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Pharmacomicrobiomics refers to the interactions between foreign compounds and the
gut microbiome resulting in heterogeneous efficacy, side effects, and toxicity of the
compound concerned. Glucose lowering drugs reduce blood glucose by modulating
insulin secretion and its actions as well as redistributing energy disposal. Apart from
genetic, ecological, and lifestyle factors, maintaining an equilibrium of the whole gut
microbiome has been shown to improve human health. Microbial fingerprinting using
faecal samples indicated an ‘invisible phenotype’ due to different compositions of
microbiota which might orchestrate the interactions between patients’ phenotypes and
their responses to glucose-lowering drugs. In this article, we summarize the current
evidence on differences in composition of gut microbiota between individuals with type 2
diabetes (T2D) and healthy individuals, the disruption of the balance of beneficial and
pathogenic microbiota was shown in patients with T2D and how Western Medicine (WM)
and Traditional Chinese Medicine (TCM) might re-shape the gut microbiota with benefits
to the host immunity and metabolic health. We particularly highlighted the effects of both
WM and TCM increase the relative abundance of health promoting bacteria, such as,
Akkermansia muciniphila, Blautia, and Bifidobacterium adolescentis, and which have been
implicated in type 2 diabetes (T2D). Several lines of evidence suggested that TCM might
complement the efficacy of WM through alteration of microbiota which warrants further
investigation in our pursuit of prevention and control of T2D.

Keywords: medication, traditional Chinese medicine, diabetes, microbiota, Akkermansia
INTRODUCTION

Type 2 diabetes (T2D) and its complications constitute a worldwide public health challenge. In 2020, it
was estimated that 537 million people had diabetes with the majority residing in low- and middle-
income countries (1). Over 95% of affected people have T2D which is associated with an increased risk
of premature death and multiple morbidities. Type 2 diabetes is a complex disease due to multiple risk
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factors where delayed diagnosis and intervention can lead to
widespread micro and macrovascular complications. The
distribution of gut microbiota in is disrupted in patients with
type 2 diabetes and cardiovascular disease. Butyrate producing
organisms such as Bifidobacterium, Bacteroides, Faecalibacterium,
and Akkermansia were negatively associated with T2D, while
Ruminococcus, Fusobacterium, and Blautia were more abundant
in T2D patients. Gut microbiota can also influence other
cardiometabolic risk factors, such as hypercholesteoleremia by
modulating metabolite production of bile acids, coprostanol and
short chain fatty acids (SCFAs) (2). The balance of beneficial and
pathogenic bacteria may linked to different diseases (3). Apart
from personal suffering, these complications are associated with
enormous healthcare costs and loss of societal productivity, calling
for more accurate diagnosis and efficient prevention and control
strategies (1).

Rapid urbanization is associated with multidimensional
changes in our ecosystem including but is not limited to
mechanization, food technology, physical space, cultures, jobs,
and leisure which greatly influence our lifestyles notably diet and
exercise (4). These changes in the macroenvironment can affect
the host internal milieu which can be further influenced by the
microorganisms in their gut, referred to as microbiota (2). With
the advent of sequencing technology, the collective genomes of
these microbiota (microbiome) can be defined and categorized.
In recent years, many studies have reported associations of the
development of T2D with changes in the gut microbiome (5, 6).
Possible mechanisms include insulin resistance, changes in pH
and bowel permeability (7), endotoxemia (8) as well as changes
in the metabolism of bile acids (9) and short-chain fatty acids
(SCFA) (10, 11).

In support of the possible causative roles of microbiota in the
pathogenesis of T2D, there are also reports suggesting that some
Western Medicine (WM) and Traditional Chinese medicine
(TCM) mediated their effects through changes in the
microbiome (12). In this review, we summarize differences in
the composition of gut microbiota between healthy individuals
and patients with T2D as well as the effects of different WM and
TCM on gut microbiota, which act in concert with lifestyle
factors to orchestrate the diversity of the whole gut microbiome
and influence metabolic health.
DIFFERENCES OF GUT MICROBIOTA IN
HEALTHY INDIVIDUALS AND PATIENTS
WITH T2D

Microbial fingerprinting refers to the use of fecal samples to
identify the unique pattern of the microbiome, referred to as
‘dysbiosis’, associated with a disease phenotype. In this section,
we reviewed published data on the pattern of microbiota in T2D
and explored the possible effects of different medications in
altering microbiota homeostasis.

In a recent systematic review, patients with T2D had a higher
abundance of Lactobacilli and a lower abundance of
Bifidobacteria than healthy individuals (5). In this analysis
Frontiers in Endocrinology | www.frontiersin.org 2
which included 13 case-control studies including 575 patients
with T2D and 840 healthy controls, the authors reported that
these T2D-associated microbiome might be further influenced
by the effect of different medications. In another study involving
11 newly diagnosed patients with T2D, researchers compared
their microbiota with that of 17 individuals with prediabetes and
39 patients with established T2D. Compared to healthy
individuals, newly diagnosed T2D had a lower abundance of
Akkermansia, Blautia, Ruminococcus (13),Clostridium leptum,
and Clostridium coccoide (14), but these changes were restored in
patients with T2D on antidiabetic treatment (15). C. leptum and
C. coccoides are butyrate-producing bacteria and are inversely
related to glucose and homeostatic model assessment (14).

Several lines of evidence indicated that intestinal microbial
overgrowth was found in patients with newly diagnosed T2D
compared with individuals with normal glucose tolerance
(NGT). While individuals with impaired glucose tolerance
(IGT) and T2D had similar patterns of dysbiosis, this was not
found in those with impaired fasting glucose (IFG) (16). In a 4-
year study involving individuals with prediabetes, researchers
reported plasma glucose was negatively associated with
Odoribacter, Oscillibacter, and Pseudoflavonifracter (15).

Clostridium leptum and C. coccoides were microbiota that
could influence human health by altering intestinal peristalsis,
promoting synthesis of vitamins, promoting excretion of harmful
substances, and protecting the gut from an invasion of
pathogens. In treatment-naïve patients with T2D, there was
relative depletion of C. coccoides and C. leptum considered to
be health-promoting microbiota. In these patients, the
microbiota was also dominated by harmful microbiota, such as
Escherichia/Shigella (17). Other species implicated in T2D
included Akkermansia, Blautia, Clostridium spp., and
Ruminococcus. Of note, low abundance of Akkermansia
muciniphila had been associated with obesity and aging while
its administration had been shown to increase the intestinal
levels of endocannabinoids with reduced inflammation (18).
Recently, some species in the genera Clostridium and
Ruminococcus had been reclassified as Blautia, the latter being
a newly discovered anaerobic probiotic which was negatively
correlated with metabolic diseases such as T2D, obesity, and fatty
liver (19). All these studies found a decrease in the number of
butyrate-producing bacteria, such as Akkermansia, Blautia, and
Bifidobacteria, and an increase in conditional pathogens,
Escherichia/Shigella.
EFFECTS OF WM ON THE GUT
MICROBIOME IN TYPE 2 DIABETES

Table 1 summarizes the effects of WM on the composition of the
microbiota. Biguanide (e.g., metformin) is the most popular oral
glucose-lowering drug often used as first-line therapy in patients
with T2D. Metformin has pluripotent effects which improve
energy metabolism and reduce inflammation. By inhibiting the
mitochondrial complex I as a key component of the electron
transport system, metformin activates AMPK (adenosine 5′-
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monophosphate-activated protein kinase) resulting in reduced
anabolism and increased catabolism (27). Metformin also
reduces hepatic glucose production and absorption of glucose
from the intestine. Additionally, the gut microbiota has been
linked to the glucose-lowering efficacy and tolerance
with metformin.

In an animal study, 28 high-fat-fed mice were randomized to
the control and metformin group equally, metformin group
increased the abundance of genus Bacteroides, Akkermansia,
Parabacteroides, Christensenella, Clostridales, and decreased the
abundance of genus Muribaculum, Lachnoclostridium,
Coprococcus, Dorea, Papillibacter, Oscillospira, Ruminococcus,
and Desulfovibrio in 12 week treatment (28). In other animal
Frontiers in Endocrinology | www.frontiersin.org 3
studies, metformin has been shown to constantly promote of the
abundance of Akkermansia at a dose ranging from 75 to 300mg/
kg/d given for 4 days to 14 weeks in ten controlled studies (29–
38). In a 4-month double-blind, placebo-controlled study
involving 40 patients with T2D, who were treated with
metformin showed no differences in body weight, body fat,
and fasting plasma insulin but reduced glycated hemoglobin
(HbA1c) and fasting plasma glucose. Treatment with metformin
also increased Akkermansia muciniphila, Bifidobacterium
adolescentis, Lactobacillus fermentium, Peptoniphilus sp.
Ruminococcus sp. Cronobacter turicensis, Enterobacter
lignolyticus, Citrobacter koseri, Yersinia enterocolitica subsp.,
Klebsiella pneumonia, Enterobacter asburiae, Enterobacter
TABLE 1 | Summary of the effects of western medicine on the composition of the gut microbiome in T2D patients.

Drugs Author
(Years)

Patients Periods Study design Effect of treatment on microbes Additional remarks

Metformin Wang
et al.,
2018
(20)

37 patients with T2D (18
treated with metformin and
19 treated with GLP-1
mimetics)

6 weeks Cross sectional
study

Metformin ↑Sutterella A higher abundance of Akkermansia in
patients with short and medium duration
than those with long duration of diabetes

Metformin Sun
et al.,
2018
(11)

22 patients with newly
diagnosed T2D treated with
metformin

3 days Intervention
study

Metformin ↑Lactobacillus
sanfranciscensis ↓Bacteroides fragilis

Metformin improves obesity-induced
glucose intolerance and insulin resistance
through the gut microbiota

Metformin Wu
et al.,
2017
(21)

40 patients with newly
diagnosed T2D treated with
metformin

4-6
months

Randomized
placebo
controlled
crossover
study

Metformin ↑Akkermansia muciniphila,
Bifidobacterium adolescentis,
Lactobacillus fermentium,
Peptoniphilus sp. Ruminococcus sp.,
etc. ↓Intesinibacter bartlettii, and
Clostridium spp.

Decrease in HbA1c and fasting plasma
glucose after the metformin treatment

Metformin Cuesta-
Zuluaga
et al.,
2017
(22)

28 patients with T2D (14
treated with metformin and
14 not-treated with
metformin) and 84 without
diabetes

Not
mentioned

Cross-sectional
case-control
study

Metformin ↑Akkermansia muciniphila,
Butyrivibrio, Bifidobacterium bifidum,
Megasphaera, and Prevotella

There were significant differences in the
comparison in b diversity of microbiome
between metformin and non-metformin
users

Acarbose Gu
et al.,
2017
(23)

94 patients with newly
diagnosed T2D treated with
acarbose or glipizide

3 months Multicentre
parallel
comparison

Acarbose ↑ Lactobacillus and
Bifidobacterium ↓Bacteroides

Reductions in HbA1c, fasting, and
postprandial plasma glucose in both
treatment arms

Acarbose Su et al.,
2015
(24)

59 patients with T2D
patients treated with
acarbose 36 patients
treated with other glucose-
lowering drugs 55 healthy
controls

4 weeks Cross-sectional
case-control
study

Acarbose ↑Bifidobacterium longum Acarbose significantly reduced
lipopolysaccharides and prothrombin
activator inhibitor-1

GLP-1
mimetics

Shang
et al.,
2021
(25)

40 patients with T2D
switched from metformin to
liraglutide

4 months Observational
study

Liraglutide ↑Collinsella, Akkermansia,
and Clostridium

BMI, HbA1c, homeostasis model
assessment of insulin resistance (HOMA-
IR), fasting blood glucose, 2-hour
postprandial blood glucose, and lipid
profiles were significantly lower after
liraglutide-treatment

GLP-1
mimetics

Wang
et al.,
2018
(20)

37 patients with T2D (18
treated with metformin and
19 treated with GLP-1
mimetics)

6 weeks Cross-sectional
study

GLP1 ↑Akkermansia Patients receiving a GLP-1 agonist had
higher Akkermansia abundances than those
on metformin.

SGLT2i
and
Gliclazide

Bommel
et al.,
2019
(26)

44 metformin-treated
patients with T2D
randomized to either
dapagliflozin or gliclazide

12 weeks Randomized
double-blind,
comparator-
controlled,
parallel-group
trial

No change in microbiota with either
dapagliflozin or gliclazide treatment

Both drugs improved glycaemic control
with dapagliflozin reducing and gliclazide
increasing fasting plasma insulin.
GLP-1, Glucagon-like peptide-1.
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cloacae subsp, and decreased Intestinibacter bartlettii,
Clostridium beijerinckii, Clostridium sp. Clostridium
perfringens, Clostridium botulinum, and Clostridium butyricum.
Notably, Bifidobacterium adolescentis was the only probiotic that
exhibited a dose-related response to metformin in the gut
microbiome. In animal and human studies, metformin
increased the abundance of Akkermansia muciniphila (39) but
inconsistent in other health promoting microbiota, such as
Blautia (40), Prevotella (41), and Roseburia (38). The results in
humans are different from the results of animal studies
because of differences in intestinal microbiome between
humans and animals (42) affecting by eating habit, physical
activities, ethnic origins, course of disease, comorbidities, and
multiple medications.

In another two clinical trials, metformin also increased
Akkermansia muciniphila and SCFA-producing microbes (10)
including Butyrivibrio, Bifidobacterium bifidum, Megasphaera,
and Prevotella (22). These microbes utilized multiple dietary
substrates to produce an array of metabolites. The abundance of
Bifidobacterium species can activate multiple genes involved in
carbohydrate metabolism (43) and Prevotella species contribute
to starch degradation (22). In another study involving patients
with newly diagnosed T2D, 3-day treatment with metformin
decreased the genus Bacteroides with increased bile acid
glycoursodeoxycholic acid (GUDCA) accompanied by reduced
hyperglycemia. In mice, colonization of B. fragilis abrogated the
glucose-lowering and GUDCA increasing effects of metformin
suggesting that this microbe might play a mediating role in these
metabolic effects of metformin (11).

Acarbose is an alpha-glucosidase inhibitor. It is a highly
popular glucose-lowering drug in China (44) and many Asian
countries (45). This WM is a complex molecule that inhibits the
conversion of disaccharides to monosaccharides and thus converts
carbohydrates into a fiber-like molecule. This leads to an increased
amount of indigestible carbohydrates in the lower part of the
intestine available for fermentation by microbiota. In an animal
study, compared to the control and a low dose acarbose (25 ppm),
a high dose of acarbose (400 ppm) promoted the abundance of
Bacteroidaceae and Bifidobacteriaceae and decreased in the
abundance of Bacteroidales S24-7 and species Akkermansia
muciniphila under the controlled diet (46). However, in another
animal study when compared to placebo, acarbose displayed a
higher abundance of Ruminococcus 2 and Lactobacillus and
decrease the species Akkermansia muciniphila (47). In a human
study, after treatment with acarbose, Lactobacillus and
Bifidobacterium species thrived with depletion of the original gut
microbiota including Bacteroides, Alistipes, and Clostridium (23).
In a clinical study, acarbose was found to increase the abundance
of Bifidobacterium and Lactobacillus, which correlated inversely
with changes in HbA1c and body weight. At the genus level,
acarbose decreased the abundance of Bacteroides and at a species
level, Bacteroides plebeius, Bacteroides dorei/vulgatus, and
Clostridium bolteae. In a randomized trial, acarbose treatment
increased the abundance of Bifidobacterium longum and
Enterococcus faecalis in patients with T2D. However, these
results might have been confounded by its co-administration
Frontiers in Endocrinology | www.frontiersin.org 4
with metformin and other glucose-lowering drugs (24) which
could also alter the diversity of microbiota. In people with
prediabetes (48), compared to placebo, treatment with acarbose
increased abundance of Lactobacillus and Dialister and reduced
abundance of Butyricicoccus, Phascolarctobacterium, and
Ruminococcus. However, the study did not differentiate between
IFG and IGT. Such differentiation is important given that the
microbiome in the IGT group is more akin to that in individuals
with T2D (16).

Dipeptidyl peptidase (DPP-4) inhibitors include sitagliptin,
saxagliptin, linagliptin, and alogliptin. This drug class prevents
the enzymatic degradation of glucagon-like peptide 1 (GLP-1)
and glucagon-like peptide 2 (GLP-2). Glucagon-like peptide
(GLP) and glucose-dependent insulinotropic polypeptide (GIP)
are incretins or peptides secreted by the enterocytes in the gut.
Incretins are natural hormones that suppress glucagon and
hepatic glucose production whilst augmenting insulin secretion
during meal time resulting in reduced fasting and post-prandial
blood glucose. In animal studies, DPP4-inhibitors reduced the
abundance and diversity of gut microbiota accompanied by
reduced body weight (49). In one animal study, DPP-4
inhibitor vildagliptin decreased Oscillibacter spp. and increased
Lactobacillus spp (50). In mice treated with sitagliptin; one-third
of the total species were occupied by Ruminococcaceae. These
results suggested that sitagliptin might alter the gut microbiome
to promote fermentation of complex plant-based carbohydrates
and influence host metabolism (51). Other animal studies also
showed that DPP-4 inhibitor increased the abundance of
Roseburia and decreased Blautia with no effect on
Clostridium (52).

In animal studies, GLP-1 receptor agonists reduced
hyperglycaemia which was associated with a reduced
abundance of Romboutsia and Ruminiclostridium as well as an
increased abundance of Prevotella was associated with reduction
of body weight (53). Neither GLP-1 receptor agonists nor DPP-4
inhibitors induced diversity of microbiome when used as an add-
on therapy to metformin or sulphonylureas (SU) in the human
study (54). Since metformin might have reshaped the microbiota,
there might be little room for further changes by GLP-1 and
DPP-4 inhibitors. However, in another clinical study involving
40 patients with T2D who were switched from metformin
monotherapy to daily subcutaneous liraglutide injection for 4
months, there was an increase in the abundance of Collinsella,
Akkermansia, and Clostridium genus (25).

Sodium–glucose-transporter-2 (SGLT2) inhibitors increase
urinary glucose and sodium excretion resulting in a reduction
in blood glucose, plasma insulin, blood pressure, and body
weight (55). In the animal study, dapagliflozin, a SGLT2
inhibitor reduced the Firmicutes to Bacteroidetes ratio and
increased the abundance of Akkermansia muciniphila (39).
However, in a subsequent double-blind, randomized clinical
trial comparing dapagliflozin and gliclazide, the latter being a
sulphonylureas, in patients with T2D (26), neither drug induced
any changes in the composition of gut microbiota.
Sulphonylureas reduce blood glucose by directly stimulating
insulin secretion. In a clinical trial, gliclazide, a sulphonylureas,
May 2022 | Volume 13 | Article 857090
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did not change the relative abundances of microbiota (23). In a 3-
month observational study, another sulphonylureas, glipizide,
also did not cause changes in the microbiota (23). In these
clinical studies, the majority of patients were treated with
metformin which was well known to alter the relative
abundance of microbiota. Thus, the addition of dapagliflozin
and gliclazide as add-on medications might not induce further
significant effects. Besides, given their mechanisms of action
which are largely independent of the gut, the neutral effects of
SGLT2 inhibitors and sulphonylureas are not unexpected.
However, most of these results in different WMs were not
consistent due to the complex composition of the microbiota,
the large variation between individuals in different cultures, and
the differences in experimental design affecting by the effect of
multi-therapy in treatment of WMs in human gut microbiota.
Taken together, the conduct of well-designed, double-blind,
placebo-controlled studies preferably in newly diagnosed,
treatment-naïve patients with T2D and prediabetes are needed
to clarify the mediating effects of microbiota on WM in
influencing metabolic health.
EFFECTS OF TCM ON THE GUT
MICROBIOME IN T2D

Due to potential side effects of WM, notably hypoglycemia, as
well as for reasons such as cultures, traditions, and social norms,
TCM has always been an integral part of clinical practices and
therapeutics in East Asian countries. Similar to metformin and
acarbose, there is emerging evidence suggesting that TCM might
alter the diversity of the gut microbiome with alteration of bile
acid metabolism and increased production of SCFAs which
contribute to the improvement of glucose metabolism. Herein,
bile acids are cholesterol-derived metabolites that promote the
intestinal absorption and transport of dietary lipids and play a
key role in energy metabolism (56). Table 2 summarise the
effects of TCM on microbiota and metabolic effects.

Berberine is the main ingredient of TCM used for treating
T2D. It is a natural plant alkaloid extracted from Berberis aristata
and Coptis chinensis (Huanglian) (60). Berberine has reduced
Frontiers in Endocrinology | www.frontiersin.org 5
solubility in the gut and can permeate the gut wall. In a 12-week
randomized clinical trial comparing berberine and placebo,
berberine altered the gut microbiome composition with a 2-
fold increase in Bacteroides spp. and Proteobacteria (61), a
pattern similar to that due to metformin (11, 21). Berberine
also induced cell death in harmful gut bacteria and enhanced the
composition of beneficial bacteria including Bifidobacterium
adolescentis and Lactobacillus acidophilus (61). Both berberine
and metformin upregulated the AMPK pathway which reduced
anabolism and promoted catabolism including glycolysis
resulting in weight loss and reduced insulin resistance (62).
Despite these beneficial effects, berberine depleted the SCFA-
producing microbes including Roseburia spp., Ruminococcus
bromii, Faecalibacterium prausnitzii, and Bifidobacterium spp.
These two species (Roseburia spp. and Bifidobacterium spp.) are
biomarkers indicative of a healthy gut microenvironment. Other
researchers reported an inverse association of Ruminococcus
bromii with bile acid metabolism with reduced formation of
secondary bile acids by microbiota (57). In the intestine, bile
acids undergo multistep biotransformation catalyzed by enzyme
activities in gut bacteria, and the increase of Ruminococcus
bromii suppresses bacterial 7a-dehydroxylase and leads to
the reduction of secondary bile acids (63, 64). Although
berberine lack some of the favourable effects of metformin on
microbiota, it possessed beneficial effects exhibited by
acarbose treatment.

Gegen Qinlian Decoction (GQD) is another popular TCM for
the treatment of T2D. It comprises seven herbs including
Rhizoma coptidis, Radix scutellariae, Radix puerariae, Rhizoma
anemarrhenae, Radix panacis uinquefolia, Radix paeoniae rubra
and Rhizoma zingiberis (65). The effects of GQD on microbiota
were similar to that of berberine. GQD treatment altered the
overall gut microbiota structure and enriched many butyrate-
producing bacteria, including Faecalibacterium, Bifidobacterium,
and Gemmiger. These changes in the gut milieu had been shown
to attenuate intestinal inflammation and improve metabolic
health including glucose metabolism. In the animal study,
both berberine and GOD increased the plasma levels of
SCFA with reduced fasting plasma insulin level (58). In
another study, treatment with GQD enriched the abundance of
Faecalibacterium prausnitzii which was negatively correlated
TABLE 2 | Summary of the effects of traditional Chinese medicine on the composition of the gut microbiome in T2D patients.

TCM Year Patients Period Study design Microbes Outcomes

Berberine Zhang
et al.,
2020
(57)

409 Patients with T2D treated with
either berberine alone, probiotic+
berberine, probiotic alone or placebo.

12
weeks

Randomized, double-
blind, placebo-
controlled trial

Berberine ↓
Ruminococcus
bromi

Berberine reduced HbA1c, fasting and postprandial
plasma glucose, fasting plasma triglyceride, total
and low-density lipoprotein cholesterol

GQD Xu
et al.,
2015
(58)

187 patients with T2D treated with
either GQD or placebo

12
weeks

Randomized double-
blinded placebo-
controlled clinical trial

GQD ↑
Faecalibacterium
prausnitzii

GQD reduced the mean fasting plasma glucose and
HbA1c

AMC Tong
et al.,
2018
(59)

100 patients with T2D treated with
either the metformin or AMC

12
weeks

Randomized, open
labelled randomized
study RCT

AMC ↑
Faecalibacterium
spp.

AMC reduced plasma glucose and lipids
GQD, Gegen Qinlian Decoction; AMC, specifically designed herbal formula (no full name provided).
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with fasting and 2-hour postprandial blood glucose and HbA1c
as well as positively with insulin response as indicated by the
HOMA-b index (66). One of the ingredients in GQD, Radix
scutellariae, is commonly co-investigated with metformin (67).
TNF-a was significantly reduced and the abundance of
Lactobacillus and Akkermansia remarkably increased after
metformin treatment with Scutellaria baicalensis when
compared to metformin treatment with placebo.

JinQi Jiangtang (JQJT) is a formula used for the prevention of
T2D. It contains Rhizoma coptidis, Astragali Radix and Lonicerae
Japnicae Flos. In the animal study, treatment with JQJT tablets
increased the abundance of species Akkermansia and reduced
that of genus Desulfovibrio. Of note, reduced abundance of
Akkermansia spp was correlated with inflammation in people
with obesity (68). Other studies had reported that JQJT tablets
modulated gut microbiota with increased formation SCFAs. The
latter can provide energy and nutrition for the intestinal
epithelium with improved gut health (69). There are limited
studies on the effects of JQJT on microbiota in patients with T2D.
In a 2-year multi-center randomized clinical trial involving 400
Chinese individuals with prediabetes, treatment with JQJT was
associated with a lower incidence of diabetes compared to
placebo with reduced blood glucose, triglyceride, albuminuria,
and insulin resistance although there was no information on
microbiota (70).

A modern herbal formula called AMC (no full name provided
in the article) had been specifically developed for the treatment of
T2D with hyperlipidemia. The herbs used in this formula
included Rhizoma Anemarrhenae, Momordica charantia,
Coptis chinensis, Aloe vera, and red yeast rice. In a randomized
study comparing AMC and metformin in patients with T2D,
AMC was similarly efficacious as metformin in reducing
blood glucose and lipid levels. Both metformin and
AMC enrich the abundance of beneficial bacteria Blautia spp.,
which correlated with improvements in glucose and lipid
homeostasis. However, AMC showed better efficacy than
metformin in improving HOMA-IR and plasma triglyceride
via an increase of Roseburia, Faecalibacterium, Gemmiger,
Coprococcus, and un-Lachnospiraceae (59).
INTERACTION BETWEEN WM AND TCM

Current evidence suggested that both WM and TCM
orchestrated different effects on the microbiome (Figure 1) to
modulate glucose metabolism through different mechanisms. In
East Asia with a large number of people with T2D, herbal
medicines are frequently used as complementary therapies by
patients treated with WM, notably metformin, although
co-administration of TCM and WM is lacking in the clinical
guideline. Few studies evaluated possible WM-TCM interactions
including pharmacokinetics and pharmacodynamics. In recent
human study, compared with administration of metformin and
placebo, co-administration of metformin and berberine resulted
in significant improvements in glycemic control, liver fat
content, and body weight (71). In an animal study, compared
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with administration of metformin alone, co-administration of
berberine and metformin resulted in changes in the gut
microbiome due to reduced metformin degradation. These
changes included an increased abundance of Bacteroides
fragilis, Clostridium perfringens, Staphylococcus aureus,
Klebsiella pneumoniae, Escherichia coli, and Enterobacter
cloacae, which might adversely affect the host immunity. These
less desirable changes suggested berberine might attenuate the
favourable effects of metformin on microbiota (72). Further
investigations are warranted to evaluate the impacts of WM-
TCM interactions on microbiota and human health.
OTHER FACTORS AFFECTING DRUG-
MICROBIOME INTERACTIONS

Host genomes, dietary habits, and physical activities are the most
important factors that might confound drug-microbiome
interactions. Within the same population, researchers reported
considerable inter-individual as well as intra-individual
variations in their microbiome patterns such as the ratio of
Firmicutes to Bacteroidetes which are the two major phyla in the
gut (73). These differences are most likely due to differences in
dietary habits, physical activity, and consumption of different
drugs such as antibiotics.

Dietary Factors and Physical Activities
Dietary factor is directly interacting with gut microbiota and
many research had indicated that different diets orchestrate the
pattern of microbiota (74–76). Other researchers had reported
that habitual dietary consumption caused changes in the
composition of gut microbiota which in turn influenced the
effects of their drug therapy. In Japanese patients with T2D
taking acarbose, high rice intake was associated with the
abundance of Faecalibacterium while high intake of potatoes
was associated with a low abundance of health-promoting
microbiota such as Akkermansia and Subdoligranulum (77).
In another human study, compared to 20 obese women before
metformin treatment, an increase of Escherichia/Shigella was
found after 2 months of low-calorie diet and metformin
treatment (78). This results did not suggest in other similar
study design of human (22) and animal (79) studies when
having metformin alone. These findings lent support to the
hypothesis that diet-drug interaction may alter the microbiota
to either attenuate or augment the therapeutic efficacy of WM
or TCM.

In a human study, 26 subject sedentary lifestyle and
prediabetes or T2D were increased exercise for 2 weeks, a
decrease in the Clostridium genus was observed (8). In another
study, 12-week intense exercise-induced changes in the gut
microbiota in subjects with prediabetes with marked
improvement in insulin resistance and reduced insulin level.
This was accompanied by decreases in Bacteroides xylanisolvens
and an increase in the abundance of Streptococcus mitis (80).
However, no study investigated the effect of medicine and
exercise on the gut microbiota in T2D.
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DRUG-GUT-MICROBIOTA CROSS-TALKS
AND DRUG EFFICACY

Many oral glucose-lowering drugs might cause gastrointestinal
side effects, partly due to fermentation of undigested
carbohydrates by microbiota resulting in gas formation with
altered transit time and gut permeability. These side effects might
be alleviated using prebiotics or probiotics to improve treatment
tolerance and glycemic control. Prebiotics and probiotics are
microbiota-management tools for improving host health.
Prebiotics are a group of nutrients in natural foods that are
selectively utilized by host microorganisms conferring a health
benefit and probiotics are health-related microbial strains and act
as an oral supplement or added into food products (81). In a
clinical study involving ten metformin-intolerant patients with
T2D, administration of a readily dissolvable powder containing
inulin, beta-glucan and polyphenols modulated the microbiome
with improved metformin tolerance (82). Inulin and beta-glucan
are metabolized in the colon by Bacteroides and Prevotella genera
(83) with increased secretion of peptide YY and GLP-1. These
changes were accompanied by reduced fasting plasma glucose
and frequency of loose stool, a common side effect of metformin.
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Since orally administered drugs may shape the gut microbiota,
researchers suggested that probiotics might be used as an
adjunctive to WM aimed at altering the diversity of microbiota
with increasing SCFAs and enhanced glucose management. In a
randomized placebo-controlled study, co-administration of
probiotics (Lactobacillus spp., Bifidobacterium spp., Streptococcus
spp., and Saccharomyces spp.) in 60 subjects with prediabetes or
T2D, did not improve glycemic control but increased insulin
sensitivity. There was an increase in the relative abundance of
Bifidobacterium breve and Akkermansia muciniphila and
Clostridium XIVa, albeit short of significance compared with the
placebo group (84). Whether administration of prebiotics to
augment the health-promoting effects of microbiota might be
more effective than direct administration of health-promoting
probiotics in improving drug tolerance or metabolic health is a
subject that warrants further investigations.

Future Perspectives
Much remains unknown on the effect of glucose-lowering WM
and TCM on microbial composition and interaction with host
factors. In addition to effects on blood glucose, changes in
microbiota may also improve other cardiometabolic risk
FIGURE 1 | The effects of Western Medicine and Traditional Chinese Medicine in shaping the gut microbiota which may contribute to the control and prevention of type
2 diabetes (JQJT, JinQi Jiangtang; GQD, Gegen Qinlian Decoction; AMC, specifically designed herbal formula (no full name provided); GLP-1, Glucagon-like peptide-1.) In
this review, summarized evidence suggested that both WM and TCM orchestrated different patterns on the microbiome, upward and downward arrows indicated an
increase or decrease of certain microbiota by WM or TCM, and the particular microbiota underlined were possibly highlighted in the treatment of T2D.
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factors. Modulation of the microbiota be part of a new
therapeutic strategy against other diseases, such as non-
alcoholic fatty liver disease (85), cardiovascular or even
neurodegenerative disorders (86). For example, Akkermanisa
spp., which is increased by metformin, was also highly
correlated with weight loss (74). There is emerging evidence
for a pro-inflammatory dysbiosis in neurodegenerative disorders
such as Parkinson’s disease. The decrease in anti-inflammatory
genera such as Blautia , Coprococcus, Roseburia , and
Fecalibacterium (87), could potentially be reversed by
metformin or acarbose. Finally, pharmacomicrobiomics should
evaluate interactive effects between WM and TCM in the
treatment of diabetes, where either beneficial or harmful drug
interactions mediated via microbiota might occur.
CONCLUSION

Type 2 diabetes is a disorder of energy metabolism due to
complex interplays amongst the ecosystem, host, and
microbiome. The natural history of obesity, prediabetes and
diabetes are associated with inter-individual and intra-
individual diversity of microbiota. Diabetes-associated
dysbiosis is characterized by a reduction in gram-positive
members of the beneficial microbiota such as Blautia,
Rumminococcaceae, and gram-negative Akkermanisa species
with reduced production of SCFA and dysregulation of bile
acid metabolism which can adversely affect metabolic health.

Glucose lowering drugs can alter glucose, lipid, and fat
metabolism and modulate inflammatory responses by re-shaping
the composition of the microbiome which in turn can affect
Frontiers in Endocrinology | www.frontiersin.org 8
immune cells directly and indirectly through metabolites such as
lipopolysaccharide and SCFAs, alteration of gut permeability, and
whole gut transit time. Host-gut microbiota interaction is central in
bile acid metabolism and cell signalling and can be modulated by
medications. The effects of these changes in gut microbiota might
contribute to the diversity in disease phenotypes including
hormones and inflammatory cytokines. Both WM (e.g.
metformin and acarbose) and TCM (berberine based) have been
shown to improve the abundance of beneficial bacteria, such as
Blautia spp., Akkermanisa spp., and Faecalibacterium, and reduce
the production of secondary bile acids which might contribute
towards their metabolic effects including their side effects.
Integration of WM and TCM may promote different health-
related microbiota and suppress the pathogenic microbiota, such
as Desulfovibrio. Given the expanding knowledge in the field of
microbiome and the availability of high throughput sequencing,
further investigations on themodulating effects of microbiota on the
efficacy and side effects ofWM and TCMwill provide novel insights
and open a new avenue for reducing the burden of T2D and non-
communicable diseases.
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