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Abstract: Obesity prevention interventions generally have either not worked or had effects inade-
quate to mitigate the problem. They have been predicated on the simple energy balance model, which
has been severely questioned by biological scientists. Numerous other etiological mechanisms have
been proposed, including the intestinal microbiome, which has been related to childhood obesity
in numerous ways. Public health research is needed in regard to diet and the microbiome, which
hopefully will lead to effective child obesity prevention.
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1. Introduction

Obesity is a modern health scourge, common among adults across 195 countries [1]. In
the US, it is more common among lower income [2,3] and ethnic minority [4] individuals,
and increasingly more common among children, with rates of increase higher than those
in adults [1]. Obese children tend to become obese adults [5]. Only physical activity was
strongly inversely related to obesity among preschool children [6]. Neither food groups [7]
nor physical activity (PA) alone, or in combination [8], accounted for obesity in all other
age groups. Thus, the causes of obesity need to be clearly delineated to enable effective
childhood obesity prevention [9].

Any intervention that purports to influence a biological outcome must be predicated
on a biological mechanism. This paper argues that simple energy balance has been shown
to be inadequate to account for obesity. Within a multi-ecological approach, there are other
biological mechanisms, e.g., the microbiome, circadian rhythms, adenovirus 36, or aspects
of air pollution [9] that may impact obesity outcomes. Herein, we identify the limitations
of the simple energy balance model and explore the microbiome as one among many
etiological factors in childhood obesity. Influencing the microbiome to prevent childhood
obesity would require behavior changes, but those would be quite different from those
proposed by simple energy balance.

2. Discussion

Numerous systematic reviews have reported on childhood obesity prevention in-
terventions. In the most comprehensive review of randomized controlled trials (RCTs)
(n = 153 RCTs) [10], combined diet and PA interventions reduced body mass index (BMI)
(mean difference = −0.07 kg/m2) and BMI z-score (BMIz) (mean difference = −0.11) among
0–5-year-olds, but the confidence intervals encompassed zero. Both changes were small
and were obtained immediately post-intervention, suggesting no long-term effects [10].
In other age groups (6–12 years, 13–18 years), meta-analyses revealed few effects, and
when obtained, these effects were small with an inconsistent pattern across intervention
components (diet, PA, both) and age groups [10]. A review of the forest plots from a
meta-analysis of school-based child obesity prevention interventions revealed that the vast
majority of effects hovered near zero [11]. When reviewing the impact of all child obesity
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prevention trials on energy balance [12], only small, weak effects on energy consumed and
energy expended were noted. Even longer term (one year or longer) trials did not impact
BMI [13].

Most child obesity prevention trials did not have adequate financial resources to
deliver a comprehensive intervention program, or had an inadequate sample size to test
their effects [10,14]. Two of the largest well-financed childhood obesity prevention studies
with multi-component (nutrition, PA, behavior modification) interventions, the HEALTHY
(n = 4603 across 42 schools in seven US cities) [15] and IDEFICS (n = 16,228 from nine
European counties) trials [16], demonstrated no significant effect on obesity. One report
considered theories, targeted behaviors, intervention designs, and implementation. It also
identified problems at each step in the chain of effects from intervention procedures to
mediating variables, behavior change and health outcomes [14].

2.1. Models of Energy Balance

The concept of energy balance has dominated thinking about obesity prevention. The
simple, also called static [17], energy balance model proposes that increased energy intake
(e.g., from food calories) in excess of energy expenditure (e.g., from PA) is linearly related
to increased body weight (i.e., fat storage); and increased energy expenditure (e.g., from
exercise) in excess of energy intake is linearly related to weight loss [18]. This model was
rejected for being too simple [18]. A major limitation is that it does not account for diverse
feedback mechanisms including body size, weight adaptation, hunger, satiety [19], and
the release of hormones, e.g., leptin, adiponectin, which impact hunger and satiety [20,21].
Thus, while the law of thermodynamics says that energy cannot be destroyed or created,
the human body is not a simple mechanical motor efficiently converting energy intake to
energy output. Factors internal to the body, e.g., hormones [20,21], influence the energy
available and energy expenditure beyond simple dietary energy intake and expenditure.
Inconsistencies in the simple energy balance model have become apparent. These incon-
sistencies include observations that: (a) some energy dense foods (e.g., olive oil, nuts) are
not associated with weight gain (which may be due in part to energy bio-inaccessibility of
some foods [22,23]); (b) some ethnic groups have a greater susceptibility to obesity [24];
and (c) the intake of indigestible fiber (i.e., no calorie intake) is associated with lower
adiposity [25,26]. These observations question the usefulness of the simple energy balance
model for understanding obesity prevention [27].

Models have been proposed to understand a more dynamic weight control process,
including the control set point with its homeostatic and non-homeostatic influences [17,28].
With the elucidation of the importance of non-homeostatic influences [29], a settling
point [30], and cognitive feedback mechanisms [31], including reward pathways activated
by palatable food, self-control, and social influences [32], were proposed. In a metabolic
tipping point model [33], energy expenditure across variable levels of PA and energy intake
in adults were directly related, thereby maintaining a direct relationship with body mass,
but at a low level of PA, energy expenditure and intake became dissociated and body mass
increased [33]. Contrary to adults, in lean and obese children, there is an uncoupling of the
relationship between energy expenditure and energy intake [34] across a range of PA levels.
In all cases, simple energy balance was inadequate to account for the related data. Thus, a
complex energy balance model relevant to weight control must be informed by diverse
feedback mechanisms [34], and expanded to encompass related biological mechanisms.

2.2. Other Possible Causes of Childhood Obesity

A large number of possible causes of obesity have been identified [35], suggesting
a multi-etiological genesis of obesity [9]. The extent to which genetics accounts for the
variation in obesity in heritability studies varied from 40 to 50%, with higher heritability
among those at the higher end of the BMI distribution [36]. Although single-gene causes of
obesity have been identified, e.g., Prader–Willi syndrome [37], genome-wide association
studies (GWAS) reveal that the combination of the most likely specific causal genes account
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for perhaps 3% of the variability in the common type of obesity [38]. Identical twin
dyads fed the same calorie controlled diets, or exposed to the same caloric level of exercise,
responded to substantially different extents both within and between diads [36], suggesting
factors other than dietary or activity calories are at play. Epigenetics, which controls gene
expression, has been offered as a cause of obesity [39,40], while others argued for the
combination of genetic and epigenetic factors [41]. While interventions can be tailored
to alternative values of a genetic variant, no single genetic variant has been shown to
relate to a sufficient number of cases of obesity to make this worthwhile as a public
health intervention.

Influences during the perinatal, infancy, and early childhood periods, sometimes called
developmental programming [42], appear to influence childhood obesity in ways other
than simple energy balance [43–45], including in utero exposure to famine [46], maternal
prenatal weight [45], breastfeeding [47], numerous in utero exposures [44], antibiotic use
early in life [48], dietary sugar intake [49], dietary intake of ultra-processed foods [50],
infection with Adenovirus 36 [51–53], exposure to endocrine disruptors (e.g., chemicals in
plastic bottles) [54], air pollution [55], food allergies [56], dysfunctional reward system in
the orbitofrontal cortex [57,58], and even traditional medicinal plants [59]. The biological
mechanisms by which each of these possible initiation factors influence the trajectory
toward obesity are not clearly known, but must work through interrelationships with
complex energy balance mechanisms. However, these biological influences have largely
been ignored by behavioral scientists interested in obesity prevention.

In this context, a closer integration has been advocated for between biological and
behavioral approaches to obesity research [60]. A multi-etiological approach to child obesity
prevention has been proposed, which includes numerous known biological influences on
obesity not usually considered by behavioral researchers [9,61,62]. Reconsidering the
biological mechanism(s) of action underlying current child obesity prevention programs
may provide novel and more effective ways forward. The microbiome provides one such
possible mechanism [63]. Extensive research has revealed pervasive relationships between
the microbiome, health in general [64], and obesity in particular [65]. Only a small number
of studies on the microbiome have been performed among children, and so findings from
adults, and occasionally mammals, are reported here to provide a fuller picture.

2.3. Microbiome

The microbiome consists of 10 to 100 trillion microorganisms (bacteria, fungi, viruses,
archaea, protozoa, and eukaryotes) that live mostly in each person’s gastrointestinal
tract [66]. The microbiome is important because it protects the host against pathogens,
metabolizes dietary nutrients and drugs [67,68], induces the absorption and distribution of
dietary components [69], and bi-directionally communicates between the gastrointestinal
tract and the central nervous system (called the gut–brain axis) [70], which may contribute
to depression and anxiety [71]. Several mechanisms have been proposed for how the
microbiome might predispose to obesity (mostly from animal research), including: devel-
opmental programming [42], relative presence of polysaccharide metabolizing bacterial
taxa [72], reciprocal relationship with bile acids [73], diet [74], the gut–brain axis [75],
host gene expression [40,76], host inflammation and thermogenesis [77], and circadian
rhythms [78]. How these possible influences relate to the complex energy balance model is
not clear [79].

The dominant bacterial phyla, expressed as relative abundancy (%) in the gut of
overweight/obese children, were Firmicutes (68%), Actinobacteria (24%), Bacteroidites (4%)
and Proteobacteria (2%) [80]. Adults and children with obesity tended to have lower
diversity of microbes and proportionally more Firmicutes to Bacteroidites (as a ratio) than
non-obese people [65]. Firmicutes and other bacterial phyla found in the gut metabolize a
form of dietary fiber (polysaccharides) that is otherwise indigestible, resulting in increased
availability of short-chain fatty acids and monosaccharides. These substrates increase
the available energy in the gut, thereby contributing to obesity [81]. Bacteroidetes bacteria
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in the gut break down plant starches and fibers, but are less efficient at metabolizing
polysaccharides, thereby considered to be protective against obesity [81].

An increased microbial diversity manifested by increased richness has been related
to a healthy microbiome [82] with a lower risk of obesity and related diseases [83]. Low
richness has been associated with an increased risk of adiposity, insulin resistance, dys-
lipidemia, and inflammation [84]. Although it was thought that children with obesity had
significantly more Firmicutes (16 times more than Bacteroidites) and less Bifidobacteria than
lean children [80], conflicting results have been identified [85]. A meta-analysis of the com-
position of the microbiome found no relation between the ratio of Firmicutes to Bacteroidetes
in the gut and obesity [86]; however, some individuals with obesity tended to have lower
bacterial diversity [87]. Possible explanations for the conflicting results across studies
include differences in the methods for determining the distribution across microbiota,
lifestyle differences among study participants, geographic labeling conventions, and diets
consumed, among other factors [88]. A large UK-US study reported that the abundance
of 17 little studied microbial classes were consistently related to BMI in both countries,
but relationships were stronger with visceral fat [89]. Furthermore, intestinal species were
associated with indicators of a healthy diet, suggesting diets could be personalized to
characteristics of the microbiome [89]. A Mendelian randomization analysis indicated both
weighted median and genetic risk score analyses support for a causal relationship between
an abundance of the Lachnospiraceae family and trunk fat mass [90].

Although definitive statements of causality may be premature [91], the evidence for a
causal relationship between the microbiome and obesity comes from animal fecal transplant
research [92]. Gut microbiota transplanted from obese mice to germ-free mice led to obesity
in the formerly lean germ-free mice [93]. The reverse happened when microbiota from
lean mice were transplanted to germ-free mice [93]. Similarly, microbiota transferred
from lean versus obese humans to germ-free mice led to similar body types [94], with
corresponding changes in the microbiota functioning in the mice [94]. Only one pilot
randomized controlled trial (RCT) (n = 22) transplanted fecal microbiota from a human
lean person to obese patients. Although a reduction in BMI did not occur, the 12-week time
interval may have been too short, and the sample too small, to detect changes in BMI and
the composition of their microbiome toward that of a lean person [95].

The relationships among the microbiome, obesity and diet are complex [96], and
may vary by child age. The microbiome may be considered a partial mediating variable
between diet and obesity: nutrients are metabolized by the microbiome, initiating any of
the several mechanisms which in turn influence obesity and related physiological effects.
Diet influences the composition of microbiota, with evidence that some of these differences
are related to disease processes including obesity [65]. At least four microbiome-related
mechanisms mediate the diet and obesity relationship, including: the metabolism of in-
digestible dietary fiber, resulting in the production of short-chain fatty acids, particularly
butyrate [97], and bile acids that are anti-inflammatory and regulate carbohydrate and
lipid metabolism [98]; the up-regulation of the gut endocannabinoid system tone which
influences gut permeability and tissue adipogenesis [99]; the reduction in gut gene ex-
pression of fasting induced adipocyte factor (PNPLA3) which correlates inversely with
BMI [100]; and the regulation of gut–brain axis crosstalk, which modulates peptide secre-
tions (GLP-1, GLP-2, peptide YY) that influence appetite reduction [101]. Healthy young
adults consuming a high-fat, low-fiber diet had an increased presence of bacteria that
predispose to obesity and several chronic diseases [102]. Reducing dietary flavonoids (e.g.,
fruit, vegetables) among those with obesity reduced the metabolic activity of adipose tissue
and energy expenditure [103]. These metabolic processes were reversed when flavonoids
were added back to the diet. In one study, the low FODMAP diet (fermentable olio-,
di-, mono-saccharides and polyols) which has been used successfully in treating irritable
bowel syndrome, led to differences in the microbiome (e.g., lower Bifidobacteria) [104],
and less obesity [105]. Consumption of different dietary sugars led to differences in the
composition of the microbiome [106]. The consumption of probiotics (e.g., dairy products
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with live bacterial cultures) has been shown to influence body composition [107], but the
role of the microbiome in that relationship is not clear [108]. The microbiome was more
predictive of obesity than nutrients [109]. Prebiotics, i.e., a substrate selectively utilized by
host microorganisms conferring a health benefit [110], including indigestible dietary fibers
and polyphenols (e.g., green tea), favor the growth of specific microbial species and have
been inversely associated with body weight in several studies [111]. A prebiotic enabled
overweight/obese children to lose weight over 16 weeks [112], and the composition of
the microbiome (a high Prevotella to Bacteroides ratio (P/B) compared to a low P/B ratio)
predicted a 3.8 kg greater body fat loss, independent of the experimental conditions, in
a weight loss trial [113]. Both a low fat and a low carbohydrate diet led to numerous
changes in the microbiome composition at 3 months, but microbiome composition reverted
to baseline at 12 months [114]. It is not clear if the reversion reflected some resistance of
the microbiome to change, and thereby prelude to weight regain, or reflected the end of
experimental control of the diet at three months [115].

Much interest exists in the interrelationships among maternal and child diet, micro-
biome, and body composition during the perinatal period. Mothers exposed to a high fat
diet during gestation had infants with depleted Bacteroides microbes [116–120], specifically
lower Lactobacillus reuteri and Bifidobacterium [116]. Conversely, a postpartum maternal
diet low in fat influenced offspring bacterial colonization (e.g., lower Bacteriodes) [116].
Children of obese mothers had different distributions of microbiota compared with those
of lean mothers, which may vary by socioeconomic status and a high fat diet (lower Bac-
teroides) [70]. The maternal microbiome influenced the neonate’s microbiome differently
between vaginal and cesarean births, indicating that the method of delivery influences the
neonate’s microbiome due the presence or absence of exposure to vaginal microbes. While
breastfeeding directly reduces the risk of childhood obesity [121], this is likely mediated
by breastfeeding’s impact on the child’s microbiome [70]. Similarly, the timing of formula
and complementary feeding influences the microbiome and obesity [122,123]. For example,
the earlier introduction of complementary feeding influenced 13 different types of bacteria
at three months of life and 20 types at 12 months, resulting in higher levels of short-chain
fatty acids at 12 months, increasing the likelihood of obesity [124]. An infant’s microbiome
tends to evolve toward their adult microbiome by the end of the first year of life [125],
reflecting their home’s social and physical environment, including food choices, suggesting
that dietary interventions may be important early in life.

2.4. Gut–Brain Axis

The gut–brain axis has been investigated in relation to obesity [126,127]. The micro-
biome and the brain develop at the same time, thereby allowing for bidirectional influences.
The microbiome influences the formation of neural circuits [128], neuron excitability [129],
and eating behavior in relation to appetite-regulating hormones [130]. The small intes-
tine is populated with large numbers of nerves that sense and respond to nutrients [131].
These nerves connect to various parts of the brain, particularly the hypothalamus, which
controls satiety through the release of leptin, and to enteroendocrine cells in the stomach
and duodenum, which control appetite through the release of ghrelin. Increased leptin
increases satiety, while decreased ghrelin reduces appetite, both via receptor expression
in the hypothalamus. Leptin is made primarily by adipocytes and enterocytes; the leptin
receptor is expressed on many cell types, but is found primarily in the hypothalamus and
hippocampus. The primary function of leptin is the regulation of adipose tissue mass.
The activity of leptin is mediated through its inhibitory effects on hunger and stimula-
tory effects on satiety. In the hypothalamus, leptin counteracts neuropeptide Y, a hunger
promoter secreted by neurons in the sympathetic system of the gut and in the hypothala-
mus [132]. Ghrelin is a hormone produced by enteroendocrine cells in the gastrointestinal
tract, primarily the stomach; the ghrelin receptor is found in the hypothalamus and the
anterior pituitary gland. The primary function of ghrelin is to stimulate appetite, thereby
increasing food intake and storing fat. Ghrelin stimulates the hypothalamus and anterior
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pituitary, including neurons that produce neuropeptide Y, leading to increased food intake,
particularly carbohydrates [133].

The microbiome influences the production of peptides that mimic appetite-regulating
hormones [134]. In addition, short-chain fatty acids produced by Firmicutes (and other
microbiota) not only increase the energy available to the host, but also influence the brain
which in turn influences host metabolism, appetite, and food intake [135,136]. Some of the
nerves extend to brown adipose tissue, activate sympathetic branches of the autonomic
nervous system, and thereby likely increase energy expenditure without increasing physical
activity [126]. How all these factors interrelate to the initiation and control of obesity is not
clear, but must relate to the complex energy balance model [137].

A sociology of the microbiome is emerging wherein meta-sociological factors (e.g.,
urbanization in a global context) influence more immediate sociological and behavioral
factors ((e.g., vaginal versus caesarean mode of infant delivery), dietary intake/nutrition
(e.g., probiotics, prebiotics), infant feeding (e.g., breastfeeding and formula feeding), medi-
cal practices and medication uses (e.g., antibiotics)), which influence the microbiome and
child health [138]. The microbiome has been demonstrated to have bidirectional effects
with physical activity [139], which then needs to be accounted for in relation to obesity.

3. Implications for Research and Practice

Among numerous possible etiological influences on obesity [9], the microbiome has
been suggested for the operationalization of personalized nutrition [140]. Key behav-
ioral issues need to be explored, including how probiotics, indigestible fibers, and/or
transplanted gut microbiota influence childhood obesity as mediated by changes in the
microbiome. Behavioral interventions will be needed at the level of the child and family,
including food preparation practices, to encourage children to consume probiotics and
indigestible fibers. How satiety-enhancing foods, e.g., high-fat foods, influence the en-
teroendocrine release of leptin and ghrelin, and in turn influence appetite and obesity,
needs to be determined. Within a multi-ecological approach to child obesity prevention, the
microbiome offers promising mechanisms that deserve the attention of nutrition educators
and behavioral/public health nutritionists.
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