack cancer cells to 
prevent recurrence. The tumor microenvironment is a potential 
factor for recurrence and chemotherapy resistance (93). Among 
them, the presence of tumor‑infiltrating lymphocytes, particu‑
larly CD8+ tumor‑infiltrating lymphocytes, often indicates 
an improved prognosis (94). In a study of patients receiving 
platinum‑based chemotherapy, the 5‑year OS rate of patients 
whose tumors contained significant T‑cell infiltration was 38%, 
but the 5‑year OS rate of patients whose tumors contained very 
few T cells was only 4.5% (95). CXCL9, CCL21 and CCL22 
were more highly expressed in tumors with significant T‑cell 
infiltrates than in tumors with few T cells (96,97).

Several studies have shown that high tumor‑associated 
macrophage (TAM) density is closely related to poor prog‑
nosis and resistance to treatment in patients with ovarian 
cancer (98,99). The mechanism of drug resistance is as follows: 
i) Macrophages promote tumor polarization; ii) macrophages 
affect the pro‑survival signaling pathways; and iii) macro‑
phages upregulate MDR genes in cancer cells (10). In various 
ovarian cancer cell lines treated with cisplatin or carboplatin, 
macrophages are induced to differentiate into M2 macro‑
phages through increased IL‑10 production and enhanced 
activation of the STAT3 signaling factor (100,101). The under‑
standing of the involvement of TAMs in tumor progression 
and chemoresistance provided by these studies has revealed 
new opportunities for the development of ovarian cancer 
therapies (10,99).

In addition, the immune checkpoint protein programmed 
death ligand (PD‑L1) is often expressed by ovarian tumor 
cells, and PD‑1 is a receptor often expressed by tumor‑infil‑
trating lymphocytes. Studies have found that the interaction 
between PD‑1 and PD‑L1 is a key therapeutic target for 
reactivating the immune response against a variety of cancers. 
Therefore, blocking the PD‑1/PD‑L1 interaction with an 
antibody against the PD‑L1 molecule is a new therapeutic 
opportunity for patients with advanced platinum‑resistant 
ovarian cancer (102‑104). The human immunoglobulin G1 
monoclonal antibody avelumab has a wild‑type Fc region 
that blocks PD‑L1. Avelumab has shown antitumor activity in 
patients with relapsed or refractory ovarian cancer who have 
progressed after platinum‑based chemotherapy (13).

Apoptotic pathways. The effectiveness of chemotherapy 
strongly depends on the ability of ovarian cancer cells 
to undergo drug‑induced apoptosis (Fig. 5) (105‑107). 
Platinum‑based chemotherapeutics, such as carboplatin and 
cisplatin, are alkylating agents that bind to DNA to produce 
intra‑ and interstrand crosslinks, thereby inducing DNA 
damage that culminates in mitochondria‑mediated apop‑
tosis (108,109). The mt apoptotic pathway is controlled by 
proapoptotic (e.g., PUMA, Bim, Bid, Bad, Bik, Bax, Noxa 
and Bmf) and antiapoptotic (e.g., Bcl‑2 Bcl‑w, Mcl‑1, Bfl‑1 
and Bcl‑xL) proteins of the Bcl‑2 family (110). Inhibition of 
apoptosis‑related proteins in ovarian cancer cells increases 
cisplatin resistance and PI3K/mTOR inhibits the induction 
of pro‑apoptotic and anti‑apoptotic Bcl‑2 family proteins, 
which are associated with treatment fragility in ovarian cancer 
cells (111).

Approximately 40‑80% of patients with EOC have TP53 
mutations (112,113). In addition, a few cases of HGSCs lacking 

TP53 mutations have been reported with amplification of 
MDM2, which is a known alternative mechanism for inacti‑
vation of p53 (114). Mutations in the p53 gene can increase 
resistance to various DNA‑damaging agents (including cispl‑
atin) by reducing the sensitivity of cells to activate apoptotic 
responses (115). The introduction of wild‑type p53 protein into 
A2780/CP cisplatin‑resistant cells by adenovirus gene transfer 
renders these cells significantly sensitive to platinum‑based 
cytotoxicity and further supports the participation of p53 in 
cisplatin resistance (112).

ARID1A mutation is a known genetic driver of ovarian 
cancer. Notably, ARID1A mutations are found in more than 
50% of ovarian clear cell carcinomas and 30% of ovarian 
endometrioid carcinomas (116,117). ARID1A and TP53 muta‑
tions are typically mutually exclusive in ovarian cancer (118). 
ARID1A mutations lead to upregulation of HDAC6, which in 
turn inactivates the apoptosis‑promoting function of p53, indi‑
cating that drug inhibition of HDAC6 is an effective treatment 
strategy for cancers with ARID1A mutations (119).

Autophagy. On the one hand, autophagy protects cells from 
genotoxic stress to prevent tumorigenesis and carcinogenic 
transformation. On the other hand, autophagy can be used as a 
survival strategy for cancer cells to overcome the stress caused 
by chemotherapy, radiotherapy or other treatments (120,121). 
Previous studies have demonstrated that autophagy in ovarian 
cancer cells can be induced by cisplatin through ubiq‑
uitin‑binding protein p62 (SQSTM1) or HMGB1 (122,123). 
Autophagic flux in cisplatin‑resistant ovarian cancer cells 
is caused by cisplatin. At present, the cytoprotective func‑
tion of autophagy in cancer cells is considered a potential 
chemotherapy resistance mechanism.

Most studies have suggested that targeting autophagy‑
related molecules may increase the chemosensitivity of cancer 
cells (124,125). Knockdown of ATG7 and ATG14 can inhibit 

Figure 5. Effectiveness of chemotherapy strongly depends on the ability of 
ovarian cancer cells to undergo drug‑induced apoptosis. Inactivation of p53 
increase resistance to platinum‑based chemotherapy by reducing the sensi‑
tivity of cells to activate apoptotic responses. The balance of proapoptotic 
and antiapoptotic proteins of the Bcl‑2 family is a key factor to promote the 
sensitivity of platinum‑based chemotherapy.
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basic autophagy in ovarian cancer cells and promote cell death 
induced by cisplatin (126). As a negative regulator of autophagy, 
mTOR inhibitors are used in combination with cisplatin to 
make cancer cells sensitive to chemotherapy. However, certain 
studies have suggested that chemosensitivity can be promoted 
by autophagy (127,128). The enhanced sensitivity of autophagy 
to cisplatin depends on different mechanisms, and dormant 
autophagic cancer cells are still susceptible to cisplatin‑based 
chemotherapy.

Abnormal signaling pathways. A total of 10% of serous 
ovarian cancer is LGSC, which is characterized by early 
onset (median age 46 years), slow growth and poor response 
to chemotherapy (4,129). BRAF and KRAS hotspot muta‑
tions are found in ~2/3 of patients with LGSC. Furthermore, 
almost all patients with LGSC harbor a mutation predicted 
to induce ERK activation (5). Notably, RAS and PI3K 
participate in intensive cross‑talk to regulate each other and 
coregulate downstream functions (130). Therefore, blocking 
only one pathway will induce compensatory signaling in the 
other pathway, ultimately leading to treatment failure and 
relapse (131).

PI3K/Akt/mTOR signaling plays an important role 
in regulating the cell cycle, quiescence and proliferation. 
Various somatic mutations in PTEN, Akt1 and mTOR have 
been identified in ovarian cancer and can induce enhanced 
PI3K/Akt/mTOR signaling (132,133). Excessive activation of 
PI3K/Akt/mTOR signaling is associated to chemoresistance 
and cancer metastasis and inhibition of PI3K/Akt/mTOR 
signaling can restore the sensitivity of chemotherapy‑resis‑
tant ovarian cancer cells to chemotherapy drugs (134). 
Furthermore, combination treatment using RAS and PI3K 
inhibitors in ovarian cancer cell lines carrying activated onco‑
genic KRASG12D and deletion of two copies of the PTEN gene 
is a promising strategy for tumors that are rapidly resistant to 
targeted therapy alone (135). In addition, Wnt receptor Frizzled 
7 (FZD7) is expressed in tumors and platinum‑resistant cells. 
Knockdown of FZD7 reduces spheroid formation, increases 
sensitivity to platinum, and delays tumor occurrence (83).

As a cell surface transmembrane glycoprotein, the folate 
receptor (FR) promotes the unidirectional transport of 
folates into the cell. FR has limited distribution, and aber‑
rant overexpression of FR is a characteristic of numerous 
epithelial tumors, including non‑small cell lung, endometrial 
and ovarian cancer. Specifically, ~80% of EOC tumors 
constitutively express FR (136). In addition, the increase in 
receptor expression may be a negative prognostic factor for 
the chemotherapy response of this malignant tumor (137). 
Preclinical studies have revealed that folate‑conjugated 
vintafolide (EC145) (138) and mirvetuximab soravtansine 
(IMGN853) (139) are well tolerated and active against 
platinum‑resistant ovarian cancer, and response rates and 
PFS are encouraging.

4. Conclusions

Despite advances in chemotherapy, the 5‑year survival 
rate of patients with ovarian cancer remains less than 50%, 
mainly due to chemotherapy resistance (22). Both primary 
resistance (patients do not respond at all to treatment and the 

disease progresses) and acquired resistance (patients eventu‑
ally develop acquired resistance after an initial response) to 
platinum are associated with a severely negative prognosis for 
EOC patients. For these patients, a thorough understanding 
of their resistance mechanisms and active drugs is an urgent 
unmet clinical need (140). The resistance of ovarian cancer 
cells to chemotherapeutic mechanisms is rather complex 
and includes MDR, DDR, cell metabolism, oxidative stress, 
cell cycle regulation, CSCs, immunity, apoptotic pathways, 
autophagy and abnormal signaling pathways. Therefore, 
a single mechanism cannot fully explain the resistance of 
ovarian cancer cells to treatment.

Numerous new strategies are being studied to try to 
overcome this chemical resistance, including combining 
platinum‑based chemotherapy with new molecularly targeted 
drugs, such as bevacizumab or olaparib. Combining the 
vascular endothelial growth factor A‑neutralizing antibody 
bevacizumab with chemotherapy has been revealed to reduce 
or slow the growth of advanced EOC, but this combination 
does not appear to extend survival (11). Olaparib is a PARP 
inhibitor that is only used for cancer patients with BRCA gene 
mutations since the drug only works on cells where the BRCA 
pathway is blocked (36). However, only a small percentage 
of patients with ovarian cancer have mutations in the BRCA 
gene (141). More detailed mechanistic insights and the develop‑
ment of biomarkers, particularly non‑invasive biomarkers, are 
required to accurately select patients for therapy and facilitate 
the evaluation of therapeutic efficacy in real time.
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