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ABSTRACT 
Aim: The current study aimed to focus on the role of histone deacetylation in reduced ARID1A expression in colorectal cancer cell lines. 

Background: ARID1A, a subunit of the switch/sucrose nonfermentable chromatin remodeling complex, has emerged as a bona fide 

tumor suppressor and is frequently downregulated and inactivated in multiple human cancers. Epigenetic modifications play an 

important role in dysregulation of gene expression in cancer. DNA methylation has been reported as an important regulator of 

ARID1A expression in colorectal cancer cell lines; however, the histone modification role in ARID1A suppression in colorectal cancer 

remains unclear. 

Methods: The expression levels of ARID1A mRNA were determined using real-time quantitative PCR in colorectal cancer cell lines 

including HCT116, SW48, HT29, SW742, LS180, and SW480. To evaluate the effect of histone deacetylation on ARID1A 

expression, all cell lines were treated with trichostatin A (TSA), a histone deacetylase inhibitor. SPSS software (Version 23) and 

GraphPad Prism (Version 6.01) were applied for data analysis using one-way ANOVA, followed by Tukey’s multiple comparison 

tests.   

Results Treatment of colorectal cancer cell lines with TSA increased ARID1A expression in a cell line-dependent manner, suggesting 

that histone deacetylation is at least one factor contributing to ARID1A downregulation in colorectal cancer.  

Conclusion: Histone deacetylase inhibitors might provide a strategy to restore ARID1A expression and may bring benefits to the 

colorectal cancer patients with a broader range of genetic backgrounds. 
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Introduction  

  1 The molecular and genomic understanding of 

colorectal cancer (CRC) has progressed considerable in 

the last decade; however, CRC is still one of the most 

common causes of cancer deaths in the world (1, 2). 

CRC is a genetically heterogeneous disease and should 

thus be treated in a personalized way (3, 4). An 

increased understanding of the genetic and epigenetic 

mechanisms underlying the pathogenesis of CRC is 

crucial for personalized therapeutic strategies.  
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The third most significantly mutated gene in human 

CRC is the adenine-thymine-rich interactive domain 

1A (ARID1A) encoding gene (5), which is located on 

chromosome 1p36.11 and is a principal subunit of the 

SWI–SNF complex (switch/sucrose non-fermentable) 

(6, 7). The SWI/SNF complex is a chromatin 

remodeling complex utilizing the energy of ATP 

hydrolysis to regulate the transcription of certain genes 

by altering the chromatin structure around those genes 

(7). Numerous studies have identified ARID1A as a 

bona fide tumor suppressor during the oncogenic 

process, and its downregulation and mutations have 

been frequently reported in a broad spectrum of cancers 

(8), including gastrointestinal tract tumors (9-11). 
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Notably, loss of ARID1A expression is associated with 

high risk or poor outcome of various cancers (6, 11-15).  

Data from The Cancer Genome Atlas project (TCGA) 

revealed that ARID1A is significantly mutated in CRC, 

with the highest frequency of mutations (~39%) in 

cancers of the MSI type (16-18). Analysis of the whole-

exome sequencing revealed that these mutations often 

lead to a loss of ARID1A expression in tumors (17, 18). 

The tumor suppressive role of ARID1A was well-

established in colorectal cancer. A recent study showed 

that the sporadic deletion of ARID1A in mice led to the 

spontaneous formation of invasive adenocarcinomas in 

the colon (5). In addition, Kishida et al. revealed that 

ARID1A expression loss was correlated with lymphatic 

invasion and early onset in T1 CRC (19). Moreover, 

knockdown of ARID1A significantly enhanced the 

migration activity of HCT116 human colon cancer cells 

(20). 

Downregulation of the ARID1A gene in cancers is 

attributed to genomic deletion, DNA mutation, DNA 

methylation, and microRNA-mediated inhibition (8, 

21-24). Although ARID1A is the frequent target of 

inactivating mutations in CRC (8, 16, 17), the available 

data indicates that mutation is only a component of the 

observed ARID1A gene inactivity in CRC. It is very 

likely that ARID1A gene expression is influenced by 

epigenetic modifications, like histone deacetylation and 

gene promoter CpG islands hypermethylation, which 

play important roles in carcinogenesis associated with 

transcriptional repression of genes regulating cell 

replication, DNA repair, tumor suppression, and 

apoptosis (25). The acetylation of histones is regulated 

by histone acetyltransferase (HAT) and histone 

deacetylase (HDAC). HDAC is able to remove the 

acetyl group from the histone lysine residue, increase 

the DNA-binding ability of histones, and make the 

promoter less accessible to transcriptional regulatory 

elements, finally causing transcriptional repression. The 

effect of HAT is, however, just the opposite. Together, 

they synergistically maintain the normal acetylation 

level of histone (26). Trichostatin A (TSA), a powerful 

and specific Class I and II histone deacetylase inhibitor 

(HDACi), is widely used to increase the expression of 

genes silenced by chromatin condensation. Moreover, 

TSA inhibits tumor growth and induces apoptosis in 

cancer cells, which indicates the potential application 

of this drug in epigenetic therapy against cancer (26, 

27). Pharmacological inhibitors of class I and II HDAC 

activity are potent inducers of growth arrest, 

differentiation, and apoptosis of colon cancer cells in 

vitro and in vivo, indicating a role for these HDACs in 

tumor promotion (26, 28, 29). 

Relatively few studies have been conducted 

investigating the importance of epigenetic 

modifications in the downregulation of ARID1A in 

cancer. Zhang et al. showed that ARID1A promoter 

hypermethylation and histone modification led to low 

mRNA expression of the ARID1A gene in breast cancer 

(21). We also previously suggested that promoter 

hypermethylation is an important cause of the low 

expression of ARID1A in CRC cell lines (23) However, 

to the best of our knowledge, the role of histone 

deacetylation in ARID1A suppression in CRC has not 

yet been evaluated. For this reason, the current study 

aimed to investigate whether blocking histone 

deacetylation in CRC cell lines by TSA treatment 

affects the expression of ARID1A genes.   

 

Methods 

Cell cultures 

Six CRC cell lines, LS180, SW480, SW742, SW48, 

HCT116, and HT-29/19, were investigated in this 

study. Cells were grown in DMEM (LS180) or RPMI 

1640 (SW480, SW742, SW48, HCT116, and HT-

29/19), supplemented with 1% penicillin/streptomycin, 

10% fetal bovine serum (Gibco-BRL), and 2 mM 

glutamine, and then incubated in a 37 °C humidified 

atmosphere with 5% CO2. 

TSA treatment  

Cells were plated in T-25 flasks and allowed to 

attach for 24 h, after which cells were incubated for 24 

h in media containing 300 nM TSA (Sigma-Aldrich, St. 

Louis, MO). Then, RNA was isolated as described 

below. DMSO (Sigma-Aldrich) was used as vehicle 

control.  

RNA extraction and real-time quantitative PCR 

Total RNA was purified from CRC cell lines using 

Accuzol total RNA extraction reagent (Bioneer, 

Korea), according to the manufacturer’s instructions. 

Purified RNA quantification and purity was analyzed 

by a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies). The purified RNA integrity 

was detected by 0.8% agarose gel electrophoresis 
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visualized by Gel-Red staining. Then, two micrograms 

of purified RNA were applied for cDNA synthesis by 

RevertAid First Strand cDNA Synthesis Kit 

(Fermentas), according to the manufacturer’s 

instructions. 

The mRNA analysis of ARID1A and GAPDH as an 

internal housekeeping gene was determined by real-

time quantitative PCR (qPCR) using SYBR Green 

master mix (ABI, UK) on an ABI 7500 Sequence 

Detection System (Applied Biosystems, USA). Primer 

sets used for qPCR assay were as follows: ARID1A 

(forward, 5 ́-CAGTACCTGCCTCGCACATA-3’ 

reverse, 5’ GCCAGGAGACCAGACTTGAG- 3’); 

GAPDH (forward, 5’- 

CGACCACTTTGTCAAGCTCA- 3’ reverse, 5’- 

AGGGGTCTACATGGCAACTG-3 ́). Next, qPCR 

reactions were performed in triplicate with a 60 °C 

annealing temperature and a total cycle number of 40. 

The relative expression of ARID1A mRNA was 

normalized to GAPDH mRNA levels and determined 

using formula 2-ΔΔCT. The workflow for investigating 

the role of histone deacetylation in reduced ARID1A 

expression in colorectal cancer cell lines is shown 

schematically in Figure 1. 

Statistical analysis 

Statistical analysis was done using SPSS software 

(Version 23) and GraphPad Prism (Version 6.01). Data 

reported as mean ± standard deviation (SD) was 

analyzed using one-way ANOVA, followed by Tukey’s 

multiple comparison tests. Differences with a p-value ≤ 

0.05 were considered statistically significant.  

 

Results 

ARID1A expression is heterogeneous in CRC cell 

lines 

We studied the expression profile of ARID1A by 

real-time quantitative PCR in six CRC cell lines, 

namely LS180, SW480, SW742, SW48, HCT116, and 

HT-29/19. ARID1A expression (normalized to GAPDH 

mRNA) was highly heterogeneous among cell lines 

(Figure 2). The lowest expression level of ARID1A was 

observed in SW48 cells, which were considered as a 

calibrator cell line for ARID1A expression (set at 1.0). 

The mRNA levels of ARID1A were significantly higher 

in HCT116, HT29, and LS180 cells compared to other 

cell lines (396.6-, 153.8-, and 30.5-fold more than 

SW48 cells, respectively). ARID1A mRNA expression 

was low in SW742 and SW480 cell lines with no 

significant difference with SW48 cells. 

The SW48 cell line with the lowest expression level 

of ARID1A was used as a calibrator (expression level 

set to 1.0), and expressions in all other cell lines were 

 
Figure 1. The schematic workflow for investigating the involvement of histone deacetylation in the ARID1A mRNA expression 
in CRC cell lines 
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presented as a fold-change relative to the SW48 cell 

line. GAPDH was used to normalize ARID1A gene 

expression values. Mean ± SD of three experiments is 

reported. (**p < 0.01, ***p < 0.001). Error bars show 

standard deviation (SD) of the mean for each triplicate 

experiment.  

Effects of TSA on the expression of ARID1A mRNA 

in human CRC cell lines 

To investigate the involvement of histone 

deacetylation in ARID1A mRNA expression, CRC cells 

were treated for 24 h with TSA, an inhibitor of histone 

deacetylase, and ARID1A expression was determined 

by real-time quantitative PCR. Treatment of SW48, 

HCT116, and SW480 cells with TSA had no significant 

effect on ARID1A expression (Figure 3); however, TSA 

treatment of SW742, HT29, and LS180 cells increased 

 
Figure 2. ARID1A relative mRNA expression in LS180, SW480, SW742, SW48, HCT116 and HT-29/19 cell lines measured by 
real-time quantitative PCR. -SW48 cell line with the lowest expression level of ARID1A -was used as a calibrator (expression 
level set to 1.0) and expressions in all other cell lines were presented as a fold-change relative to the SW48 cell line. GAPDH was 
used to normalize the ARID1A gene's expression values. Mean ± SD of three experiments is reported. (**p < 0.01, ***p < 0.001). 
Error bars show Standard Deviation (SD) of the mean for each triplicate experiment.  

 
Figure 3. Treatment with trichostatin A (TSA) induces the mRNA expression of ARID1A in a cell line-dependent manner. 
mRNA relative expression of ARID1A after TSA treatment were examined by real-time quantitative PCR in CRC cell lines. 
ARID1A mRNA expression was normalized to GAPDH mRNA. The expression level of ARID1A in vehicle control (DMSO-
treated cell lines) was set to 1 and the expression in each TSA-treated cell line was calculated as an n-fold difference relative to 
the vehicle control. Mean ± SD of three experiments is reported. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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ARID1A expression 3.5-, 5.8- and 10.7-fold, 

respectively (Figure 3).  

 

Discussion 

Expression reduction of ARID1A and its tumor 

suppressor activity have been extensively described in a 

broad spectrum of cancers, including CRC. Previously, 

we reported decreased ARID1A expression in CRC cell 

lines (23). We and others have observed reduced 

ARID1A expression in CRC tumors (11, 18, 19, 23, 24, 

30, 31).  

It has also been shown that the biallelic (ARID1A−/−) 

deletion of ARID1A alone led to the formation of 

invasive colorectal adenocarcinomas in mice (5). 

Therefore, exploring the molecular basis of this 

downregulation could lead to the development of ways 

for treating ARID1A-deficient colorectal cancer. 

Interestingly, accumulating evidence indicates that 

epigenetic modifications such as DNA 

hypermethylation and histone modifications play 

significant roles in ARID1A gene downregulation in 

cancer (21, 23, 32). We previously reported that DNA 

hypermethylation is strongly correlated with ARID1A 

downregulation in CRC cell lines (23). Furthermore, a 

study which focused on decreased ARID1A expression 

in breast cancer demonstrated that histone modification 

and promoter hypermethylation are the main causes of 

ARID1A gene expression loss (21). In addition, 

treatment of gastric cancer cell lines with the 

methyltransferase inhibitor 5-aza-2’-deoxycytidine 

increased ARID1A expression, which indicated the 

important role of DNA hypermethylation in ARID1A 

downregulation (32). However, no study has 

experimentally examined whether histone modification 

plays a significant role in alteration of gene expression 

in colorectal cancer. Indeed, in our recent study, 

ARID1A expression was not restored after 5-aza 

treatment in SW480 and LS180 cell lines, which 

indicated the possibility of another mechanism in 

ARID1A downregulation, like histone modifications in 

these cell lines (23). Histone acetylation is by far the 

most studied histone modification (33). Decreasing 

histone acetylation plays a significant role in chromatin 

condensation and transcriptional repression of various 

genes in cancer (25). Therefore, we applied TSA in the 

current study to determine whether ARID1A expression 

can be increased in CRC cell lines by blocking histone 

deacetylation. Treatment with TSA influenced ARID1A 

expression in a cell line dependent manner. The highest 

upregulation of the gene was observed in the LS180 

and HT29 cell lines and was almost 10-fold and 6-fold 

change, respectively. No such significant change was 

observed in the SW480, HCT116, or SW48 cell lines. 

Treatment of SW742 cells with TSA resulted in an 

almost threefold upregulation of ARID1A mRNA 

levels. 

The current results suggest that TSA inhibition of 

histone deacetylation leads to increased ARID1A 

expression in LS180, HT29, and SW742 cells; 

however, it is still unknown whether this expression 

increase is due to a direct effect of TSA on the 

acetylation state of ARID1A genes. There are 

alternative explanations, e.g., TSA may alter the 

epigenome of genes that regulate ARID1A transcription, 

such as a coactivator. Therefore, more experimental 

studies that examine acetylation levels of histones 

within regulatory regions of the ARID1A gene after 

TSA treatment are necessary. 

Clinical efficacy against cancer has been established for 

HDACs inhibitors, which can be considered as 

attractive targets for CRC therapy (26, 29). 

Upregulation of tumor suppressor gene ARID1A in 

CRC cell lines by HDACs pharmaceutical inhibitors 

seems to be a therapeutic approach for the treatment of 

ARID1A-deficient colorectal cancer. 

Evaluation of cancer cells only, and not normal cells, 

can be considered as a limitation of this study. 

Evaluation of ARID1A expression in mRNA levels 

only, but not protein level, is another limitation of this 

study, which can be considered in future studies. 

Moreover, additional studies such as analysis of the 

ARID1A gene promoter histone modification levels by 

ChIP- qPCR (34) will be required to further elucidate 

the possible significance of ARID1A promoter histone 

deacetylation in ARID1A gene expression loss in CRC. 

In addition, the correlation between ARID1A expression 

and promoter histone modification needs to be assessed 

in patients with CRC. TSA also affects other epigenetic 

processes, including the methylation of DNA and 

histones (35, 36). Hence, further experiments will be 

required to definitely establish the molecular 

mechanism involved in ARID1A expression restoration 

by TSA. 
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Although the precise mechanisms accounting for 

decreased ARID1A expression in CRC are unknown, 

according to our cell line-based study, it is likely that 

epigenetic modifications play a role in ARID1A 

downregulation. More research is needed to support 

these findings. 
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