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Progressive transcriptomic shifts in evolved
yeast strains following gene knockout

Bei Jiang,1,2 Chuyao Xiao,1,3,4 and Li Liu1,5,*
SUMMARY

Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes.We investigated
whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments
on hap4D and ade1D yeast strains. Analysis revealed that genes with higher expression levels and more
physical interaction partners inwild-type strainsweremore likely to be restored, suggesting that genes of
significant functional importance have increased resilience to genetic perturbations. However, as the
experiment progressed, most initially restored genes became unrestored. Over 60% of differentially ex-
pressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited
distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis compo-
nents exhibited systematic sequential changes during the evolution. Our findings suggest the knockout
strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead,
compensatorymechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dy-
namics following genetic perturbations.

INTRODUCTION

Gene knockout serves as a potent tool for probing gene functionality across a variety of organisms.1 This method entails the removal or deac-

tivation of a specific gene, enabling researchers to examine its influence on cellular processes and phenotypes. While gene knockout con-

tributes valuable insights into gene functions, it simultaneously disrupts cellular homeostasis.2–4 This disruption precipitates changes in

gene expression networks, which subsequently affect cellular phenotypes, such as growth rates.5,6

Cells possess the capability to re-establish equilibrium throughmultiple mechanisms, including epigenetic modifications and genetic var-

iations.7,8 This phenomenon is frequently observed during adaptive evolution when organisms adjust to novel conditions.9,10 The process

encompasses the selection and accumulation of advantageous mutations, which provide a fitness edge in the novel conditions.11,12 Re-

searches have demonstrated that through adaptive laboratory evolution (ALE), cells can undergo various levels of change, and these changes

ultimately result in phenotypic alterations, including improved growth rates and other adaptive traits.13–15 Johnson et al. evolved 205 pop-

ulations of Saccharomyces cerevisiae (S. cerevisiae) strain W303 for approximately 10,000 generations in three distinct environments, and

almost all populations experienced rapid fitness increases in the first few hundred generations, followed by slower adaptation as time pro-

gressed.16 A similar pattern of fitness variation was observed in another ALE study using genetically diverse asexual populations produced by

segregants from the cross of two S. cerevisiae strains (Y55 and SK1) in four different environments.17

Focusing specifically on gene knockout scenarios, various studies illuminate the mechanisms that underpin post-knockout cellular re-

sponses and identify factors that influence the re-establishment of cellular homeostasis. For instance, research conducted by McCloskey

et al. revealed that metabolic gene knockout engendered modifications in metabolic fluxes in Escherichia coli (E. coli), precipitating distur-

bances in metabolite concentrations and regulatory networks.18 These perturbations were ultimately rectified through the acquisition of mu-

tations during ALE. In a separate study, Hsu et al. found that the loss of SEF1 in Lachancea kluyveri yeast compelled cells to initiate a compen-

satory process to counteract the misexpression of TCA cycle genes, and two adaptive loss-of-function mutations of IRA1 and AZF1 were

derived under disparate selective conditions during evolutionary repair experiments consequently.19

An important question arises regarding the transcriptome state of evolved cells. Several studies have uncovered patterns for the evolved

states of adaptation to new environments. For example, Ho et al. examined 44 instances of yeast and E. coli adapting to new environments

and found that changes in transcriptomes and fluxomes across various adaptations consistently indicated that genetic changes following
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Figure 1. 28-day serial transfer experiments starting from the initial knockout strains of HAP4 and ADE1

(A) Experimental process of adaptive laboratory evolution countering gene knockout.

(B) Growth rates of the hap4D strains (left) and ade1D strains (right), respectively. Each point represents a sample, and the original strains are colored in black. The

differences between adjacent time points were tested using the Wilcoxon test and the corresponding p values were labeled.

(C) Genome variations across each replicate (denoted as c1, c2, c3) for hap4D strains (left) and ade1D strains (right), respectively. The gray grid represents an SNP

(left) or an indel (right). Roman numeral indicates the chromosome and the number connected by short line is the position in the chromosome. The SNP

designated as II_452356 is situated 302 base pairs (bp) upstream of the SND3 gene’s coding region. Similarly, XIV_359345 is found 251 bp upstream of the

AAH1 gene’s coding region, and XVI_698526 is located 343 bp upstream of the MRL1 gene’s coding region.

ll
OPEN ACCESS

iScience
Article
initial plastic changes were reversed rather than reinforced.7 Similarly, Sandberg et al. observed that the transcriptomes of evolved strains of

E. coli in ALE to 42�C exhibited a general trend toward restoring the global expression state back toward pre-heat stressed levels.20

Interestingly, the pattern of restoration appears unclear when adapting to gene knockout. An ALE experiment involving pgi knockout

E. coli strains with independent replicates led to eight phenotypically distinct endpoints, suggesting multiple optimal phenotypes exist.21

This discrepancy may stem from varying research foci: some researchers may be interested in the trend of initially changed phenotypes, while

others may focus on the global states of evolved strains compared to the initial strain. Despite these advances, it remains uncertain whether

the post-knockout rebalanced state reflects the pre-knockout state or represents a distinct, suboptimal state.

In this report, we conducted a 28-day serial transfer experiment involving two gene knockout yeast strains until the growth rate stabilized

(Figure 1A). The two gene knockout strains were freshly generated to avoid adaptive mutations that might have occurred during long-term

storage.We started from the immediate response genes to the knockout events, andmonitored their expression levels throughout the adap-

tive experiment. Our findings revealed that these response genes struggled to return to their original states, and the global transcriptomes

varied across different stages of evolution.
RESULTS
Adaptive laboratory evolution experiment

HAP4 is a transcription factor that plays a wide role in diauxic shift, mitochondrial biogenesis, stress response and so on,22,23 while ADE1 is

involved in adenine biosynthesis.24 Both genes are classified as non-essential, with their expression levels ranking in the top 25% (Figure S1).

HAP4 serves as a regulatory element, while ADE1 is a biosynthetic element.We selected HAP4 and ADE1 to investigate whether the adaptive

process varies depending on the gene’s function. Gene knockout strains for HAP4 and ADE1 were constructed in Saccharomyces cerevisiae

BY4741, respectively, which were denoted as initial knockout strains. The wild-type strain of BY4741 was defined as the original strain. We

performed serial transfer experiments starting from the initial knockout strains for a period of 28 days under synthetic complete medium

by providing all necessary nutrients. There were six replicates constituted by three biological replicates each with two technical replicates

for each gene knockout strain. The evolved strains were examined at the midpoint (14 days) and the endpoint (28 days). The growth rates,

whole genomes and transcriptomes were measured for the original strain (abbreviated as ‘‘ori’’), initial knockout strains (abbreviated as

‘‘ini-evo’’) and evolved knockout strains at two time points (abbreviated as ‘‘mid-evo’’ and ‘‘end-evo’’, respectively) (Figure 1A).

Throughout the serial transfer experiment, both groups of knockout strains exhibited a swift augmentation in growth rate from the initial

time point to the midpoint, followed by a deceleration in the trend (Figure 1B and Table S1). Between the midpoint and the endpoint of the

experiment, no statistically significant differences in growth rates were observedwithin either group of knockout strains. This observation sug-

gests that the strains had achieved adaptation to the prevailing conditions of cultivation. The growth rates among replicates in the original

strains and initial knockout strains showed high consistency. However, the variability in growth rates increased over the duration of the culti-

vation process, particularly in the hap4D strains. This trend implies that the evolved strains became increasingly heterogeneous, even among

biological replicates, thus allowing them to be considered as independent evolutionary lines.

The genomic analysis of the evolved strains further confirmed the heterogeneity, uncovering distinct temporal genomic variations in com-

parison to the original strain (Figure 1C and Table S2). Notably, different clones displayed unique genomic alterations, with both hap4D and

ade1D strains exhibiting variations in single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). In hap4D strains, we identified

three SNPs and two indels, with one SNP and one indel located near the SND3 and AAH1 promoters, respectively, and another indel linked to

gene YDR544C. The remaining alterations were found within intergenic regions. The ade1D strains presented four SNPs and four indels,

including one SNP associated with gene YDR544C, one indel near the MRL1 promoter, with the others situated in intergenic areas. There

was scarcely any overlap between the clones or strains, except for one indel in a hap4D strain and one SNP in an ade1D strain, both linked
2 iScience 27, 111219, November 15, 2024



p=0.002
p=0.0001

p=0.002 p=0.04

A

D

E

F

G

I J

H

C

B

Figure 2. The expression changes of response genes during the ALE experiment

(A and B) Proportions of ever restored and unrestored response genes in evolved hap4D strains (A) and evolved ade1D strains (B), respectively.

(C andD) Violin plots of the expression levels inWT of restored and unrestored genes for hap4D (C) and ade1D (D), respectively. The values were derived from the

mean value of replicates of the original strains. The solid boxes within the plots represent the interquartile range, spanning from the first quartile to the third

quartile. The horizontal lines within these boxes indicate the median values. Statistical significance was assessed using the Wilcoxon test, and the

corresponding p values were labeled.

(E and F) Violin plots of the number of physical interacting partners of restored and unrestored genes for hap4D (E) and ade1D(F). The solid boxes within the plots

represent the interquartile range, spanning from the first quartile to the third quartile. The horizontal lines within these boxes indicate the median values.

Statistical significance was assessed using the Wilcoxon test, and the corresponding p values were labeled.

(G and H) The relative expression changes of restored response genes in hap4D (G) and ade1D (H). The restored time point of response genes in hap4D and

ade1D are colored by blue and yellow, respectively. The red dashed lines represent the range of |log2FC| < 0.263, which is the scope of restoration.

(I and J) The relative expression changes of unrestored response genes in hap4D (I) and ade1D (J) can be classified into four categories, with the number of

response genes in each category shown in parentheses and the proportion of genes having paralogs shown by stick charts. Statistical significances of the

proportion of genes having paralogs between corresponding groups were tested by Chi-squared test and p values were labeled.
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to gene YDR544C, which encodes a high-affinity glutamine permease. The annotations of these genomic variations could hardly link to the

knockout genes directly. Thismight be explained by the fact that the deleted genes are non-essential and the experimental conditions did not

impose any nutritional deficiencies. Interestingly, we observed a lack of continuity over time in the detection of four SNPs/indels (XIV_425434,

II_452356, XIV_359345, and V_117048). The allele states for these four genomic variations were all found to be polymorphic. This suggested

that the cell population at the examined time point may have exhibited a slight degree of heterogeneity. It also indicated that existing var-

iations may disappear, with the possibility of new variations appearing at the next time point.
Constant expression changes of most response genes during ALE

Our initial focus was on the response genes of gene knockout, defined as the differentially expressed genes (DEGs) in the initial knockout

strains compared to the original strains. These were identified using DESeq225 under a stringent statistical threshold (|log2FC| > 0.585,

padj < 0.01). We found that 323 genes responded to the HAP4 knockout and 134 genes to the ADE1 knockout at the expression level

(Tables S3 and S4). Given the observed heterogeneity in genome and growth rate among the evolved strains, we sought to explore whether

common patterns of expression changes for these response genes would emerge during adaptive evolution. We continued to monitor the

expression levels of these genes in the evolved strains by analyzing their expression changes relative to the original strains.

We classified response genes that reverted to the original strain’s range of expression levels at any time point (|log2FC| < 0.263) as ‘‘ever

restored’’. According to this definition, 61.3% (198/323) of hap4D response genes and 67.2% (90/134) of ade1D response genes were found to

be never restored (‘‘unrestored’’) (Figures 2A and 2B). To account for the heterogeneity in the evolved strains, we also compared each
iScience 27, 111219, November 15, 2024 3
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replicate independently to the original strains. We defined the restored state as |log2FC| < 0.263 in at least half of the replicates (Methods).

Unrestored response genes remained dominant. The proportions of unrestored genes were 59.4% (192/323) for hap4D response genes and

73.1% (98/134) for ade1D response genes (Figure S2). Typically, genes that were restored exhibited higher expression levels in the wild-type

strains and had a larger number of physical interaction partners compared to unrestored genes, particularly noticeable in the hap4D strains

(Figures 2C–2F). These findings suggest that genes of differing functional importance display variable responses throughout the ALE process,

with highly expressed and well-connected genes in the expression network showing resilience to perturbations. However, the restored state

of response genes appeared unstable. In the evolved strains of hap4D, 110 out of 114 genes that were initially restored at 14 days reverted to

an unrestored status at 28 days, and only 16 genes were restored at the endpoint (Figure 2G). Similarly, in the evolved strains of ade1D, 22 out

of 34 initially restored genes experienced a similar reversion (Figure 2H).

In the unrestored category, nine genes in the hap4D strain were exclusively responsive immediately post-knockout and remained un-

changed thereafter. Notably, six of these genes possess functionally redundant counterparts or paralogs, representing a 3.5-fold enrichment

compared to all responsive genes (Chi-squared test p = 0.002, Figure 2I and Table S5). This pattern suggests that knocking out HAP4 may

initiate a compensatory redistribution of expression among redundant genes, achieving a new equilibrium during the ALE process.

Conversely, for ade1D strains, this compensatory signal was less pronounced among 26 response genes unchanged since initial knockout,

showing only a 1.5-fold enrichment (Figure 2J and Table S6). However, a significant exclusion signal for ade1D strains was detected for un-

restored genes whose expression levels remained stable since the midpoint of evolution; only one out of 21 such genes had a paralog, con-

trasting with 39 out of 134 response genes (Chi-squared test p = 0.04, Figure 2J and Table S6), indicating a distinct adaptive response mech-

anism for these genes compared to those discussed previously.

Notably, in hap4D strains, 128 response genes exhibited continuous changes in expression, accounting for 64.6% of the unrestored genes,

with over 40% implicated in ribosomal biogenesis (Table S5). In ade1D strains, 19 response genes fell into this category, predominantly en-

riched in transmembrane transporter activity by GeneOntology (GO) analysis (Table S7). Additionally, we identified distinct subsets of 44 and

24 genes in hap4D and ade1D strains, respectively, that exhibited no expression changes at 14 days but showed significant alterations at

28 days, both enriched in catalytic activity by GO analysis (Table S7). These findings underscore the nuanced and multifaceted nature of

gene expression dynamics in response to different gene knockouts, and highlight a dynamic pattern of change as a central theme in the ef-

fects of knockouts during ALE.
Global transcriptomic states shift during ALE

A detailed examination of global transcriptomic dynamics of knockout strains across the culturing time was undertaken. We projected the

transcriptomic data from all knockout strains, along with the original strains, onto a two-dimensional Uniform Manifold Approximation

and Projection (UMAP)26 for hap4D and ade1D, respectively (Figures 3A and 3B and Table S8). The resulting transcriptomic landscape re-

vealed four distinct clusters, each characterized by unique time points. This was particularly pronounced in the hap4D strains, whose transcrip-

tomes progressively diverged from the original strains in a pattern that correlated with the duration of culturing time. A similar pattern was

observed in ade1D knockout strains, albeit with a higher degree of intra-replicate variability.

We identified DEGs between adjacent time points using the same statistical threshold as used for defining response genes (Tables S3 and

S4). In concordance with the UMAP plot, a higher number of DEGs were detected in hap4D as well as in ade1D. This was observed both when

comparing the evolved strains at the midpoint to the initial knockout strains (mid-evo vs. ini-evo), and when comparing the evolved strains at

the endpoint to those at themidpoint (end-evo vs. mid-evo) (Figures 3C and 3D). Importantly, significant expression variations were observed

across a large quantity of genes in evolved strains for both gene knockouts, compared to the number of response genes. This observation

underscores a comprehensive shift in the transcriptomic landscape rather than changes confined to the knockout genes.

The intersection of DEGs from ini-evo vs. ori and mid-evo vs. ini-evo comprised 195 and 38 genes for hap4D and ade1D, respectively. The

fold enrichments, compared to expected overlaps, were 2.4 and 1.8, respectively (Kolmogorov-Smirnov test p = 0.01 and 0.01, respectively,

Methods). This level of enrichment effectively rules out the possibility of the overlaps occurring by chance. Furthermore, the overlaps between

DEGs frommid-evo vs. ini-evo and end-evo vs. mid-evowas 655 and 166 for hap4D and ade1D, respectively, representing fold-enrichments of

3.9 and 2.1 over expected values (Kolmogorov-Smirnov test p = 0.005 and 0.03, respectively), which were also not coincidental. Intriguingly,

the majority of these intersecting DEGs exhibited reverse directional changes in the two compared strain sets, confirming the dynamic shift

between different time points (Figures 3E and 3F). Noticeably, ribosomal related genes occupied a considerable proportion in DEGs of

knockout strains between adjacent time points. This observation prompted us to further investigate the dynamics of ribosome biogenesis.
Ribosomal related genes are deeply involved in the late stage of ALE

Ribosome biogenesis is intimately tied to growth rate.27,28 We explored its dynamics in relation to the evolution process by analyzing the

expression variances of 384 key genetic components involved in ribosome synthesis, assembly, and ribosomal RNA (rRNA) decay. These

included genes which code 138 ribosomal proteins, 161 ribosomal assembly factors, 15 rRNAs, and 70 small nucleolar RNAs (snoRNAs)

(Table S9). We found that ribosomal related genes made up 29.4% (95/323) of all initial response genes in hap4D, which might due to the

function in the diauxic shift of HAP4 (Figure 4A). Contrastingly, in ade1D, ribosomal-related response genes comprised a mere 4.4% (6/

134), highlighting a striking disparity (Figure 4B). The proportion of ribosomal related genes in DEGs increased in conjunction with the

ALE process (Figures 4A and 4B). This suggests ribosome biogenesis has an influential role in the adaptive evolutionary process.
4 iScience 27, 111219, November 15, 2024
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Figure 3. Global transcriptomic dynamics of knockout strains across the culturing time

(A and B) Two-dimensional UMAP plots of the transcriptome, estimated by log2TPM, for hap4D (A) and ade1D (B) knockout strains, respectively. Arrows connect

the states of the same replicate at different timepoints.

(C and D) The numbers of DEGs between adjacent timepoints were shown for hap4D (C) and ade1D (D). These comparing groups include: initial KO strains vs.

original strains, evolved strains at the midpoint vs. initial KO strains, and evolved strains at the endpoint vs. evolved strains at the midpoint. Overlapping DEGs

between neighboring groups are highlighted in red.

(E and F) Heatmaps represent the expression changes of these overlapping genes in each comparing group of hap4D (E) and ade1D (F), respectively.

Overlapping DEGs with reverse directional changes in the two compared strain sets are designated as ‘‘reversed,’’ while those with the same directional

changes are designated as ‘‘reinforced.’’ The numbers of these DEGs were counted and labeled.
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The expression levels of most ribosomal protein genes changed very infrequently from the original strains to the midpoint evolved strains

both in hap4D and ade1D, but a high proportion of these proteins, 67.4% (93/138) and 60.9% (84/138) respectively, were down-regulated in

the evolved strains at the endpoint (Figures 4C and 4D). Regarding ribosomal assembly factors in evolved strains of hap4D, while there was an

upregulation of 76.4% (123/161) of ribosomal assembly factors in midpoint evolved strains, 90.1% (145/161) of these genes were down-regu-

lated at the endpoint (Figure 4E). The trends noted for evolved strains of ade1D were similar, albeit at a reduced scale (Figure 4F). Despite a

smaller proportion of ribosomal assembly factors displaying changes in their expression at the midpoint, all of these genes were up-regu-

lated, as seen in hap4D. However, at the endpoint, the domination of changed ribosomal assembly factors in expression persisted at

69.6% (112/161), with all of themmarked by downregulation. These findings suggest that ribosome biogenesis may be active during the early

adaptation stages of knockout strains but decelerate later on.

However, we noticed that the expression of rRNA genes, another core component of ribosome, showed a different pattern. For both gene

knockouts, the rRNA genes were upregulated in the mid-evolved strains apparently (Figures 4G and 4H). A similar upregulation pattern was

also noticed for snoRNAs in themidpoint evolved strains. Specifically, 71.4% (50/70) of snoRNAs in hap4D and 61.4% (43/70) in ade1Dwere up-

regulated (Figures 4I and 4J). Since the transcriptomewasmeasured according to the routine RNA-seq experiment, in whichmost rRNAswere

removed by selection of polyadenylated RNA transcripts using oligo (dT) primers theoretically, the observed variations in rRNAs essentially

reflect changes in polyadenylated forms of these RNAs, rather than the total rRNApool.We further calculated proportions of reads aligned to

rRNAs in the strains at each time point (Figure S3). Interestingly, we observed a shift in these proportions over the course of the experiment. In

the original strains, 6.2G 0.5% of reads aligned to rRNAs, which is typical for standard RNA-seq experiments. However, in the evolved strains

at the endpoint, these proportions changed dramatically to 48.1 G 8% for hap4D and 42.8G 6% for ade1D. This substantial increase in the

proportion of reads aligning to rRNAs suggests a significant change in the abundance of polyadenylated rRNA forms.

Similarly, the variation observed in snoRNA levels corresponds to this scenario, indicating alterations in their polyadenylated forms as well.

The polyadenylation of non-coding RNAs, including rRNA and snoRNA, is linked to RNA quality control mechanisms,29–31 suggesting that

degradation processes might be active.
DISCUSSION

Gene loss, a common occurrence throughout evolution, is believed to enhance an organism’s ability to adapt and evolve.9,32 Numerous

studies have explored the compensatory mechanisms and phenotypic outcomes of gene loss.15,33,34 In this study, we conducted a 28-day

serial transfer experiment involving two gene knockout yeast strains. We observed an increased growth rate among all strains, with rapid

augmentation in both knockout strain groups until the midpoint of the experiment. The growth rates of the initial knockout strains were

slightly faster than those of the original strains, although previous studies have found that the deletion of HAP4 and ADE1 can be detrimental
iScience 27, 111219, November 15, 2024 5
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Figure 4. Dynamics of Ribosome-related genes during the ALE experiment

(A and B) The numbers and proportions of ribosome-related genes in DEGs between adjacent timepoints are shown for hap4D (A) and ade1D (B). Ribosome-

related genes include rRNA, ribosomal protein genes, assembly factor genes, and snoRNA, which are indicated by different colors. The quantity of genes in each

category is also clearly labeled.

(E–J) Density curves represent the expression changes for each group of genes derived from evolved strains at the midpoint compared to initial KO strains

(green), and from evolved strains at the endpoint compared to evolved strains at the midpoint (purple). The upper row shows the expression changes in

hap4D (C, E, G, I), and the lower row shows the expression changes in ade1D (D, F, H, and J). The gray dashed lines represent the range of |log2FC| < 0.585,

and values outside this range indicate significant changes.
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to the growth rate in several S. cerevisiae strains.35–37 This discrepancy may be attributed to several factors. Variations in experimental con-

ditions and growth rate measurement methods may lead to inconsistent results. Previous studies often focused on specific contexts, such as

the effects of gene deletion during fermentation or competitive growth amongdifferent knockout strains. Additionally, we cannot exclude the

possibility of genomic variations in the original strains, potentially arising from long-term laboratory preservation, which might have altered

their growth characteristics. Nevertheless, our parallel comparison experimental design ensured that these potential confounding factors did

not affect our findings.

A significant discovery was the dynamic change in the transcriptome of evolved knockout strains, as opposed tomaintaining a stable state

in both knockouts. We identified this from two perspectives. From the viewpoint of response genes of gene knockout, only about one-third

was ever restored to the expression levels in the original strains. The genes that did return to their original expression levels are those that are

highly expressed and central within the expression network, suggesting a necessity to preserve the stability of these hub genes. The charac-

teristics of the genes that were not restored vary depending on which gene was deleted, highlighting the specific nature of these responses.

From the standpoint of the whole transcriptome, we noted a substantial quantity of DEGs of knockout strains between adjacent time points,

accounting for 15.7%–27.6% of all genes. These results propose that the adaptive consequence of gene lossmay not be unique and that there

may existmultiple suboptimal states of transcriptome throughout evolution. Previous studies supporting diverse phenotypes after adaptation

corroborate this suggestion.15,21

Another intriguing observation was the dynamic alteration in ribosome biogenesis, particularly regarding the polyadenylation of rRNA.

Typically, the proportion of polyadenylated rRNA is exceedingly low, leading to the assumption that routine RNA sequencing offers minimal

insight into rRNA characteristics. Kuai et al. revealed that 0.01%–0.1% of 25S rRNA was polyadenylated in the normal strain of S. cerevisiae.29

However, studies in recent twenty years have found some rRNAs can be also polyadenylated in Arabidopsis thaliana, mice, human cells, and

so on.38–41

Contrary to the role of the poly(A) tail in mRNA, polyadenylated rRNA is typically associatedwith rRNAdegradation.42–44 Remarkable poly-

adenylated rRNAs have been observed in cells defective in nuclear RNA degradation pathway, exosome in particular.29,45 For instance, de-

leting RRP6, a gene encoding a riboexonuclease component of the exosome, led to a hundredfold increase in polyadenylated 25S rRNA in

yeast compared to the wild-type strain.29 Additionally, the polyadenylation has been identified as playing a critical role in the quality control of

snoRNAs, at least in yeast.42,46 To mitigate potential technical biases, we conducted an additional serial transfer experiment on the hap4D

strain over two weeks, employing a different approach for cell collection and RNA extraction (Methods). This experiment also revealed a sig-

nificant increase in polyadenylated rRNAs of evolved strains at 14 days (Figure S4).
6 iScience 27, 111219, November 15, 2024
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Interestingly, a high proportion of upregulation of polyadenylated rRNAs and snoRNAs, as well as ribosomal assembly factors was

observed in both knockout strains at the midpoint, coupled with downregulation ribosomal protein genes and ribosomal assembly factors

at the endpoint. These findings provide valuable insights into the temporal coordination of ribosomal components, including the transcrip-

tion of rRNA, the production of ribosomal proteins, and the synthesis of assembly factors. Ribosome biogenesis might be active during the

early stages of the knockout strains’ adaptation. However, maintaining such an elevated level of ribosome biogenesis could potentially

disrupt the balance of protein synthesis within cells.47 Over-proliferation might result in an excessively rapid depletion of environmental nu-

trients. As time progresses, it becomes necessary for cells to regulate ribosome biogenesis. A plausible regulatory method could involve

reducing ribosome production and degrading rRNAs by polyadenylation. The pattern of accelerated ribosome biogenesis followed by a

deceleration aligned with the growth curve we observed, suggesting a dynamic process that adjusts to environmental conditions and cellular

needs over time. Furthermore, it is observed that the variations in the components involved in ribosome biogenesis are not synchronized,

indicating meticulous regulation within the process.

In conclusion, we demonstrate that the transcriptomes of evolved strains at different stages fail to fully revert to their original state, and

ribosome biogenesis emerges as a potentially crucial player in the adaptative response to gene knockout. These results significantly enhance

our understanding of adaptive evolution in gene knockouts and offer valuable insights into howgenetic perturbations affect various biological

systems.

Limitation of the study

Contrary to typical expectations, we did not find any distinct genomic variations directly related to the knockout genes. However, recent

studies have shown thatmutations can stochastically accumulate in the evolutionary process,48,49 indicating that each gene knockout presents

unique circumstances and outcomes.14 Considering that HAP4 and ADE1 are non-essential genes, and the culture conditions involved a com-

plete nutrient medium with a limited cultivation period, there was probably not strong selective pressure to fix specific compensatory muta-

tions. Our current data do not provide a comprehensive quantification of the abundance of polyadenylated rRNAs and snoRNAs relative to

the entire pool of rRNAs and snoRNAs. This limitation restricts our ability to fully assess the magnitude and significance of the observed up-

regulation in the context of overall cellular RNA composition. While the study observes changes in gene expression related to ribosome

biogenesis, we are unable to provide detailed molecular insights into these changes and their direct impact on cellular processes. Further

investigation is needed to elucidate the specific mechanisms underlying the observed transcriptomic shifts.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Transcriptomes of strains each timepoint This paper NCBI: BioProject ID PRJNA1060357

Whole genome sequencing data This paper NCBI: BioProject ID PRJNA1060357

Experimental models: Organisms/strains

S. cerevisiae: strain BY4741 Xionglei He lab N/A

Software and algorithms

GATK (Version 4.2.0.0) GATK https://github.com/broadinstitute/gatk/

SnpEff (Version 4.3t) SnpEff https://pcingola.github.io/SnpEff/

STAR (Version 2.7.8a) STAR Dobin et al.50

FASTX Toolkit (Version 0.0.14) FASTX Toolkit http://hannonlab.cshl.edu/fastx_toolkit/

Trim galore (Version 0.6.4_dev) Trim galore https://github.com/FelixKrueger/TrimGalore

BWA (Version 0.7.17-r1198-dirty) BWA Li and Durbin51

Picard tools Picard tools http://picard.sourceforge.net

SAMtools (version 1.10) SAMtools Li et al.52

Featurecounts (version 1.6.2) Featurecounts Liao et al.53

DESeq2 DESeq2 Love et al.25

R studio (R version 4.0.3) R studio https://posit.co/downloads/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study utilized Saccharomyces cerevisiae strain BY4741 (MATa, his3, leu2, met15, ura3), which was maintained in a �80�C freezer.

METHOD DETAILS

Yeast gene deletions

S. cerevisiae strain BY4741 (MATa, his3, leu2,met15, ura3) was included in this study. HAP4 and ADE1 were replaced respectively, by a URA3

cassette in BY4741. The replacements were achieved by homologous recombination through standard polyethylene glycol (PEG)/LiAc-based

method.3 The transformation protocol was as follows: Yeast cells were cultured overnight in yeast extract peptone dextrose (YPD) medium at

30�C with continuous shaking at 200 RPM in darkness. Subsequently, 100 mL of the culture was inoculated into 50 mL fresh YPD medium and

grown to mid-log phase (OD600 0.6–0.8). Cells were then harvested, washed with sterile water, and resuspended in 100 mM LiAc for a 10-min

incubation at room temperature. For each transformation, 50 mL of cell suspensionwas combinedwith a transformationmix comprising 240 mL

50% PEG 3350, 30 mL 1M LiAc, 10 mL heat-denatured single-stranded carrier DNA, 30 mL sterile water, and 2–4 mg URA3 cassette DNA with

homologous arms. This mixture underwent heat shock at 42�C for 25 min. Post-centrifugation, transformed cells were resuspended in sterile

water. Then the transformants were spread on the plates of synthetic medium deprived of uracil (SC-URA, 2% glucose) and cultured at 30�C
for 2 days. The positive clones were confirmed by polymerase chain reaction (PCR). For each gene deletion line, three independent clones

were chosen for subsequent experiments.

Serial transfer experiment

A total of 12 samples were carried out, including 2 technical replicates for 3 positive biological clones of 2 gene deletion lines (hap4D and

ade1D). All samples were incubated in 50mL conical tubes with screw caps containing 15mL of synthetic complete (SC) medium. Cultures

were incubated at 30�C with continuous shaking at 200 RPM in a dark environment. The serial transfer proceeded for 28 days without

stop. All samples were transferred to 15mL fresh SC medium at 50mL tube every 2 days. The dilution ratio for each transfer was 1:105. The

deleted loci of all samples in deletion lines were confirmed by PCR every 6 days to check status of contamination.

Growth rate measurement

Growth ratemeasurement were conducted for the wildtype strain, the initial knockout strains, and the evolved knockout strains at 14 days and

28 days. Strains (when saturated) at these measured days were diluted 1:200 to 15mL fresh SC medium in 50mL tube, which resulted in an
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initially optical density OD600 = 0.05 (UNICOUV/VIS Spectrophotometer). All strains were incubated in the SC medium at 30�C with shaking.

OD600 for each sample weremeasured per 2 h until the growth of samples achieved the platformperiod (Normally at OD600R1.0). To calcu-

late the growth rate, we focused on the values obtained during the logarithmic phase (0.1 < OD600 < 0.8). The natural logarithm of OD600

values (ln(OD600)) was plotted against time (t) for each strain. Linear regression analysis was performed using the lm function in R Studio to fit

these data points. The growth rate for each strain was determined from the slope coefficient of the resulting linear fit.54 The values of growth

rate for each strain were listed in Table S1.
Whole-genome sequencing and data analysis

One technical replicate was randomly chosen for each biological replicate. In total 9 samples were subject to whole-genome sequencing to

identify mutations. For each sample, genomic DNA was extracted from �108 yeast cells by Omega Yeast DNA kit (D3370-01). The whole

genome sequencing was performed using the paired-end strategy on Illumina HiSeq at Genwiz following the standard procedure.

Approximately 6 million reads were generated for each library, corresponding to an average sequencing depth of �1003. After trimmed

50-end 10 bp by FASTX Toolkit (Version 0.0.14; http://hannonlab.cshl.edu/fastx_toolkit/) with parameter settings (-f 11 -z) and cleaned by Trim

galore (Version 0.6.4_dev; https://github.com/FelixKrueger/TrimGalore) with parameter settings (–length 100 –quality 30), remaining reads

were aligned to the yeast genome by BWA51 (Version 0.7.17-r1198-dirty) with default parameter settings, and duplicated reads were removed

by Picard tools (http://picard.sourceforge.net). We used the genome of S. cerevisiae strain S288C as the reference (version R64-1-1; http://

www.yeastgenome.org) with genome annotation file (version R64-1-1.104, genome-date 2011-09, genome-build-accession

GCA_000146045.2, genebuild-last-updated 2018-10).

Single-nucleotide mutations (SNPs) and indels were called on the Genome Analysis Toolkit (GATK) platform (Version 4.2.0.0) with default

settings (https://github.com/broadinstitute/gatk/). Variant annotation and effect prediction were done by SnpEff (Version 4.3t, https://

pcingola.github.io/SnpEff/). SNPs were filtered by GATK with parameters (–cluster-window-size 10 –cluster-size 3 –missing-values-eval-

uate-as-failing -filter "QD< 2.0" –filter-name "QD2" -filter "QUAL<30.0" –filter-name "QUAL30" -filter "FS > 60.0" –filter-name "FS60" -filter

"MQ < 40.0" –filter-name "MQ40" -filter "SOR >3.0" –filter-name "SOR3" -filter "MQRankSum < �12.5" –filter-name "MQRankSum-12.5"

-filter "ReadPosRankSum < �8.0" –filter-name "ReadPosRankSum-8") and indels were filtered with parameters (-filter "QD < 2.0" –filter-

name "QD2" -filter "FS > 200.0" –filter-name "FS200" -filter "QUAL <30.0" –filter-name "QUAL30" -filter "SOR >10.0" –filter-name

"SOR10" -filter "MQRankSum < �12.5" –filter-name "MQRankSum-12.5" -filter "ReadPosRankSum < �8.0" –filter-name "ReadPosRank-

Sum-800).
RNA extraction and sequencing

For each sample involved in the serial transfer experiment, total RNA was extracted as following procedures. Strains (when saturated) were

1:100 diluted to 15mL fresh SC medium and incubated at 30�C with shaking. Cells of 8 mL culture at OD600 = 0.65–0.7 were harvested. Total

RNAof all samples was extracted byQIAGENRNeasy Plusmini kit (Cat No.74136). The sequencingwas performed using the paired-end strat-

egy on Illumina HiSeq platform at Genwiz by standard procedure.

To exclude the batch effect in RNA extraction, we performed another serial transfer experiment of hap4D line with three biological rep-

licates. Ini-KO strains were maintained at �80�C in glycerol stocks, and were revived after 14 days. Total RNAs of these samples were ex-

tracted at the same batch and then sequenced as the above procedure.
RNA-seq data analysis

Approximately 20 million reads were generated for each sample, corresponding to an average sequencing depth of �1003. Samples with

total reads less than 15 million or detectable degradation were filtered (one replicate of theWT strains, and on replicate of ade1D at 14 days).

After trimmed 50-end 15 bp by FASTX Toolkit (Version 0.0.14; http://hannonlab.cshl.edu/fastx_toolkit/) with parameter settings (-f 16 -z) and

cleaned by Trim galore (Version 0.6.4_dev; https://github.com/FelixKrueger/TrimGalore) with parameter settings (–length 100 –quality 30),

remaining reads were mapped to reference yeast genomes using STAR50 (Version 2.7.8a). We used the genome of S. cerevisiae strain

S288C as the reference (version R64-1-1; http://www.yeastgenome.org) with genome annotation file (version R64-1-1.104, genome-date

2011-09, genome-build-accession GCA_000146045.2, genebuild-last-updated 2018-10).

After mapping, SAMtools52 (version 1.10) was used to filter all secondary alignments from raw bam file by setting parameter ‘‘-F 0x100’’,

leaving only primarily alignments. Modified bam file was taken into expression levels determination by Featurecounts53 (version 1.6.2) with

specific parameters (-p -T 20 -M –largestOverlap -t exon -g gene_id). We found the pre-transcript and mature transcript of rRNA were mean-

while annotated in the original version of genome annotation file (gtf), and we removed two features RDN37-1 and RDN37-2 in the gtf file in

the following analysis. In total 5789 genes including verified genes and RNA genes related to ribosomal biogeneis were analyzed.

In order to detect the differentially expressedgenes of knockout strains comparedwith thewild-type strains, and between knockout strains

in adjacent timepoints, we used the negative binomial generalized linear models provided by the software package DESeq2.25 At the same

time, we used the apeglmmethod for effect size shrinkage.55 Finally, genes of knockout strainsmeeting the following conditions were consid-

ered as differentially expressed genes: the expression fold change is greater than 1.5 or less than 0.67 (|log2FC| > 0.585), and the adjusted p

value is less than 0.01 (padj < 0.01). To account for the heterogeneity observed in the evolved strains, we implemented a replicate-level anal-

ysis. Each replicate of the evolved strains was separately compared to the original strains. This approach allowed us to capture the variability
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between replicates that might bemasked in a pooled analysis. For each gene in each replicate, we derived the value of log2FC relative to the

expression in the original strain.

TPM (Transcripts Per Million) of each gene were further analysis by R studio (R version 4.0.3). We performed dimensionality reduction with

the UMAP algorithm by R package umap26 to project transcriptomes (log2TPM) of all strains into two dimensions using default parameters

(Table S8).
Calculation of fold enrichment of the intersection of DEGs

We randomly selected a set of genes from the entire gene pool. The number of selected genes was equivalent to the number of DEGs in the

two groups under comparison. This process was repeated 100 times to generate a robust average overlap value. The calculated average was

then compared with the actual observed overlap value to evaluate the fold enrichment of our findings.
Gene annotations and features analysis

Gene annotations were downloaded from Saccharomyces Genome Database (SGD, http://sgd-archive.yeastgenome.org/curation/

literature/gene_association.sgd). Physically interacting partners for each gene were extracted from the BioGRID database (https://

thebiogrid.org/BIOGRID-ORGANISM-Saccharomyces_cerevisiae_S288c-3.5.169). The paralogous gene pairs were extracted from Wapinski

et al.’s study.56 The Gene Ontology (GO) analysis of response genes were performed by Gene Ontology Term Finder on SGD (https://www.

yeastgenome.org/goTermFinder).

The list of 77 snoRNAs was downloaded from Ryu H-Y’s study.57 138 ribosome protein genes were obtained from Monticolo’s study.58 A

total of 161 assembly factors (3 overlaps between two subunits) that function in maturation of 40S (73) and 60S (91) ribosomal subunits in

S. cerevisiae were acquired from Woolford’s study.59 These genes were listed in Table S9.
QUANTIFICATION AND STATISTICAL ANALYSIS

Growth rates of strains at each time point were compared pairwise. Statistical analyses were conducted using the Wilcoxon test in R Studio.

The original strains had three replicates, while the knockout strains had six replicates. The Wilcoxon test in R Studio was used to assess sta-

tistical significance for expression levels and the number of physical interacting partners between restored and unrestored genes. The Chi-

squared test in R Studio was employed to evaluate the statistical significance of the proportion of genes having paralogs between corre-

sponding groups.
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