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Abstract

The diagnosis of myeloid neoplasms (MN) has significantly evolved through the last few

decades. Next Generation Sequencing (NGS) is gradually becoming an essential tool to

help clinicians with disease management. To this end, most specialized genetic laboratories

have implemented NGS panels targeting a number of different genes relevant to MN. The

aim of the present study is to evaluate the performance of four different targeted NGS gene

panels based on their technical features and clinical utility. A total of 32 patient bone marrow

samples were accrued and sequenced with 3 commercially available panels and 1 custom

panel. Variants were classified by two geneticists based on their clinical relevance in MN.

There was a difference in panel’s depth of coverage. We found 11 discordant clinically rele-

vant variants between panels, with a trend to miss long insertions. Our data show that there

is a high risk of finding different mutations depending on the panel of choice, due both to the

panel design and the data analysis method. Of note, CEBPA, CALR and FLT3 genes,

remains challenging the use of NGS for diagnosis of MN in compliance with current guide-

lines. Therefore, conventional molecular testing might need to be kept in place for the cor-

rect diagnosis of MN for now.

Introduction

Myeloid neoplasms (MN) comprise a group of clonal disorders biologically and clinically het-

erogeneous characterized by ineffective hematopoiesis, due to Hematopoietic Stem Cells

(HSC) excessive proliferation and defective myeloid linage differentiation [1].
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The diagnosis of myeloid malignancies has significantly evolved through the last few

decades. Nowadays, blood cell morphology, blast count, cytogenetics and molecular analysis

are crucial for clinicians to diagnose and to predict prognosis of MN following the World

Health Organization (WHO) classification [2]. This classification includes the genetic charac-

terization of genes such as JAK2, MPL and CALR for Myeloproliferative Neoplasms (MPN);

ASXL1, CEBPA, DNMT3A, FLT3, IDH1/2, KIT, KMT2A, NPM1, RUNX1, TET2, TP53 and

WT1 genes for Acute Myeloid Leukemia (AML); and SF3B1, for Myelodysplastic Syndromes

(MDS). Along the last few years, the scientific community has deepened its understanding on

the genetic aberration associated to MN through the discovery of other recurrently mutated

genes such as ASXL1, DNMT3A, EZH2, RUNX1, SRSF2, TET2, TP53 and U2AF1 in MDS [3]

[4], and ASXL1, CBL, EZH2, NRAS/KRAS, RUNX1, SETBP1, SRSF2 and TET2 in Chronic

Myelomonocytic Leukemia (CMML) [5][6][7][8]. A number of these genes have been related

to patient prognosis; for example, it is well known that mutations in SF3B1 gene in MDS with

ring sideroblasts (MDS-RS) are related to good prognosis [9], whereas mutations in TP53 gene

are usually related to poor outcomes [10]. These discoveries are crucial to help clinicians in the

management of the disease, hence the correct characterization of the genes is vital.

Hematological malignancies are genetically heterogeneous, and recent studies have eluci-

dated the importance of genomic testing (rather than individual gene testing) to understand

the pathology of the disease [3][4][11]. Due to its wide scope, Massive Parallel Sequencing

(also called Next Generation Sequencing, NGS) is being increasingly used for genomic charac-

terization of clinical samples. NGS is nowadays not just an essential tool for the discovery of

new gene mutations, but is also becoming a rather useful technique to improve patient diagno-

sis, prognosis and treatment based on identified tumor variants.

There are several ways to perform NGS on DNA, including whole-genome sequencing

(WGS), which allows sequencing of the entire genome; whole-exome sequencing (WES),

which focuses on the coding regions (exons), encompassing ~2.5% of the total human genome;

and targeted sequencing (also known as NGS panels), which focuses on a certain number of

genes, generally involved in the biology of a specific disease [12]. NGS panels are the NGS

tools most widely used for clinical applications, mainly for cost effectiveness reasons, but also

because they allow deeper sequencing, permitting detection of small mutant clones. For MN

there is a plethora of different NGS panels developed by research groups all over the world as

well as commercially available panels.

In this study we have compared the analytic performance of four NGS panels focused on

myeloid malignancies. To that end, samples from 32 patients with MN were sequenced using

three different commercially available targeted gene panels, offered by Illumina, Oxford Gene

Technology (OGT), and SOPHiA GENETICS; the other one is a customized pan-myeloid

panel developed in collaboration with SOPHiA GENETICS. The aim of this study is to dissect

a number of NGS panels available for genomic characterization of MN, discuss their design,

chemistry, analysis pipeline, and whether they cover and detect mutations in the most relevant

genes related to MN. We hope to offer helpful criteria to hematological genetic laboratories

when implementing new NGS panels.

Materials and methods

Patient samples

A total of 32 patient bone marrow (BM) samples were accrued: 17 with AML, 7 with MPN, 6

with MDS, and 2 with CMML. BM was the tissue of choice for analysis following European

recommendations [13]. Seventeen of those samples were analyzed with TruSight™ Myeloid

Panel (TSMP) (Illumina, San Diego, CA, USA), 16 with SureSeq™CoreMPN Panel and
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SureSeq™AML Panel (SureSeq) (Oxford Gene Technology, Oxford, UK), 15 with Myeloid

Solutions ™panel (MYS) (SOPHiA GENETICS, Saint Sulpice, Switzerland), and all 32 were

tested with a custom Pan-Myeloid Panel (PMP) (University of Navarra and University Hospi-

tal of Salamanca) (Fig 1).

All DNA samples were extracted using QIAamp DNA Blood Mini Kit (Qiagen, Hilden,

Germany), quantified using Qubit dsDNA BR Assay Kit on a Qubit 3.0 Fluorometer (Life

Technologies, Carlsbad, CA, USA), and DNA quality was assessed by DNA genomic kit on a

Tape Station 4100 (Agilent Technologies, Santa Clara, CA, USA).

DNA samples from 15 patients were sent to SOPHiA GENETICS (Saint Sulpice, Switzer-

land) and 16 DNA samples to Oxford Gene Technology (OGT) (Oxford, UK) for library prep-

aration, sequencing, and variant calling.

Samples and data from patients included in the study were provided by the Biobank of the

University of Navarra (UN) and were processed following standard operating procedures

approved by the CEI (Comité de Ética de la Investigación) of UN. Patient’s data were fully

anonymized, and all patients provided informed written consent to have data from their medi-

cal records such as age, gender and diagnosis to be used for research purposes.

TruSight Myeloid Panel (TSMP)

TruSight Myeloid Panel (TSMP) (Illumina, San Diego, CA, USA), consists of 568 amplicons of

250 base pairs (bp) in length, with a total genomic footprint of 141 kb, targeting the full CDS

of 15 genes and exonic hot spots of 39 additional genes (Fig 2) (S1 Table).

Libraries of 17 patient’s samples were prepared by our team following manufacturer’s

instructions. Libraries quality was assessed using DNA D1000 kit and a Tape Station 4100

(Agilent Technologies, Santa Clara, CA, USA), and libraries quantity was assessed with Qubit

dsDNA HS Assay Kit and Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA).

Libraries were normalized according to the measured quantity and pooled together at 4nM.

A total of 10.5 pM of the 8 pooled libraries was pair-end sequenced on a MiSeq (Illumina,

San Diego, CA, USA) with 201x2 cycles using the Reagent Kit V3 600 cycles cartridge, accord-

ing to manufacturer’s instructions. Bam and Variant Calling Files (VCF) were directly

obtained from MiSeq instrument and variants were annotated using Variant Studio (Illumina,

San Diego, CA, USA).

Myeloid Solutions™ Panel

Myeloid Solutions™ Panel (MYS) (SOPHiA Genetics, Saint Sulpice, Switzerland), consists in a

hybridization capture-based panel, with a total genomic footprint of 49 kb, targeting the full

CDS of 10 genes and exonic hotspots of 20 additional genes (Fig 2) (S2 Table).

Extracted DNA from 15 patient samples was sent to SOPHiA GENETICS facilities, where

they carried out libraries preparation and pair-end sequencing on a MiSeq (Illumina, San

Diego, CA, USA) with 251x2 cycles using Reagent Kit V3 600 cycles cartridge, according to

manufacturer´s instructions. Alignment, base calling and variant annotation were performed

with SOPHiA DDM software.

SureSeq™ panels

SureSeq™ AML Panel and SureSeq™ Core MPN Panel (Oxford Gene Technology, Oxford, UK),

consists in 2 hybridization capture-based panels with a total genomic footprint covering 53 kb;

one panel targets the full CDS of 20 genes, and the other one targets exonic hotspots of 3 addi-

tional genes (MPL, JAK2 and CALR) (Fig 2) (S3 Table).
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Extracted DNA from the same 15 patients sent to SOPHiA GENETICS, was sent to OGT

facilities, where they carried out library preparation according to their own protocol. Libraries

were pair-end sequenced on a MiSeq (Illumina, San Diego, CA, USA) with 151x2 cycles using

Reagent Kit V2 cartridge, according to manufacturer´s instructions.

Pan-Myeloid Panel (PMP)

Pan-Myeloid Panel (PMP) consists in a hybridization capture-based panel developed by the

UN (Pamplona, Spain) and the University Hospital of Salamanca (Salamanca, Spain) in collab-

oration with SOPHiA GENETICS (Saint Sulpice, Switzerland). It counts on a total genomic

footprint of 114 kb, targeting 63 genes. For the detection of Single Nucleotide Variants (SNV),

insertions and deletions (indels) we targeted 48 genes: full CDS of 22 genes, and exonic hot-

spots of 26 additional genes (Fig 2) (S4 Table). This panel was also designed with the aim of

detecting Copy Number Variations (CNV) in chromosomes 5, 7, 8 and 20; these data have not

been included in the present study.

Libraries were carried out following manufacturer’s instructions. Final libraries quantity

was measured using the Qubit dsDNA HS Assay Kit in a Qubit 3.0 Fluorometer (Life Technol-

ogies, Carlsbad, CA, USA), and libraries quality was assessed using DNA D1000 kit, and visu-

alized on the Agilent 4100 Tape Station (Agilent Technologies, Santa Clara, CA, USA).

Libraries were normalized and pooled together at 4nM.

A total of 10.5 pM of 8 pooled libraries was pair-end sequenced on the MiSeq (Illumina,

San Diego, CA, USA) with 251x2 cycles using the Reagent Kit V3 600 cycles cartridge, accord-

ing to manufacturer’s instructions. Raw data were directly obtained from the MiSeq and

uploaded onto SOPHiA DDM software, where alignment, variant calling and annotation were

performed.

Sequencing and variant data analysis

Aligned reads were counted using SAMTools version 1.6. Read counting and plotting were

performed using R version 3.4.2 (RStudio, Boston, MA, USA).

SureSeq™ panels bam files analysis was performed using VarScan version 2.3.9, with strand

bias filters and setting minimum read to 5. Variant calling of the other three panels was per-

formed within SOPHiA DDM software version 5.2.7.1 (SOPHiA GENETICS, Saint Sulpice,

Switzerland) for MYS and PMP, or within the MiSeq (Illumina, San Diego, CA, USA) for

TSMP.

List of annotated variants were reviewed for filtering out of intronic, intergenic and splice

regions variants. Only variants with a minimum variant allele frequency (VAF) of 5% and with

a minimum coverage of 100 reads were kept to avoid potential sequencing errors. Variants

were categorized by two geneticists with expertise in hematological malignancies, and only

variants classified as pathogenic and likely pathogenic were considered clinically relevant.

Clinical classification of the variants was individually reviewed according to current guidelines

from the Spanish Group of Myelodysplastic Syndromes [14]. Aligned reads were manually

curated for confirmation of the presence of the filtered-in variants within the Integrative

Genomics Viewer (IGV) software (Broad Institute) [15]. Variant data were summarized using

Fig 1. Samples assessed by each panel. Thirty two bone marrow patient samples (17 AML, 7 MPN, 6 MDS, and 2

CMML) were sequenced: 17 were assessed with TSMP (Illumina, San Diego, CA, USA), 16 with SureSeq panels

(Oxford Gene Technology, Oxford, UK) panel, 15 with MYS panel (SOPHiA GENETICS, Saint Sulpice, Switzerland)

panel, and all 32 were tested with the custom PMP.

https://doi.org/10.1371/journal.pone.0227986.g001
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median and range, and plotted using GraphPad Prism 5 (GraphPad, La Jolla, California,

USA).

Genetic molecular testing

Purity and concentration of the extracted DNA were measured using a NanoDrop 1000 spec-

trophotometer (ThermoFisher SCIENTIFIC, Waltham, MA, USA).

Mutations in CEBPA exon were detected by genomic DNA PCR, cloning and Sanger

sequencing using the primers and following the procedures previously described [16][17].

Mutations in CALR exon 9 were assessed by PCR and Sanger sequencing [18]. FLT3 exons 14

and 15 were assessed by PCR and capillary electrophoresis using 5ng of genomic DNA per

samples to detect the presence of internal tandem duplications (ITD) [19]. The ratio of FLT3-

ITD to wild-type FLT3 was quantified by the Applied Biosystems sequencing software GeneS-

can1 as described previously [20]. FLT3 exon 20 was tested by PCR and RFLP analysis for

presence of mutations in codons p.Asp835/p.Ile836 [21]. PCR products were Sanger

sequenced at Macrogen Europe´s facilities (Amsterdam, Netherlands).

The molecular analysis data obtained by conventional molecular techniques for all patients

are shown in Table 1. Patients 1, 5 and 8 harbored biallelic CEBPA mutations; patients 2, 3, 7

and 12 harbored FLT3-ITD favorable ratio (< 0.5) and NPM1 not mutated; patient 11 had

FLT3-ITD favorable ratio and mutated NPM1; patients 4, 9, 10 and 13 presented monoallelic

CEBPA; patients 6 and 14 had CALR mutated; patients 15 and 16 had unfavorable FLT3-ITD

ratio (> 0.5); and patient 23 presented triple negative MPN (CALR, JAK2 and MPL genes

non mutated). The 14 remaining patients had not been tested by conventional molecular

techniques.

Results

Comparison of the NGS panels characteristics

a) Panels performance. Based on the technology used for capturing the genomic regions

of interest for library preparation there are two types of NGS targeted panels: hybridization

capture-based libraries or amplicon-based libraries. TSMP was the only amplicon-based panel

in this study; the other three panels (SureSeq, MYS and PMP) were hybridization capture-

based panels. Library preparation for TSMP and SureSeq panels took one day, whereas for

PMP and MYS panel took two working days. All panel’s chemistry was compatible with the

Illumina sequencer MiSeq, but differ in the sequencing time, due to the number of sequencing

cycles: PMP took the longest run time (50h, 250x2 cycles) and SureSeq panels the shorter run

time (less than 24h, 151x2 cycles). Software analysis were available for TSMP, PMP and MYS

panels at the time of the study. The performance of the panels is summarized in Table 2.

b) Panels design and clinical relevance of the genes covered. All four panels analized de

same 19 genes (core myeloid gene set), among others, those being ASXL1, CALR, CEBPA,

DNMT3A, ETV6, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, RUNX1, TET2,

TP53, U2AF1, WT1 (Figs 2 and 3). However, the target regions for that core myeloid gene set

differ between the four panels included in this study (S1 Fig). Panels design and clinical rele-

vance of the genes are represented in Fig 2.

Fig 2. Genes covered by each panel and their clinical relevance. The 62 genes included in the present study are listed

on the right. Black color denotes which gene is covered in each panel. Green color highlights the 53 genes that have

been described as clinically relevant for MN, since they show diagnostic, prognostic and/or predictive value, or they

have been related to predisposition to develop MN. Red color represents genes that are not clinically relevant in MN.

Grey color marks those genes that has been described in MN but their clinical relevance is still unknown.

https://doi.org/10.1371/journal.pone.0227986.g002
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For example, exon 10 of MPL gene is included in all panels, whereas exons 3–6 and 12 are

targeted only by PMP. Similarly, ASXL1 exon 12 is covered by all panels, while SureSeq™ AML

covers ASXL1 full CDS (S2 Fig, S1–S4 Tables).

Table 1. Conventional molecular testing data of patients included in the study.

Patient

ID

Pathology Karyotype FISH Molecular

1 AML 46, XY [30] NP CEBPA biallelic

2 AML secondary to MDS 46,XX, del(20)(q12)[15]/46,XX[15] NP FLT3-ITD favorable/NPM1 non mutated

3 AML secondary to

treatment

46,XX del(11)t(11;11)(p15;q23)[23]/

46,XX[7]

11q23 (KMT2A/MLL) negative FLT3-ITD favorable/NPM1 non mutated

4 AML null RUNX1-RUNXT1 negative CEBPA monoallelic

5 AML M1 NP PDGFRβ, FGFR1 negative CEBPA biallelic

6 Essential

Thrombocytopenia

NP NP CALR

7 AML M5 NP NP FLT3-ITD favorable/NPM1 non mutated/WT1
overexpressed

8 AML NP NP CEBPA biallelic

9 AML M1 NP PDGFRβ negative CEBPA monoallelic /FLT3 non mutated

10 AML 46, XY [30] NP CEBPA monoallelic

11 AML M1 NP NP FLT3-ITD favorable/NPM1 mutated

12 AML NP NP FLT3-ITD favorable/CEBPA and NPM1 non

mutated

13 AML 46, XX [30] NP CEBPA monoallelic

14 Essential

Thrombocytopenia

NP NP CALR mutated /JAK2 non mutated

15 AML secondary CMML Null NP FLT3-ITD (ratio 1,11) Unfavorable

16 AML 46, XY [30] NP FLT3-ITD (ratio 1,06) Unfavorable

17 MDS 45,X,-Y[29]/46,XY[1] del(5q) and del (7q) negative NP

18 AML M2 NP NP NP

19 MDS 47,XY,+13[10]/46,XY[40] del(5q), del (20q) and del (7q)

negative

NP

20 MDS-EB1 46,XX [30] del(5q), del (20q) and del (7q)

negative

NP

21 Myelofibrosis NP NP NP

22 Myelofibrosis NP NP NP

23 Myelofibrosis Null NP MPN Triple Negative

24 CMML 46,XX [30] NP NP

25 MDS 46,XX [30] del(5q), del (20q) and del (7q)

negative

NP

26 Polycythemia Vera NP NP NP

27 Myelofibrosis NP NP NP

28 MDS (del(5q)) NP NP NP

29 AML NP NP FLT3 (ITD—D835) non mutated/CEBPA and

NPM1 non mutated

30 AML in treatment 46,XY,t(3;6)(q26;q21) NP NP

31 MDS-EB2 46,XY,inv(9)(p12q13)[30] NP NP

32 CMML 46,XY,add(15)(p13),add(21)(q22)

[30]

NP NP

AML = Acute Myeloid Leukemia; NP = Non Performed; MDS = Myelodisplastic Syndromes; CMML = Chronic Myelomonocytic Leukemia; MDS-EB = Myelodisplastic

Syndromes with Excess Blasts; MPN = Myeloproliferative Neoplasm

https://doi.org/10.1371/journal.pone.0227986.t001
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Table 2. Characteristics of panel performance.

PMP (SOPHiA GENETICS) MYS (SOPHiA GENETICS) SureSeq (OGT) TSMP (Illumina)

Number of samples 32 15 16 17

Type of library preparation Hybridization capture Hybridization capture Hybridization capture Amplicon-based

Wet-lab working time (days) 2 2 1 1

Possibility of customization Yes Yes Yes No

Sequencing cycles and time 251cycles/50h 251cycles/48h 151cycles/24h 201cycles/40h

Analysis Software SOPHiA DDM SOPHiA DDM Under development at the time of the study Variant Studio

https://doi.org/10.1371/journal.pone.0227986.t002

Fig 3. Number of genes shared between panels. All four panels covered the same 19 genes (core myeloid gene set). TSMP, PMP and Sureseq panels design

includes 4 genes not targeted by MYS. PMP, TSMP and MYS panels target 8 genes not included in SureSeq panel design. TSMP and PMP cover 9 genes that are

not within MYS and SureSeq panel scope. TSMP and MYS panels cover 3 genes not included in the other two panels.

https://doi.org/10.1371/journal.pone.0227986.g003
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The 19 genes included in the core myeloid gene set, have extensively been described as rele-

vant in different myeloid malignancies. All of them show prognostic value; CALR, JAK2 and

MPL have also diagnostic value; and CALR, DNMT3A, JAK2, KIT, FLT3, IDH1/2 and TET2
have been shown to bear predictive value. The remaining genes included in the panels, fine

tune the design so they were useful for different aims. For example, SureSeq™ panels were

designed for analysis of AML and MPN cases, but it lacked essential genes for the study of

MDS, such as genes involved in splicing (SF3B1, SRSF2, ZRSR2), epigenetic regulation

(EZH2), transcriptional regulation (GATA2) or signal transduction (CBL) [22][23][24][25].

Similarly, MYS panel was designed to characterize the mutational landscape of MDS, MPN

and AML, but it missed a number of relevant genes such as the transcription regulators

GATA2, IKZF1, and PHF6 [25][26]. On the contrary, TSMP included some genes relevant to

lymphoid malignancies, such as MYD88, NOTCH1 and PTEN [27][28][29]. In addition, PMP

was the only one that included the analysis of myeloid-relevant genes as CSNK1A1, NF1,

PPM1D, and SH2B3 [30][31][32][33]. However, there is still room for PMP improvement,

because it lacked targeting the recently described mutated exons in FLT3 gene [34], which are

covered only by SureSeq™ AML panel. The recurrence of mutations for different MNs in the

genes covered in any of the analyzed panels is summarized in S5 Table.

Comparison of the NGS panels coverage

Depth of coverage is the average number of mapped reads at a given locus in the panel. The

importance of a good panel coverage resides in the fact that a low coverage limits the ability to

confidently call a variant present in the sample, especially those variants with low allele fre-

quency. Fig 4 shows the mean of depth of coverage for each panel by gene; a mean coverage of

1000x allows detection of clones present at 0.1% (cut-off value of 10 reads, assuming there is

no strand-bias).

All panels showed mean coverage over 1000x. However, we observed that TSMP did not

cover CEBPA gene as homogeneously as the other panels; this might be because TSMP is an

amplicon-based panel, and CEBPA is a one-exon gene lying within a CpG Island [20]. There-

fore, PCR-based library preparation struggles to amplify (and capture) this gene, challenging

the detection of variants in CEBPA gene (S3 Fig). S4 Fig shows the mean coverage by region

targeted for each panel.

Comparison of the detected variants in all four NGS panels

Filtered VCF obtained from the different software (from SOPHiA GENETICS and Illumina)

and the in-house analysis of the SureSeq panels from all samples were compared. The number

of variants called in each panel is plotted in Fig 5, and the VAFs comparison is represented in

S5 Fig.

a) Comparison of all coding variants detected.

i. Called coding variants. A total of 1146 coding variants were detected by all four panels. Fig

5A shows that PMP was the panel that called a higher number of variants per patient

(mean = 26) followed by TSMP (mean = 24), MYS panel (mean = 16), and SureSeq panels,

which were the ones that called a lower number of variants (mean = 15). This might be due

to the fact that PMP and TSMP were the larger panels, covering more genes (S1–S4 Tables).

ii. Coding variants called in the core myeloid gen set. When focusing on the core myeloid

gene set of 19 genes, a total of 367 variants were detected by all four panels. SureSeq panels

called a higher number of variants per patient (mean = 13), followed by MYS (mean = 9.2)

and PMP (mean = 8.1); TSMP was the panel that called a lower number of variants
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(mean = 7.8) (Fig 5B). Analysing in detail these differences, SureSeq panels were the ones

that called more variants because it covers the whole CDS of the myeloid core gene set, and

presicely ASXL1, FLT3, IDH1, IDH2, KIT, KRAS, NPM1, NRAS, U2AF1 and WT1 are the

genes harboring more variants in our cohort (S1 Fig). Similarly, MYS panel covered the

whole JAK2 gene, whereas PMP included exons 12 to 15 only, what led MYS panel calling

more variants than PMP. Finally, PMP called more variants than TSMP because it analized

more exons of MPL gene, and TSMP struggled covering CEBPA gene, as mention above

(S1, S2 and S4 Figs).

b) Comparison of the clinically relevant variants detected. Since these panels were

designed with the intention of being clinically useful, we repeated the analysis, focusing on the

clinical relevance of the variants called. Variants were classified by two geneticists with exper-

tise in hematological malignancies. Variants classified as “pathogenic” or “likely pathogenic”

were kept as clinically relevant. Table 3 shows all clinically relevant mutations detected in each

patient.

i. Called clinically relevant variants. A total of 50 clinically relevant variants were detected by

all four panels. PMP and TSMP were the panels that called a higher number of clinically

Fig 4. Panel coverage. The mean coverage by gene in each panel is represented in yellow (1000x) through dark red

(7000x).

https://doi.org/10.1371/journal.pone.0227986.g004

Fig 5. Number of variants called by panel. Each data point represents the number of variants called in each sample.

A: Coding variants. B: Coding variants called in the core myeloid gene set. C: Clinically relevant variants. Coloured

data highlight those patients with clinically relevant variants missed by any of the panels, either because those genes are

not included in panel design, or because of panel issues. Each colour represents the same patient. D: Clinically relevant

variants in the core myeloid gene set. Patients 7 (green), 14 (blue) and 16 (turquoise) are highlighted because they miss

three clinically relevant mutations (one each).

https://doi.org/10.1371/journal.pone.0227986.g005
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relevant variants (mean = 1.5), followed by MYS (mean = 1.4), and SureSeq™ panels

(mean = 1.1) (Fig 5C). There were 11 discordant variants, these variants were not detected

because SureSeq and MYS did not include GATA2, BCORL1, SH2B3 and PTPN11 in their

desing, hence mutations such as GATA2 p.Ala318Gly and p.Ala318Val (patient 1 and 4),

BCORL1 p.Arg1048� and SH2B3 p.Arg392Trp (patient 2), and PTPN11 p.Gly60Cys (patient

3) could not be called. Similarly, SureSeq™ panels missed SRSF2 p.Pro95His (patient 13) and

SF3B1 p.Lys666Asn (patient 15) variants because those genes were not included in its

design. Patient 20, tested with TSMP and PMP, harbored the likely pathogenic mutation

GNAS p.Arg844His, which was called by TSMP but not by PMP, again due to panel design.

ii. Clinically relevant variants called in the core myeloid gene set. A total of 37 clinically rele-

vant variants fell in one of the 19 genes of the core myeloid gene set (Fig 5D, Table 3). All

panels called the same variants, with the exception of 3 cases, for which SureSeq™ AML

Panel did not call two FLT3-ITD variants p.Phe594_Arg595ins12, p.Tyr589_Phe590ins12

(patient 7 and 16) and SureSeq™ Core MPN Panel did not called one CALR p.Leu367

Thrfs�46 variant (patient 14). Of note, all three missed variants were indels with a length

larger than 35bp. Additionally, 2 FLT3-ITD positive cases by conventional molecular tech-

niques (patients 2 and 3) (Table 1), tested negative with the SureSeq™ AML, MYS and PMP

NGS panels. Moreover, the insertion could not be visualized on the corresponding bam

files within IGV, which means that the ITD- harboring alleles were either not captured dur-

ing library preparation, or that the corresponding reads were not correctly aligned. These

data suggest that NGS is prone to missing long indels.

c) Comparison of all detected VAFs. Correlation analysis between VAFs detected by

each panel showed high level of concordance between SOPHiA GENETICS panels (S5A Fig

and Fig 5A R2 = 0,994) and acceptable concordance between SOPHiA GENETICS and Sure-

Seq’ panels (S5B and S5C Fig; R2 = 0,953 and R2 = 0,942, respectively). On the contrary, VAFs

detected by TSMP and PMP showed an elevated level of dispersion (S5D Fig; R2 = 0,767), indi-

cating a relatively high discordance in detected VAF values between panels.

Common sequencing errors detected in the NGS panels

Those variants with a VAF of< 5%, recurrently present in� 30% of samples analyzed by any

of the panels, and found within a repetitive region (homopolymeric regions or repeating trip-

lets) defined as sequencing errors. We detected a total of 20 sequencing errors. Eight were

present in 100% of the sequenced samples; 4 were called in more than one panel. Of note,

TSMP was the panel that called a higher number of sequencing errors (n = 15), followed by

PMP (n = 6), SureSeq™ AML panel (n = 3) and MYS panel (n = 2). Sequencing errors are listed

in S6 Table.

Discussion

Patients with MN are clinically heterogeneous. Mutations in the genes related with MNs are

pathogenically important and confer a better understanding of the disease. Therefore, genetic

testing might help clinicians choosing the best treatment for the patient, and predicting patient

outcome. In this study we evaluated the utility of four targeted NGS gene panels (three com-

mercially available and one custom), based on their technical features and clinicopathologic

utility. The present analysis may offer helpful criteria to hematological genetic laboratories

when implementing new NGS panels.
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NGS panel target design, greatly depends on the intended use of the panel. Panels can be

designed with a focus on a specific phenotype (e.g. AML or MDS with ring sideroblasts) or

aiming to a wider scope (e.g. a pan-myeloid panel). In any case, a deep knowledge of the scien-

tific literature of the disease of interest is necessary. Hence, we started our study by summariz-

ing current information about all genes included in any of the four panels, and their relevance

to MN (S5 Table).

All four panels had in common what we have called the “core myeloid gene set” of 19

genes, that have been extensively described in MN [2][35][36][37]. However, additional genes

highly relevant to MN were not included in all four panels design: (i) CBL, CSF3R, EZH2,

PTPN11, SETBP1, SF3B1, SRSF2, and ZRSR2 genes were not included in SureSeq panels

(Oxford Gene Technology, Oxford, UK) [26][38][39][40][41][42]; (ii) BCOR, GATA1,

KMT2A and PHF6 genes were not included in MYS panel (SOPHiA GENETICS, Saint Sul-

pice, Switzerland) [43][44][45][46]; (iii) TSMP and PMP were the only panels including exons

from ATRX, BCORL1, CUX1, GATA2, IKZF1, RAD21, SMC1A, SMC3, and STAG2 genes, all

of them of interest in myeloid malignancies [43][47][48][49][50][51][52]. Interestingly, only

PMP included SH2B3 and NF1 genes; SH2B3 is highly expressed in hematological cells and its

clinical relevance in MPNs has been described in several studies [53][54][55]; NF1 mutations

are thought to have a similar effect in leukemogenesis as mutations in the RAS pathway [25].

According to the literature, not all genes included in the panels have been shown to be clini-

cally relevant. Therefore, when choosing an NGS panel, it might be important to prioritize the

panel that includes all genes with diagnostic, prognostic and/or predictive value for the disease

of interest. The clinical relevance of each gene included in all four panels is represented in Fig

2. The figure shows that ABL1, CALR, MPL, JAK2 and SF3B1 genes have diagnostic value, as

described in several studies[2][18][37]. Similarly, ABL1, CALR, JAK2, KIT, FLT3, IDH1 and

IDH2 gene mutations have FDA-approved treatments[56][57]. Patients harboring mutations

in TET2 and DNMT3A genes have been shown to present better response to hypomethylating

agents [58][59]; DNMT3 mutated patients could also benefit from daunorubicin induction

therapy [60]. Fig 2 also shows a high number of genes related to prognosis, such as biallelic

CEBPA and SF3B1 (good prognosis), and ASXL1 and TP53 (poor prognosis) [9][10][61]. As

mentioned above, not all panels included all genes with clinical relevance, and therefore, those

panels would miss important information about patient outcome.

TSMP (Illumina, San Diego, CA, USA) has been extensively used on the study of myeloid

malignancies [20][62][63]. However it faces a couple of challenges: firstly, the panel hampers

the capture of GC regions (such in the case of CEBPA) because is based on amplicon technol-

ogy; secondly, TSMP covered ATRX exon 11, that according to Illumina´s panel description it

is not in the panel design; and finally, it included genes with clinical implications in lymphoid

malignancies, like CDKN2A and FBXW7 [64], MYD88 [27][65][66][67], NOTCH1 [28], and

PTEN [29]. The fact that TSMP covered genes and regions not relevant to MN, might lessen

the number of reads in the regions of interest. Of note, TSMP VCFs presented a high percent-

age (over 50%) of variants with a VAF of less than 5%, which might have been originated dur-

ing PCR amplification [68]; this might also explain the divergent VAF between TSMP and the

hybridization-based capture panels [69]. In addition, TSMP was the panel that showed more

sequencing errors [70]. However, despite these issues, TSMP covered the majority of genes

recurrently mutated in AML, MPN, MDS, and CMML, including all clinically relevant genes.

SureSeq™ panels (Oxford Gene Technology, Oxford, UK) were used combining two off-

the-shelf panels available from OGT, designed for the study of AML and MPN, respectively.

Currently, OGT also offers an extended MPN panel, but no wider myeloid solution panel was

commercially available. Variant calling was done manually by their expert bioinformaticians,

because their SureSeq™ Interpret Software was not available at the time of performing the
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present study. This panel was the one showing lower coverage for all genes, probably due to the

fact that all 16 samples were multiplexed on a V2 kit (8Gb per run; 150x2 cycles), whereas for

the other three panels, 8 samples were multiplexed on a V3 kit (14Gb per run; 250x2 cycles);

this might be the reason why FLT3-ITDs detected with low VAF in other panels, were not called

with SureSeq™ AML panel. In contrast, it was the panel that called more variants within the core

myeloid gene set, because the AML panel covered the CDS of all genes included. However, not

all those covered extra regions have been reported as clinically relevant, and sequencing them

lessens the read depth of the regions useful for clinical purposes. For example, out of the 12

exons of IDH1 gene, only mutations in exon 4 have been reported as deleterious [71][72].

In this study, we have used two solutions from SOPHiA GENETICS: their commercially

available MYS panel, and our custom PMP. PMP lacks three genes from MYS (ABL1, BRAF,

and HRAS), but its larger design intends to be a pan-myeloid test, covering (i) genes related to

sporadic MNs, (ii) genes described to confer a germline predisposition to MN, such as

ANKRD26, DDX41, and SRP72 (Fig 2, S5 Table)[73][74], and (iii) regions frequently affected

by CNV, namely del (7q)/-7, del(5q), del(20q) and trisomy 8. Nevertheless, there is also room

for improvement of PMP. For example: whole CDS of ANKRD26 gene was covered, but 5’

UTR should also be analyzed, since mutations related to disease progression are encompassed

within 5´UTR through exon 2 [75][76]; and FLT3 exons 11 and 13 are neither included in the

panel design [34][77]. Of note, the other 3 panels did include exon 13, but only SureSeq panel

included exon 11. Both MYS panel and PMP benefit from SOPHiA DDM software, which

greatly facilitates variant classification.

In order to design or choose a commercially available panel, it is important to know the

MN that it is going to be characterized. For instance, all four panels target genes for MPN, but

PMP includes MPL exons 3, 4, 5 and 12 recently described as mutated in triple negative

patients [78], whereas TSMP, SureSeq™ CoreMPN and MYS panels did not include those

exons in their design. Moreover, TSMP and SureSeq™ CoreMPN panels did not cover JAK2
exon 15, where mutations have been described [79]. PMP was designed in July 2017, which

makes it the youngest of the four analyzed panels. This is probably the reason why its design is

more up-to date with the literature. In fact, PMP is currently being upgraded, to fix ANKRD26
and FLT3 coverage, to target further genes related to predisposition to MN, and to include

analysis of common rearrangements in myeloid disorders (through RNA sequencing) (e.g.

BCR-ABL1 for Chronic Myeloid Leukemia, PML-RARA for Acute Promyelocytic Leukemia,

etc.). Actually, more recently available myeloid panels also include the study of translocations,

such as Oncomine™ Myeloid Research Assay (ThermoFisher SCIENTIFIC, Waltham, MA,

USA) and MYS+ panel (SOPHiA GENETICS, Saint Sulpice, Switzerland). It should be noted

that Oncomine™ Myeloid Research Assay is an amplicon-based panel, and therefore it might

face the same limitations as TSMP when it comes to GC-rich regions amplification; interest-

ingly, it is the only one that includes gene expression testing.

In this project we have detected that any NGS panel is still facing, at least, two challenges in

the myeloid field. On the one hand, the detection of indels: correct calling of ITDs in the fms-

related tyrosine kinase 3 gene (FLT3-ITD) are crucial in AML, since they are associated to

prognosis and to specific treatments [34][80]. In our cohort, two FLT3-ITD mutations of 36bp

in length (detected by classical molecular techniques in our laboratory) were not called by any

of the NGS gene panels tested in this study, which means that conventional diagnostics tech-

niques are still essential for hematological malignancies diagnosis [81]. NGS difficulty for long

FLT3-ITD detection has been reported before [62][82]; this is because current NGS chemis-

tries employ short reading sequencing (read length 50-300bp) and this makes it prone to lose

structural variants such as long indels [83][84]. In support of this observation, in our cohort,

the three variants missed by SureSeq panels (sequenced at shorter read length than the other
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panels, 150bp vs>200bp), were indels. On the other hand, molecular testing of CCAAT/enhancer

binding protein A gene (CEBPA) is also crucial for patients with AML, as biallelic CEBPA is corre-

lated with good prognosis [61]; however, those mutations fall usually one at C-terminal and the

other one at the N-terminal region of the gene, so, again because of the short read issue, NGS tech-

nology cannot detect if the mutations fall in different alleles or in the same allele of the gene.

Besides the technical capacity of detecting variant types, when using NGS panels it is important

to discriminate the clinically relevant variants from accompanying events. In our cohort, the num-

ber of pathogenic or likely pathogenic variants was two orders of magnitude smaller than the

number of coding variants passing quality control (50 vs 1146). This drop highlights the impor-

tance of including expert geneticists familiar with hematological malignancies and NGS technol-

ogy within the multidisciplinary genomic tumor board, as it has been suggested before [13][83].

In summary, based on the present study, the ideal NGS panel for the study of the myeloid

malignancies should meet six requirements. (i) It should include in its design those genes

described in MN to be clinically relevant for the pathology of the disease, being careful when

choosing the relevant regions of each gene; this design requires periodical upgrade upon litera-

ture review. (ii) When studying SNV and indels, the chemistry should enable capturing all rel-

evant genomic regions; hybridization capture-based panels usually evade the GC-rich regions

glitches of an amplicon-based panel. (iii) It should have the capacity of detecting long indels,

which is particularly important when it comes to defy the FLT3-ITD detection challenge. (iv)

Since sequencing costs are gradually decreasing, genetic laboratories’ dream is that NGS tech-

nology provides a “just one test” for all relevant genetic abnormalities contemplated in WHO

and European LeukemiaNet (ELN) guidelines [2][80]; therefore the ideal myeloid NGS panel

should be able to simultaneously analyze SNVs, indels, CNVs, aberrant gene expression, and

common gene rearrangements. (v) The turnaround time (TAT) for reporting should comply

with current ELN guidelines [80]. For example, TAT for NPM1 and FLT3 reporting is 48–72

hours; however, sample processing, NGS library preparation, sequencing and reporting, take a

minimum of 4 working days, which means that, for now, conventional molecular testing

needs to be kept in place. (vi) Sequencing data should be interpreted by two geneticists, at least

one of them with expertise in hematological malignancies, and both of them familiar with the

challenges inherent to NGS technology [83].

Conclusion

The current study describes the performance of four NGS panels focused on MN from the

technical and clinical perspective. Our data show that there is a risk of finding different muta-

tions depending on the panel of choice. This discordance is motivated by panel design and

sequencing data analysis. MN are genetically heterogeneous, therefore choosing a commercial

NGS panel needs detailed study of its scope, to be aware of its limitations and to avoid missing

the testing of genes relevant to a specific MN subtype.

Based on our data, the characterization of some genetic regions (CEBPA, CALR, and FLT3)
remains a challenge for NGS; this is a major issue, since AML and MPN management strongly

depends on their correct detection. In addition, NGS testing times are hard to harmonize with

TAT established in current ELN guidelines. Therefore, conventional molecular testing might

need to be kept in place for the correct diagnosis of MN in some instances for now.
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