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Abstract: The SET1 family of proteins, and in particular MLL1, are essential regulators of transcription

and key mediators of normal development and disease. Here, we summarize the detailed characterization
of the methyltransferase activity of SET1 complexes and the role of the key subunits, WDR5, RbBP5,

ASH2L, and DPY30. We present new data on full kinetic characterization of human MLL1, MLL3, SET1A,

and SET1B trimeric, tetrameric, and pentameric complexes to elaborate on substrate specificities and
compare our findings with what has been reported before. We also review exciting recent work identifying

potent inhibitors of oncogenic MLL1 function through disruption of protein–protein interactions within the

MLL1 complex.
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Introduction

Chromosomal translocations in acute lymphoid leu-

kemias (ALLs) and acute myeloid leukemias (AMLs)

were discovered many years ago.1–3 Detailed analy-

ses of these leukemogenic rearrangements led to

discovery of the involvement of human MLL1

(mixed-lineage leukemia 1) in disease.4–6 MLL1

(KMT2A) is a histone 3 lysine 4 (H3K4) methyltrans-

ferase with multiple domains including the catalytic

domain (MLL-C; 180 kDa) which forms a complex

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoid leukemia; ASH2L, absent, small, or homeotic-like 2; CDK,
cyclin dependent kinase; GOF, gain of function; HGNC, HUGO Gene Nomenclature Committee; HMT, histone methyltransfer-
ase; MLL, mixed lineage leukemia; PHD, plant homeodomain; RAD, RbBP5–ASH2L–DPY30 complex; RbBP5, RB binding
protein 5; WDR5, WD repeat domain 5; WIN, WDR5-interacting motif; WRA, WDR5–RbBP5–ASH2L complex; WRAD, WDR5–
RbBP5–ASH2L–DPY30 complex; SAM, S-adenosylmethionine; SET, Su(var)3-9, Enhancer of Zeste, Trithorax
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with WDR5, ASH2L, RbBP5, and DPY30 (Fig. 1) and

the N-terminal domain (MLL1-N; 320 kDa) that inter-

acts with Menin.7–9 MLL1 also interacts with other

proteins including nuclear cyclophilin33 (Cyp33) and

histone deacetylase HDAC1.10 MLL1 undergoes sever-

al types of rearrangements, all of which have been

correlated with leukemogenesis. These include bal-

anced translocations, tandem duplications, and ampli-

fication of an otherwise wild-type form of MLL1.

There are also a large number of coding, frameshift,

or nonsense mutations in the MLL family of proteins

that have been discovered, although the physiological

relevance of these are as of yet unknown.11 There are

more than 100 unique translocations of MLL1 with

over 60 translocation partners.4–6,12–16 While it

remains unclear why the MLL1 locus is so exquisitely

sensitive to rearrangement, the repertoire of MLL1

translocations that occur in cancer have been well-

studied.14,17,18 Regardless of the rearrangement

involved, MLL1 translocation-dependent cancers are

highly prone to relapse and require aggressive treat-

ment.19,20 Translocations of MLL1 occur in approxi-

mately 5% of acute lymphoblastic leukemias (ALL)

and 5–10% of acute myeloid leukemia (AML) cases in

adults as well as in more than 70% of infant ALL and

35–50% of infant AML patients (reviewed by Chen

and Armstrong).21 MLL1 translocations also occur in

therapy-related cancers, generally in response to topo-

isomerase inhibitors (e.g., etoposide).21–24

MLL1-rearranged leukemia has been shown to

be associated with high expression of the homeobox

(HoxA) cluster genes, transcription factors that spec-

ify cell identity during hematopoiesis and favour

immortalization of leukemic cells.25 MLL1 fusions

cause persistent activation of HoxA9 and its cofactor

MEIS1 that are essential for sustaining the leuke-

mic phenotype.26 Globally MLL1-fusions preferen-

tially regulate a subset of the genes that are wild-

type MLL targets and significantly increase the

transcription of developmentally important genes

involved in the disease phenotype.27,28 Wild-type

MLL1 is essential for hematopoiesis and neurogene-

sis, driving the gene expression programs that

regulate stem cell function.29,30 In cancer, these

transcriptional programs are hijacked for cancer

growth and angiogenesis and are driven, at least in

part, by the ability of MLL1 to promote expression

of MYC and cyclin-dependent kinases.31–33

The breakpoint of most MLL1 translocations

occurs just downstream of the CXXC domain, leading

to the deletion of the PHD and catalytic SET

domains.34 Loss of normal catalytic activity by the

fusion protein necessitates the maintenance of a sin-

gle wild-type allele of MLL1 for leukemogenesis.35,36

However, this effect is not dependent solely on the

histone methyltransferase (HMT) activity of MLL1,37

as MLL1 fusion proteins also require wild-type MLL1

prebinding to the HoxA9 locus for stable associa-

tion.38 Taken together, this suggests that wild-type

MLL1 activity is required for the full transformative

capacity of MLL fusion proteins and that targeting

the catalytic activity of MLL1 may be an attractive

mechanism for cancer chemotherapy.

MLL1 fusion proteins are generally considered

gain-of-function (GOF) changes with potent tran-

scriptional regulatory abilities. For example, fusion

of MLL with ENL or AF9 leads to recruitment of the

SWI/SNF complex to dysregulate the expression of

oncogenic genes including HoxA7.39,40 Blocking the

ability of MLL1 fusion proteins to properly localize

to the promoters of growth-stimulating genes is

another area that is being actively targeted for phar-

macological intervention. The most direct method to

inhibit MLL1 recruitment is to disrupt the protein–

protein interactions required for complex formation.

MLL1 is a member of a large and dynamic protein

complex that requires the presence of Menin to reg-

ulate Hox and CDK gene expression.32,41 Genetic

deletion of Menin is able to diminish the H3K4

methylation levels at Hox loci more effectively than

genetic deletion of MLL1.42 While the limited effect

of MLL1 ablation on H3K4 methylation may be due

to functional redundancy between MLL family mem-

bers, it remains clear that association of MLL1 with

Menin is required for proper H3K4 methylation pat-

terns at Hox loci. MLL1 fusion proteins directly

interact with Menin, but are unable to bind other

members of the MLL1 complex.41 This MLL fusion–

Menin interaction is essential for leukemogenic

transformation.7 Disrupting this protein–protein

interaction is another approach to target the func-

tion of MLL fusion proteins. However, loss-of-

function mutations in Menin lead to multiple endo-

crine neoplasia type I,43,44 so it is important to

ensure that small molecule inhibitors of the MLL1–

Figure 1. MLL complexes. Trimeric, tetrameric, and pentameric MLL complexes.106,124
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Menin protein–protein interaction do not globally

affect Menin activity.

Other MLL family members have also been

implicated in disease.11,45 The human SET1 family

of proteins includes MLL1 (KMT2A), MLL2

(KMT2D), MLL3 (KMT2C), MLL4 (KMT2B), SET1A

(KMT2F), and SET1B (KMT2G). Here we included

the HUGO Gene Nomenclature Committee (HGNC)

approved gene symbols (http://www.genenames.org/)

because there has been major confusion in the gene

nomenclature for MLL2 and MLL4 in the litera-

ture46 with both names interchangeably being used

for two different genes. Mouse versus human

nomenclature used in related reports may also add

to confusion. This results in further confusion when

the gene names and numbers are not indicated in

publications. Therefore we suggest that readers pay

special attention to the gene names, symbols and

chromosome locations when reading the related pub-

lications if provided (MLL2: KMT2D; Chromosome

12q13.12; Gene MIM 602113; http://omim.org/entry/

602113 and MLL4: KMT2B; Chromosome 19q13.12;

Gene MIM 606834; http://omim.org/entry/606834 for

human proteins).

A large number of somatic mutations have been

identified from a panel of over 3,000 samples repre-

senting 12 tumor types for MLL2, MLL3, or MLL4.47

While the relevance of the majority of these mutations

are as of yet unknown, mutations in MLL2 are linked

to non-Hodgkins lymphoma,48 pancreatic cancer,49

and medulloblastoma,50–52 as well as impaired glucose

tolerance and insulin resistance.53 Similarly, MLL3

mutations are implicated in colorectal,54 pancreatic,49

nasopharyngeal,55 medulloblastoma,51 and other can-

cers.11,56,57 Recent studies have shown that some of

these MLL3 mutants are located in the methyltrans-

ferase active site and dramatically alter enzymatic

activity56 and loss of activity may contribute to pro-

gression of AML.58 Such loss of function mutations

makes the protein a less desirable target for drug dis-

covery in comparison to gain of function mutations.

MLL4 mutations or translocations have been impli-

cated in spindle cell sarcoma59 and hepatocellular car-

cinoma.60 While the major pathological mechanisms

underlying most of these mutations are not fully

understood, it is clear that mutations and rearrange-

ments of the MLL family proteins are important in

the initiation and maintenance of broad range of

cancers. The reader who is further interested in the

intricacies of MLL disease mechanisms will find

the following references particularly enlighten-

ing.11,17,61–64 Extensive implications of SET1 family of

proteins in diseases validate these proteins as poten-

tial drug targets. In cases such as MLL1, finding

potent and selective inhibitors would help further

investigate their involvement in diseases and discov-

ery of therapeutics. This necessitates full kinetic

characterization of these protein complexes, and opti-

mizing assays for high throughput screening.

Methyltransferase activity of SET1 family of

proteins
The first biochemical reconstitution of mammalian

MLL1 four subunit complex revealed that the

catalytic SET domain of the wild-type MLL1 is only

significantly active in the presence of structural

components of the MLL1 complex, RbBP5, ASH2L,

and WDR565 (Fig. 1). Although di- (H3K4me2) and

trimethylation (H3K4me3) of H3K4 was observed

with MLL1 complex, dimethylation was much more

pronounced indicating higher catalytic efficiency for

mono- and dimethylation than trimethylation. Pres-

ence of WDR5 and RbBP5, but not ASH2L, was

shown to be essential for MLL1 complex formation.

In particular, WDR5 is absolutely essential for

MLL1 complex integrity and activity.65 Human

MLL1 (residues 3745–3969) in complex with WDR5,

RbBP5 and ASH2L with (MWRAD) or without

DPY30 (MWRA) were also reported to be a better

monomethylase (�1 h21) than dimethylase

(�0.2 h21).66 Accumulation of monomethylated prod-

uct also suggested a nonprocessive mechanism. In

addition to MLL1, the SET domains of MLL2,

MLL4, SET1A and SET1B displayed negligible enzy-

matic activity in the absence of the WDR5–RbBP5–

ASH2L complex. MLL3, however, actively methylat-

ed histone H3 in the absence of the core complex

subunits.67 WDR5 was reported to bind tightly to

MLL1 (KD value of 120 nM) and with less affinity to

RbBP5 (KD of 2400 nM) within the core complex.66

Interaction of ASH2L with the core complex

appeared to be mediated by RbBP5.65,66 A hetero-

dimer of ASH2L and RbBP5 (KD of 800 nM66) has

been reported to also have intrinsic HMT activity.68

Lack of trimethylation was also noted in the absence

of ASH2L and RbBP5.65 Reduction in ASH2L using

RNA interference also led to loss of H3K4 trimethy-

lation with no detectable effect on H3K4 mono- or

dimethylation levels.69 WDR5, RbBP5 and ASH2L

were reported to form a stable complex in the

absence of catalytic domain of MLL1.70 Patel and

colleagues reconstituted human WDR5, RbBP5,

ASH2L, and DPY30 (WRAD) complex in vitro and

using micromolar concentrations of WRAD they

were able to show basal levels of HMT activity for

the WRAD (kcat: 30 h21) and WRA (kcat: 70 h21)

complexes in the absence of catalytic subunit of

MLL1 (note that the values are from correction of

the initial values in Table I by authors).70 Shinsky

and colleagues report that absence of RbBP5 or

ASH2L subunits completely abolish the stimulatory

effect of WRAD on activity of SET1 family of pro-

teins.71 However, WDR5 may not be essential for

MLL2, MLL3, MLL4 and SET1B activities.71 They

also did not observe any significant change upon

addition of DPY30. However, recently the
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upregulation of DPY30 expression in gastric cancer

cell lines and patients’ tissues has been reported. A

decrease in proliferation, migration, and invasion of

gastric cancer cells upon DPY30 knockdown by

siRNA was also observed.72 DPY30 has been

reported to regulate proliferation and differentiation

of hematopoietic progenitor cells by regulating the

expression of genes critical for cell proliferation.73

These observations suggest that DPY30 plays a criti-

cal role in cells.

WDR5 interacts with MLL1, through a con-

served arginine containing WIN (WDR5 Interacting)

motif,74,75 and with histone H3 via di- and trimethy-

lated K4 either as an isolated histone or in the con-

text of an H3K4-dimethylated nucleosome.76 WDR5

is required for binding of the methyltransferase com-

plex to the K4-dimethylated H3 tail as well as for

global H3K4 trimethylation and Hox gene activation

in human cells.76 WDR5 binds to the H3 N-terminal

tail in a manner that leaves the K4 residue fully

exposed; a conformation that is ideal for presenting

the substrate for methylation.77,78 The WIN motif is

conserved in human SET1 family members (G(S/C/

A)AR(A/S)E; conserved amino acids are in bold).79

However, WDR5 binding affinity for peptides derived

from these sequences differ, with KD values of

2.8 mM for MLL1 peptide and 75, 54, 88, 541, and

103 nM for MLL2, MLL3, MLL4, SET1A, and

SET1B respectively.79 The presence of WIN peptides

was shown to inhibit the HMT activity of SET1 family

of proteins,74,79 perhaps through disruption of the

complex. The conserved arginine residue (Arg-3765 in

MLL1) has been shown to be essential for assembly of

the complex and MLL1-mediated H3K4 dimethyla-

tion.74 Mutation of this arginine to alanine resulted in

disruption of the core complex formation.79

Shinsky and Cosgrove have reported that the

RbBP5-ASH2L (RA) heterodimer interacts with

MLL3 SET domain in the absence of WDR5.80 MLL3

only monomethylated H3K4, showing no di- or trime-

thylation activity.80 In contrast to MLL1, the HMT

activity of MLL3 was reported to be about 100-fold

higher in the absence of WDR5 than in complex with

RbBP5, ASH2L, and DPY30 (3.96 6 0.22 h21) and

was inhibited by the presence of WDR5.80 These

results were obtained from fluorograms and single-

turnover enzymatic assays using micromolar enzyme

concentrations monitored by mass spectrometry. The

inhibitory effect of WDR5 on MLL3 activity is particu-

larly interesting as WDR5 binds to MLL3 WIN

derived peptide with the highest affinity of any WIN

motif from a SET1 family member79 and binds to

MLL3 through arginine 4710 forming an stable 1:1

complex.80 Furthermore, Zhang and colleagues previ-

ously reported that the core complex subunits stimu-

late the HMT activities of MLL2, MLL3, MLL4,

SET1A, and SET1B and in the absence of WDR5 the

activities of SET1A, MLL3, and MLL4 core complexesT
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decrease by twofold. This effect was also observed for

SET1B and MLL2. The authors noted an HMT

activity for MLL3 in the absence of the core complex

suggesting a role for MLL3 independent of the

WDR5–RbBP5–ASH2L complex.67 Through structur-

al analysis they also suggested that binding of

the WIN motifs is achieved by the plasticity of

WDR5 peptidylarginine-binding cleft allowing the C-

terminal ends of the WIN motifs to have structurally

divergent conformations.67 Structural aspects of MLL

complexes have been previously reviewed.81,82

An activity of 30 h21 has been observed for

MLL4 SET domain that was significantly increased

in the presence of WRAD (159 h21) as measured by

an HPLC-based assay that separated 3H-labeled

peptides.83 Based on structural interpretations, this

higher intrinsic activity was attributed to possible

hydrogen bonds between residues of the post-SET

loop (e.g., Asp5519) with residues from SET-I region

which may stabilize an active MLL4 SET domain

conformation.83 Using mass spectrometry and single

turnover assays, only monomethylation was observed

after a 60 min reaction, but dimethylation was

observed if the reaction was allowed to proceed over-

night. However, in complex with WRAD, di- and tri-

methylated species were detected. Although there is a

clear difference in levels of activities of MLL4 and

MLL1 SET domains in the absence of the complex

components, both show similar levels of activities

when in WRAD complex. This resulted in speculation

that the presence of WRAD may induce SET-I

movements which help forming a more catalytically

efficient active site conformation.83

Available methyltransferase assays
Many of the initial discoveries surrounding the HMT

activity of SET1 family proteins utilized radiometric

assays to demonstrate enzymatic activity. These

assays are based upon the transfer of a radiolabeled

(generally 3H) methyl group from the cofactor S-

adenosyl-methionine (SAM) to a substrate lysine. The

reactants are then separated using SDS-PAGE and

incorporated radioactivity is measured using autora-

diography.65,71,84–86 While this approach is invaluable

for the initial discovery and characterization of meth-

yltransferases, its low-throughput methodology and

limited dynamic range renders it unsuitable for com-

pound screening and discovery of chemical probes

(potent and selective inhibitors or antagonists). To

address this issue, we and others have developed a

series of assays that accommodate the requirements

of medium- or high-throughput screening.86–91 In

addition to facilitating the discovery of chemical

probes targeting a number of methyltransfer-

ases,89,92,93 the development of these assays has also

provided a means to more thoroughly characterize

the biochemical activity of many HMTs, including the

SET1 family of methyltransferases.

The current gold-standard assay for measuring

methyltransferase activity is an adaptation of the

original radiometric assay. In this assay format,

transfer of a tritiated methyl group from the cofactor

SAM to the lysine substrate (peptide, histone, nucle-

osome) is measured by separating the labeled reac-

tion product from the free [3H]SAM and quantifying

the incorporated radioactivity via scintillation count-

ing. There are several separation techniques that

are suitable for the needs of compound screening.

For core histone and nucleosome substrates, the eas-

iest separation method is to precipitate the substrate

using trichloroacetic acid (10%) followed by capture

on a glass fiber filter. Residual SAM is removed by

repeated washing steps. This filter-based methodolo-

gy is amenable to 96- and 384-well format,94–96 how-

ever the throughput is limited by the necessity of

extensive washing steps. An alternative method is to

use an affinity-capture method to separate the radio-

labeled substrate from the free [3H]SAM. Biotiny-

lated peptide substrates can be immobilized using

biotin-capture membranes (e.g., SAM2VC Biotin Cap-

ture Membrane, Promega) for standard liquid scin-

tillation analysis. These membranes provide a high

binding capacity and are suitable for characteriza-

tion of low-turnover enzymes, but, like autoradiogra-

phy, they have the lowest-throughput of their

respective class of assay technology. However, this is

a more reliable method for kinetic characterization

of methyltransferases.96,97

A higher throughput option within the affinity

capture methods is based upon the use of scintilla-

tion proximity plates to measure radiolabel incorpo-

ration without requiring the removal of [3H]SAM.

The wells of these plates are coated with streptavi-

din and have a thin layer of a solid-phase scintillant

on the walls of the plate itself. A biotinylated sub-

strate is drawn into close physical proximity with

the walls of the SPA plate via the biotin–streptavi-

din interaction and it is only at these close ranges

that the radiolabel is detected by the scintillant.

This assay format therefore requires no wash steps

to remove unincorporated radiolabel, making it par-

ticularly well-suited to the needs of high-throughput

screening.93,98 Fluorescence-based methods such as

the SAH hydrolase-coupled assay99 have also been

optimized for high throughput screening of HMTs90

and successfully used to identify potent inhibitors.100

However, this method requires de-coupling steps

and may have higher false positive rates than

radioactivity-based high throughput screening methods.

Chemiluminescence-based method have been optimized

for screening methyltransferases such as G9a,91 however

this assay also requires counter screening to filter out

possible false positives. Microfluidic capillary electropho-

resis assays are also useful for characterization of

HMTs.101 Lower throughput methods or those requiring

the employment of expensive instrumentation such as
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mass spectrometry- or NMR-based methods are possibly

more sensitive and more useful for hit confirmation.71,102

Available binding assays

In addition to methyltransferase activity assays, a

number of binding assays have been developed for

this family of proteins. Fluorescence polarization-

based assays have been developed to assess binding

of peptides to WDR5.103 It was shown that WDR5 is

essential for HMT activity of MLL165 and the mini-

mal MLL1 sequence required for interaction of

WDR5 with MLL1 was mapped to “ARA” with Ki

value of 120 nM for “Ac-ARA”. In comparison the Ki

value for WIN peptide (Ac-GSARAEVHLRKS) bind-

ing to WDR5 was 160 nM103 (WDR5 and MLL1 form

a stable complex in solution with a KD value of

120 nM74). Interaction of WDR5 with “ART” of his-

tone H3 tail was tighter with a Ki value of 20 nM.103

Taking advantage of available amino acid sequence

of WIN motif of MLL1, we also developed a peptide

(WIN: GSARAEVHLRKS) displacement assay to

screen in a 384-well format for compounds that bind

to WDR5 and inactivate MLL1 by disrupting MLL1–

WDR5–RbBP5 complex.90 In these assays, binding of

the fluorescein labeled peptide to WDR5 increases

the fluorescence polarization (FP) signal. Displace-

ment of the labelled peptide by potential ligands can

therefore be detected by monitoring a decrease in

signal. This assay was optimized for screening in

384-well format with a Z0-factor of 0.6.90 Very recent-

ly, we also developed a SAM displacement assay for

MLL1.104 In this assay, a small molecule fluorescent

ligand (FL-NAH) that is able to bind to the SAM

binding site of MLL1 in a manner independent of

the associated complex members was used to devel-

op a fluorescence polarization-based SAM displace-

ment assay in 384-well format. FL-NAH binds to

MLL1 SET domain in the absence of associated com-

plex members and competes with SAM, SAH, and

the fungal metabolite sinefungin, but not with a

peptide corresponding to residues 1–25 of histone

H3. This assay enables screening for SAM-competitive

MLL1 inhibitors without requiring the use of trimeric

or higher order MLL1 complexes, significantly reduc-

ing screening time and cost.104

Kinetic characterization of human SET1
family of proteins

One of the questions that has already been proposed

and investigated is whether the components of the

SET1 complexes affect the ability of the catalytic subu-

nit to mono-, di- or trimethylate.65,66 To further investi-

gate this and also fully characterize the kinetics of

HMT activity of SET1 family members and compare

their substrate specificities, we reconstituted human

MLL1 (3745–3969), MLL3 (4706–4911), SET1A (1491–

1707), and SET1B (1815–2037) trimeric (MWR), tetra-

meric (MWRA) and pentameric (MWRAD) complexes

(W; 1–334, R; 1–538, A; 1–628, D; 1–99) as described in

the Supporting Information Materials and Methods.

Using histone H3 peptides with various H3K4 methyl-

ation states (H3K4me0, H3K4me1, and H3K4me2) as

substrate and Scintillation Proximity Assay (SPA) as

well as biotin-capture membranes, we determined the

kinetic parameters (Michaelis–Menten kinetics) for

each enzyme in all three complex forms (Table I, Sup-

porting Information Figs. S1–5). The experiments were

performed under linear initial velocities (Supporting

Information Fig. S6) using optimized assay conditions

(Supporting Information Table SI and Fig. S7). Trime-

thylation of H3K4 by tri-, tetra- or pentameric MLL1

complexes was not accurately measurable. However,

MLL1 ability to mono- or dimethylate increased with

higher complexes (M1WRAD > M1WRA > M1WR)

reaching catalytic efficiencies (kcat/Km) of 7 and

18 mM–1 h21, respectively with pentameric complex.

This is consistent with previous reports suggesting

MLL1 only mono- and dimethylates H3K4 through a

distributive mechanism.66,71 However, the level of

MLL1 complex activity in our hands was more than

20–40 times higher than values previously

reported.66,71 This may reflect our assay optimization

and using Michaelis–Menten kinetics. Note that the

presence of salt, and in particular NaCl, in the assay

mixture significantly reduces the activity of SET1 fam-

ily of proteins (Supporting Information Fig. S7). Lower

turnover rates previously reported may be the result of

using high concentrations of salt in assay buffers.66,71

MLL3 was the most active monomethyltransferase of

the four SET1 family members we characterized with

kcat value of 1200 6 200 h21 for pentameric complex.

Catalytic efficiency of pentameric complex was more

than 50-fold higher than that for trimeric complex.

This is consistent with reports that MLL3 core complex

is predominantly a monomethylase.71 We were not able

to reliably determine any dimethylation activity for

MLL3. Interestingly, tetrameric and pentameric MLL3

complexes showed some residual trimethylation activi-

ties (2–6 h21) when H3K4me2 was used as substrate.

The trimeric complex of SET1A or SET1B prepared

through final step of size exclusion purification showed

no measurable activity. However, increasing the ratio

of SET1A SET domain to this trimeric complex prepa-

ration (3:1) resulted in a significant level of monome-

thyltransferase activity [kcat of 28 6 2 h21; Supporting

Information Fig. S1(A)] but not di- or trimethylation.

No further stimulation was observed when 4:1 ratio

was tested. A similar pattern was observed for SET1B

trimeric complex [Supporting Information Fig. S1(B)]

with a kcat of about 15 h21. Similarly no significant di-

or trimethylation was observed for trimeric complex.

Tetrameric and pentameric SET1A were both better

monomethyltransferases than dimethyltransferase and

showed significant but low (kcat of 4–6 h21) levels of

trimethylase activities. SET1B appeared to be about

fivefold less active than SET1A. Trimethyltransferase
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activity of SET1A and SET1B is consistent with previ-

ous reports.71 All MLL members were significantly

more efficient at utilizing peptide substrates with unme-

thylated or monomethylated rather than dimethylated

H3K4.71,86

Discovery of Inhibitors of SET1 Family

of Proteins

Antagonists of WDR5–MLL interaction (Fig. 2)

The broad diversity in SET1 family expression pat-

terns and rearrangements in cancer makes them

intriguing drug targets. Interestingly, even though

the MLL1 fusion protein is potently oncogenic, it

does not contain an active catalytic domain but

requires the maintenance of a wild-type allele for

leukemogenesis.36 Therefore, inhibition of wild-type

MLL1 HMT activity could be a valid approach to dis-

cover novel therapeutics targeting MLL-rearranged

leukemias. As WDR5 is essential for the integrity

and HMT activity of MLL1 complex,65 compounds

that compete with the WDR5–MLL interaction could

potentially inhibit the MLL HMT activity by disrup-

tion of the complex. To this end, Karatas and col-

leagues designed a series of peptidomimetic

antagonists of this interaction based on the mini-

mum amino acid (ARA) requirement for WDR5–

MLL1 interaction. These efforts resulted in discov-

ery of MM-101, MM-102, and MM-103 (-H, -F, and

Cl substitutions, respectively) with binding IC50 val-

ues of 2.9, 2.4, and 4.5 nM, respectively. Amongst

the compounds tested for inhibition of the HMT

activity of tetrameric MLL1 complex, MM-102 was

the most potent with an IC50 value of 400 nM.105

Consequently, the authors tested the effect of this

compound on expression of HoxA9 and Meis-1 that

are highly expressed during leukemogenesis. MM-

102 reduced the expression of HoxA9 in myeloblasts

with an IC50 value of around 25 mM, but had a

much weaker effect on expression of Meis-1 (�40%

at 50 mM). The authors synthesized a negative con-

trol that had no effect on HoxA9 or Meis-1 expres-

sion by substituting the L-arginine in MM-102 with

D-arginine.105 Further development of this series led

to the cyclic peptidomimetic compound MM-401,

which maintained the high WDR5 binding affinity

(half maximum displacement (Kdisp) of 0.9 nM), and

the ability to inhibit HMT activity of MLL1 complex

(IC50 value of 320 nM).86 MM-401 had no effect on

the activity of MLL2, MLL3, MLL4, and SET1A or

their methylation-state specificities which was

attributed to the dispensability of WDR5 for activity

of these proteins.86 At 20 mM, MM-401 had no effect

on global H3K4 methylation but reduced the

H3K4me2 and H3K4me3 across 50 HoxA loci in

MLL–AF9 cells after 48 h, and reduced the expres-

sion levels of these genes. It was reported that MM-

401 specifically caused cell death and differentiation

Figure 2. Antagonists of WDR5–MLL interaction. Peptidomimetic antagonists of WDR5–MLL interaction MM-101, MM-102, and

MM-103 were designed based on the minimum amino acid (ARA) requirement for WDR5–MLL interaction.105 MM-401 is the follow

up cyclic peptidomimetic compound that also disrupt the WDR5–MLL interaction with high potency.86 WDR5-0101 was identified

through high throughput screening of 16000 diverse small molecules.106 WDR5-0102 and WDR5-0103 were commercially available

analogues of WDR5-0101.106 OICR-9429 was synthesized through extensive crystal structure-guided chemistry.92
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in MLL1-AF9, MLL1-ENL, MLL1-AF1 mouse mod-

els of leukemia [half maximum growth inhibition

(GI50) of about 10 mM] without affecting normal

bone marrow progenitor cells. MM-401 also inhibited

the growth of the blast cells isolated from AML

patients with MLL1 rearrangements.86

A similar approach was taken to discover small

molecule antagonists of the WDR5–MLL1 interac-

tion, by screening a library of 16,000 diverse small

molecules by FP-based peptide displacement assay

resulting in the discovery of WDR5-0101 with Kdisp

value of 12 6 1 mM.106 Two commercially available

analogs of WDR5-0101, WDR5-0102, and WDR5-

0103 were also identified with Kdisp values of 11 6 1

and 3 6 0.1 mM, respectively. A KD value of 450 nM

was determined by isothermal calorimetry for

WDR5-0103 binding to WDR5.106 Structure guided

optimization of WDR5-0102 resulted in identification

of compound 47 with Kdisp of 300 nM.107 Through an

extensive structure-guided medicinal chemistry

effort the potency and cellular activity of this series

was improved, yielding OICR-9429 (Kdisp of

64 6 4 nM; KD of 93 6 28 nM) which also binds to

WDR5 in the MLL1 WIN motif-binding pocket.92

OICR-9429 was highly selective for WDR5 with no

binding to or inhibition of a panel of more than 250

human methyltransferases, WD40 and histone read-

er domains, human kinases, G protein–coupled

receptor, ion channel, and transporter drug targets.

OICR-9429 reduced the amount of endogenous

MLL1 (IC50: 223 nM) and RbBP5 (IC50: 458 nM)

that co-immunoprecipitated with exogenously

expressed Flag-tagged WDR5 in a dose-dependent

manner.92

OICR-9429 was used to probe the biology associ-

ated with antagonizing WDR5–MLL1 interactions in

two systems in which oncogenic transcription factors

drive cell growth in a WDR5–MLL dependent man-

ner. In the first case, C/EBPa is a transcription fac-

tor that regulates myeloid gene expression in the

hematopoietic system and its deficiency leads to a

complete block of terminal myeloid differentiation at

the pregranulocyte/monocyte-cell stage.108 Frame-

shifts in the N-terminal part of the C/EBPa coding

sequence which results in expression of a shorter C/

EBPa (p30) was reported in AML patients.109 p30

interacts with WDR5, colocalizes with H3K4me3

and mediates myeloid differentiation block in a

WDR5-dependent manner. OICR-9429 inhibited pro-

liferation and induced differentiation in p30-

expressing cells in a mouse model of AML.92 OICR-

9429 (5 mM) caused a significant decrease in viabili-

ty in the majority of AML patient-derived cells with

mutations in the N-terminal part of the CEBPA

gene (mean viability of 53%), with no effect on those

lacking the mutations.92 In the second case, GOF

p53 mutant binds to the transcription factor ETS2

and activates MLL1 and MLL2 genes as well as

histone acetyltransferase MOZ resulting in slight

changes in genome-wide increases of histone methyl-

ation and acetylation and target gene specific

changes in H3K4me3. These modifications activated

specific gene expression programs and caused an

increase in the proliferation of cancer cells. OICR-

9429 specifically inhibited cell proliferation of GOF

p53 mouse embryonic fibroblasts (MEFs), but not

when GOF p53 is reduced or in p53 null MEFs.

Dose-dependent inhibition by OICR-9429 of GOF

p53 Li-Fraumeni Syndrome (LFS) cell growth was

also observed, with little effect on p53 null LFS

cells.110

Together these studies demonstrate the poten-

tial therapeutic value of compounds that disrupt the

WDR5–MLL1 interaction. Importantly, due to the

differential dependence of the SET1 family members

on WDR5, this strategy is an alternative to directly

targeting the catalytic activity of individual mem-

bers of the SET1 family, which may be difficult to

achieve.

Antagonists of Menin–MLL interaction (Fig. 3)
Oncogenic MLL1 fusion proteins retain the ability to

stably associate with Menin that is required for the

initiation of MLL-mediated leukemogenesis.7 Dis-

ruption of this interaction is also a viable approach

for MLL1-targeted drug discovery. Menin binds to

MLL1 with a KD value of 10 nM through two

Menin-binding motifs (MBM1 and MBM2) with

MBM1 being the high affinity binding motif (resi-

dues 4–15).8 The first small molecule antagonist of

Menin–MLL1 interaction (MI-1, a thienopyrimidine)

was identified through screening 49,000 compounds

using a fluorescence polarization-based peptide dis-

placement assay with IC50 (Kdisp) value of 1.9 mM.102

Follow-up chemistry on MI-1 resulted in identifying

MI-2 and MI-3 with Kdisp values of 446 and 648 nM

(ITC KD values of 158 and 201 nM), respectively.102

Grembecka and colleagues showed that MI-2 and

MI-3 at concentrations as low as 12.5 mM efficiently

disrupt the Menin–MLL1–AF9 complex in HEK293

cells without affecting the amount of expression of

Menin and MLL1–AF9.102 These compounds induced

down-regulation of HoxA9 and Meis-1 expression,

inhibited the transforming properties of MLL1–AF9

fusion proteins, and reduced the occupancy of the

Menin–MLL1 fusion protein complex on the HoxA9

promoter resulting in hematopoietic differentiation.102

The Cierpicki lab also synthesized MI-2-2 with

much higher affinity [KD of 22 nM; IC50 (Kdisp) of

46 nM] through structure-based follow up chemistry

by replacing n-propyl with a trifluoroethyl group in

MI-2.111 MI-2-2 disrupted the interaction of Menin

and MLL1–AF9 in HEK293 cells at low micomolar

concentrations, about fourfold more potent than MI-

2. Overall, MI-2-2 showed significantly higher cellu-

lar activity with 80% reduction of HoxA9 and Meis-1
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expression at 6 mM and exhibited significant effect

in human leukemia cell line MV4;11 carrying the

MLL1–AF4 translocation, which is consistent with

the improved potency towards the Menin–MLL1

interaction.111 He and colleagues112 also identified

hydroxy- and aminomethylpiperidines as inhibitors

of the Menin–MLL1 interaction through screening a

library of 288,000 compounds by FP. The IC50 (Kdisp)

for the best hit was 12.8 mM. Follow-up structure-

guided chemistry resulted in synthesizing MIV-6R

with IC50 (Kdisp) value of 56 nM that inhibited prolif-

eration and induced hematopoietic differentiation in

MLL1-AF9, -AF6, and -AF1p fusion leukemia cells

indicating behaviour independent of the fusion part-

ner.112 Orally bioavailable derivatives of MI-2-2, MI-

503, and MI-463 were developed that inhibited the

growth of MLL1 fusion cell lines, induced differenti-

ation and were effective in the xenograft models

blocking leukemia progression.113

In a different approach, Zhou and colleagues used

a linear MLL1 octameric peptide (MLL1 residues 6-

13; -RWRFPARP) as a starting point to develop macro-

cyclic peptidomimetic antagonists of the Menin–MLL

interaction. These structure-guided chemistry efforts

resulted in design and synthesis of MCP-1 (Ki:

4.7 nM).114

Other inhibitors affecting MLL-mediated

leukemogenesis

MLL1 and Menin bind to the genomic Hox loci to acti-

vate gene expression.115,116 It has been reported that

MLL1 fusion proteins may also promote gene expres-

sion by increasing the H3K79me2 mark in leukemia

stem cells. Inactivation of DOT1L, the only known

H3K79 methyltransferase, led to downregulation of

direct MLL1–AF9 targets and an MLL translocation-

associated gene expression signature, while global

gene expression remained largely unaffected. These

data support DOT1L as a potential therapeutic target

in MLL1-rearranged leukemia.117 It has been

reported that early mammalian erythropoiesis

requires DOT1L activity. In early hematopoiesis,

DOT1L regulates the expression of a critical differen-

tiation switch that controls the numbers of circulating

erythroid and myeloid cells.118 In recent years several

potent SAM-competitive inhibitors of DOT1L have

been reported. EPZ004777 from Epizyme was the first

reported potent DOT1L inhibitor that selectively sup-

pressed leukemia cells with MLL1 translocation.119 A

second DOT1L inhibitor, EPZ-5676 was later discov-

ered by Epizyme with higher potency, selectivity and

better pharmacokinetics and is currently in phase I

clinical trial.120–122 These compounds have been

reviewed in more details by Chen and Armstrong.21

SGC0946, a brominated analog of EPZ004777 was

later reported with enhanced potency and increased

cellular activity over EPZ004777 likely due to its

longer residence time on the protein.95 SYC-522 was

also reported as a potent DOT1L inhibitor.123

Summary

Here we have summarized the multiple opportuni-

ties for targeting the SET1 family of proteins. First,

we summarized the literature surrounding the char-

acterization of these enzymes and their recombinant

complexes suitable for small molecule screening,

including new kinetic data from our lab. This body

of data should facilitate efforts to find new inhibi-

tors/modulators of enzymatic function of these pro-

teins—a traditional approach to drug discovery.

Interestingly, however, to-date there is more pro-

gress in targeting the SET1 family by targeting the

extensive network of protein–protein interactions

involving wild-type SET1 family proteins and/or

oncogenic MLL1 fusion proteins. Fluorescence

polarization-based peptide displacement methods

Figure 3. Antagonists of Menin–MLL interaction. MI-1, MI-2, and MI-3 were identified through high throughput screening of a

library of 49,000 small molecules using FP assay.102 MI-2-2 was designed and synthesized through structure-based follow

up chemistry by replacing n-propyl with trifluoroethyl group in MI-2.111 MIV-6R was designed and synthesized through

structure-guided chemistry following identifying hydroxy- and aminomethylpiperidine screening hit compounds.112
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have proven to be efficient and cost effective for

high-throughput screening to identify antagonists of

WDR5–MLL1 and Menin–MLL1 interactions. Highly

potent and selective antagonists of such interactions

have been shown to effectively disrupt the MLL1

complex with WDR5, and Menin and decrease the

expression of HoxA9 and Meis-1, inhibiting prolifer-

ation and inducing hematopoietic differentiation in

MLL1 leukemia cells.
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