iScience

Article

Crystal growth engineering and origin of the weak ferromagnetism in antiferromagnetic matrix of orthochromates from *t*-*e* orbital hybridization

Yinghao Zhu, Junchao Xia, Si Wu, ..., Jianding Yu, Ruiqin Zhang, Hai-Feng Li

CellPress

yujianding@mail.sic.ac.cn (J.Y.) aprqz@cityu.edu.hk (R.Z.) haifengli@um.edu.mo (H.-F.L.)

Highlights

The lack of large and good-quality single crystals of orthochromates has been solved

Nature of the weak ferromagnetism in a main antiferromagnetic matrix has been revealed

t-e orbital hybridization is the microscopic origin

Relationship between microscopic and macroscopic properties has been correlated

Zhu et al., iScience 25, 104111 April 15, 2022 © 2022 The Author(s). https://doi.org/10.1016/ j.isci.2022.104111

iScience

Article

Crystal growth engineering and origin of the weak ferromagnetism in antiferromagnetic matrix of orthochromates from *t*-*e* orbital hybridization

Yinghao Zhu,^{1,2,3,4,5} Junchao Xia,^{1,4,5} Si Wu,^{1,4,5} Kaitong Sun,¹ Yuewen Yang,² Yanling Zhao,² Hei Wun Kan,² Yang Zhang,³ Ling Wang,³ Hui Wang,³ Jinghong Fang,³ Chaoyue Wang,³ Tong Wu,³ Yun Shi,³ Jianding Yu,^{3,*} Ruiqin Zhang,^{2,*} and Hai-Feng Li^{1,6,*}

SUMMARY

We report a combined experimental and theoretical study on intriguing magnetic properties of quasiferroelectric orthochromates. Large single crystals of the family of RECrO₃ (RE = Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds were successfully grown. Neutron Laue study indicates a good quality of the obtained single crystals. Applied magnetic field and temperature dependent magnetization measurements reveal their intrinsic magnetic properties, especially the antiferromagnetic (AFM) transition temperatures. Density functional theory studies of the electronic structures were carried out using the Perdew-Burke-Ernzerhof functional plus Hubbard U method. Crystallographic information and magnetism were theoretically optimized systematically. When RE³⁺ cations vary from Y³⁺ and Eu³⁺ to Lu³⁺ ions, the calculated t-e orbital hybridization degree and Néel temperature behave similarly to the experimentally determined AFM transition temperature with variation in cationic radius. We found that the t-e hybridization is anisotropic, causing a magnetic anisotropy of Cr³⁺ sublattices. This was evaluated with the nearest-neighbor J_1 - J_2 model. Our research provides a picture of the electronic structures during the t-e hybridization process while changing RE ions and sheds light on the nature of the weak ferromagnetism coexisting with predominated antiferromagnetism. The available large RECrO₃ single crystals build a platform for further studies of orthochromates.

INTRODUCTION

Multiferroic materials have received considerable attention because of their potential application in electric and magnetic devices (Fiebig et al., 2016; Huang et al., 2021; Hur et al., 2004; Jones et al., 2014; Spaldin and Ramesh, 2019). Within the materials, long-range orders such as ferroelectric and magnetic coexist and may interact strongly on each other, providing multi-tunable parameters for tailoring the macroscopic functionalities. There are significant challenges for a complete understanding of the microscopic mechanisms underlying their intriguing macroscopic properties.

Chromium-based perovskites have attracted considerable interest because of their intriguing magnetic and ferroelectric properties as well as potential technique applications. The set of chromium-based RECrO₃ (RE = rare earths) compounds was suggested to be another family of multiferroic materials, usually displaying ferroelectricity, weak ferromagnetism, and a wide application in fields of catalyst, thermistor, solid-oxide fuel cell, and nonvolatile memory devices (Figure 1) (Oliveira, 2017). The formation of Cr³⁺ magnetic orders has a strong effect on the ferroelectric property, i.e., there may be a magnetoelectric coupling effect (Oliveira et al., 2020; Rajeswaran et al., 2012). Chromium ions in RECrO₃ compounds hold a singlevalence state, i.e., Cr³⁺ (t³₂ e⁰₉), naturally discarding the e_g orbital ordering as well as its perturbation on the t_{2g} electrons. This results in a tightly localized electric environment, an ideal platform for the potential coexistence of ferroelectricity and magnetism. The ferroelectric transition temperature, (T_C ~ 473 K), of YCrO₃ compound is much higher than that of the antiferromagnetic (AFM) phase transition of Cr³⁺ ions (T^{Cr}_N ~ 141.5K) (Serrao et al., 2005; Zhu et al., 2020a). An isosymmetric structural phase transition was observed at ~ 900 K in a neutron powder diffraction study on the pulverized YCrO₃ single crystal, where ¹Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China

²Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China

³State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

⁴Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, No. 1. Zhongziyuan Road, Dalang, DongGuan 523803, China

⁵These authors contributed equally

⁶Lead contact

*Correspondence: yujianding@mail.sic.ac.cn (J.Y.),

aprqz@cityu.edu.hk (R.Z.), haifengli@um.edu.mo (H.-F.L.) https://doi.org/10.1016/j.isci. 2022.104111

1

Figure 1. Properties and applications of orthochromates

(A) Orthochromates display some interesting properties such as quasiferroelectric, structural, magnetic, and optical, resulting from couplings between charge, spin, orbital, and lattice degrees of freedom.
 (B) These make orthochromates potential as magnetic refrigeration, solid oxide fuel cell, negative-temperature-coefficient (NTC) thermistor, nonvolatile memory application, photovoltaic materials, catalyst, and anticorrosion field.

the incompressibility of lattice constants *a*, *b*, and *c* is anisotropic, and there exist obvious atomic displacement and charge subduction on the Y and O2 sites (Zhu et al., 2020b). Net electric polarization was observed for polycrystalline LuCrO₃ and ErCrO₃ samples below T_N^{Cr} , indicating the presence of a possible ferroelectric state, whereas this is clearly absent above T_N^{Cr} . Most importantly, the study demonstrates that the paramagnetic (PM) nature of RE sites is not necessary to accommodate the ferroelectricity in orthochromates (Preethi Meher et al., 2014). In addition, the polarizations attain maximum values of ~ 90 μ C/m² (at E = 165 kV/cm for LuCrO₃ compound) and ~ 70 μ C/m² (at E = 174 kV/cm for ErCrO₃ compound). Both polarizations are reversal and can be explained by either the Cr³⁺ off-centering or the ferroelasticity or their couplings and even by Cr³⁺ vacancies (Preethi Meher et al., 2014). The SmCrO₃ compound demonstrates an electric polarization with the maximum value of ~ 8 μ C/m² at E = 1.43 kV/cm and ~ 15 K (El Amrani et al., 2014), which was ascribed to a breaking of the local symmetry via Cr³⁺ off-centering (El Amrani et al., 2014). It was observed that electric dipoles exist in the DyCrO₃ compound, which was attributed to the displacement of Cr³⁺ cations (Yin et al., 2018). Electric polarizations were observed in TbCrO₃ and TmCrO₃ compounds at E = 1.43 kV/cm below T_N^{Cr} (Rajeswaran et al., 2012), whereas the existence of electric dipoles in the TmCrO₃ compound remains a debate (Yoshii and Ikeda, 2019).

Most previous studies focused on polycrystals, nanocrystals, and thin films. Single crystal growths of rareearth orthochromates utilize mainly two methods: (i) one is the flux method (Yin et al., 2015). Unfortunately, impurities from the flux exist in the grown single crystals and have strong effects on macroscopic properties of the host (Cooke et al., 1974; Li et al., 2021; Looby and Katz, 1954; Zhu et al., 2020c). In addition, single crystals grown by the flux method are small, normally millimeter in size, and not suitable for some studies that make excessive demands in sample's quality and mass. (ii) The other is the floating-zone (FZ) method with a mirror furnace. Unfortunately, the intense volatility of Cr element because of its high vapor pressure at melting points of orthochromates (Philipp et al., 2003) can practically reduce the heating power of the mirror furnace (Li, 2008). This makes it not so easy to stably grow the single crystals of orthochromates. As a consequence, the lack of large single crystals has been a long-standing obstacle for studying their intrinsic properties and realizing some potential applications of orthochromates.

One of the long-standing unsolved issues existing in the family of RECrO₃ orthochromates is the microscopic origin of the weak ferromagnetism. This is introduced by the canted AFM structure. The Cr^{3+} state $(t_{2g}^3 e_g^0)$ in orthochromates enables a virtual charge transfer (VCT) of $Cr^{3+}(t_{2g1}^3) - O^{2-} - Cr^{3+}(e_g^0)$ and a possible ferromagnetic (FM) competition with superexchange interactions $J \sim b^2/U$ (Landron and Lepetit, 2008), where *b* is the overlapping integral, and *U* denotes the on-site Coulomb interactions (Slater and Koster, 1954; Zhou et al., 2010). The overall Cr-O-Cr superexchange comprises two major contributions: One is from the $t_{2g} - t_{2g}$ hopping, producing an AFM component; the other is from the $t_{2g} - e_g$ orbital hybridization, generating FM couplings. The hybridization strength depends on the lattice distortion (Siddique et al., 2021), on-site Coulomb interaction (Besbes et al., 2019; Yekta et al., 2021), and $t_{2g} - e_g$ crystal field

splitting (Ko et al., 2007). The spin-orbit coupling induced Dzyaloshinskii-Moriya (DM) exchange would favor a magnetic structure with spins perpendicular to each other to minimize the total energy of the system (Coffey et al., 1991; Dmitrienko et al., 2014). To describe the effect of RE sites on the $Cr^{3+}-O^{2-}-Cr^{3+}$ super-exchange interactions, one can utilize density functional theory (DFT) based first-principles calculations to optimize the atomic information and correlate it with the superexchange interactions in RECrO₃ compounds. This provides a quantitative description of the *t*-e hybridization process. In addition, the AFM transition temperatures can be further calculated for a qualitative comparison to those measured from the grown single crystals.

In this paper, we report on a successful single crystal growth of the family of RECrO₃ compounds by a laserdiode FZ technique. Large single crystals measuring centimeters in size were obtained with the largest mass >10 g. The results from in-house characterizations on grown single crystals are in agreement with those from our first-principles calculations. Our research reveals that the *t*-e hybridization process can be tuned by RE-ions and induce FM interactions in the main AFM matrix and sheds light on the coexistence of weak ferromagnetism with antiferromagnetism and ferroelectricity in orthochromates.

RESULTS

Grown single crystals

Single-crystal materials hold translational symmetry of long-range building blocks; therefore, they provide reliable information of structures and properties of matters (Cheng, 2017; Li et al., 2018; Sun et al., 2019; Xiong et al., 2021; Zhang, 2020). Exploring and optimizing the single crystal growth parameters are time-consuming and labor-intensive processes (Li, 2008). For the first time, we have grown large single crystals of the family of RECrO₃ (RE = Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds. Photos of some representative single crystals as-grown are exhibited in Figures 2A and 2B, where the YbCrO₃ (Figure 2A, ~7 cm in length) and LuCrO₃ (Figure 2B, ~ 10 cm) crystals have a diameter of $\varphi = 6 - 8$ mm and very shining surfaces. So far, the largest single crystal of orthochromates we have grown is >10 g for the EuCrO₃ compound. Our crystal growth engineering of RECrO₃ compounds produced a China invention patent (Li et al., 2021).

Neutron Laue diffraction patterns

We investigated the grown single crystals with a neutron Laue diffraction study. The top panels of Figures 2C–2E show the monitored neutron Laue patterns of a YCrO₃ single crystal with the three axes perpendicular to the paper: a axis (Figure 2C), b axis (Figure 2D), and c axis (Figure 2E). All patterns display symmetric and very strong diffraction spots, indicating a good quality of the grown single crystal. As shown in the bottom panels of Figures 2C–2E, we theoretically simulated the three patterns by using the OrientExpress software (Ouladdiaf et al., 2006), which further confirmed the good quality of our single crystals.

Magnetic properties

To clearly show features of dc magnetization in the vicinity of magnetic phase transitions, we present temperature-dependent data in the temperature range of 1.8–200 K. For the whole-temperature data (1.8–400 K), please refer to Figure S1. We measured the zero-field cooling (ZFC) magnetization at zero applied magnetic field, trying to explore the negative magnetization behavior and address whether the observed weak ferromagnetism is spontaneous.

We measured the ZFC magnetization data at 1000 Oe in the temperature range of 250–350 K and calculated the inverse magnetic susceptibility $\chi^{-1} = B/M$, which can well fit with the Curie-Weiss (CW) law for a pure paramagnetic (PM) state (Li et al., 2006, 2007, 2009; Zhu et al., 2020b),

$$\chi^{-1}(T) = \frac{3k_{\rm B}(T-\Theta_{\rm CW})}{N_{\rm A}\mu_{\rm eff}^2}, \tag{Equation 1}$$

where $k_B = 1.38062 \times 10^{-23}$ J/K is the Boltzmann constant, Θ_{CW} is the PM CW temperature, $N_A = 6.022 \times 10^{23}$ mol⁻¹ is Avogadro's constant, and μ_{eff} is the effective PM moment. We fit the data to Equation (1), extracting experimental values of the AFM transition temperature T_N^{Cr} , Θ_{CW} , and $\mu_{eff-meas}$ of RECrO₃ single crystals. These measured values were listed in Table 1. For the RECrO₃ compounds, it is pointed out that both RE³⁺ and Cr³⁺ ions contribute to the effective PM moment; therefore, the theoretical total

Figure 2. As-grown single crystals and neutron Laue diffraction patterns (A) Photograph of a $YbCrO_3$ single crystal.

(B) Photograph of a LuCrO₃ single crystal as grown by a laser-diode FZ furnace.

(C-E) Neutron Laue patterns of single-crystal YCrO₃ (top panels) and the corresponding theoretical simulations (bottom panels). The real-space lattice vectors are marked in the bottom panels, and the crystallographic *a* axis (C), *b* axis (D), and *c* axis (E) are perpendicular to the paper.

effective PM moment $\mu_{eff-theo}^{total} = \sqrt{(\mu_{eff-theo}^{RE})^2 + (\mu_{eff-theo}^{Cr})^2}$, where $\mu_{eff-theo}^{RE} = g\mu_B\sqrt{J(J+1)}$, and $\mu_{eff-theo}^{Cr} = g\mu_B\sqrt{S(S+1)} = 3.873 \ \mu_B$ (where S = 3/2). The quantum numbers of RE³⁺ and Cr³⁺ ions and the calculated values of $\mu_{eff-theo}^{RE}$ and $\mu_{eff-theo}^{total}$ were listed in Table 1 for a comparison to the corresponding experimental values. Within 250–350 K, the fits coincide well with the measured magnetization of RECrO₃ (RE = Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu) single crystals. As temperature decreases from 250 to 220 K, the measured data did not show obvious deviation from the Curie-Weiss law fitting (short-dashed line), which confirms the validity of our theoretical fits and that the RECrO₃ (RE = Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu) single crystals remain a pure PM state in the temperature range of 220–350 K.

Magnetic hysteresis loops at the low-field regimes were measured. The isothermal field dependence of magnetization with applied magnetic field from -14 to 14 T was supplemented in Figure S2.

In the following, we present analyses of the magnetic properties of $RECrO_3$ (RE = Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu) single crystals one by one.

EuCrO₃

EuCrO₃ demonstrates negative magnetization behavior at zero magnetic field below T_N^{Cr} (Figure 3A), whereas the ZFC magnetization at B = 50 Oe increases sharply below T_N^{Cr} within a thermal regime of ~ 1.2 K and then flattens to 1.8 K upon cooling. The field-cooling (FC) magnetization at 100 Oe increases by ~ 18% at 1.8 K. The magnetization measured at 50 and 100 Oe resembles the features of a weak FM state. We determined that $T_N^{Cr} = 181.6(1)$ K for a EuCrO₃ single crystal. Below T_N^{Cr} EuCrO₃ enters a canted AFM state, probably because of the Dzyaloshinskii-Moriya interactions of Cr³⁺ ions.

To avoid the effect of non-intrinsic magnetic contributions at low applied magnetic fields, we used the ZFC magnetization measured from 250 to 350 K at 1000 Oe for CW fitting (Figure 3B). This produces an effective

Table 1. Calculated theoretical quantum numbers of RE³⁺ ions in RECrO₃ single crystals based on the Hund's rule: number of 4f (4d for Y³⁺ ion) electrons, spin *S*, orbital *L*, total angular momentum *J*, Landé factors g_J , and the ground-state term ²⁵⁺¹ L_J

RECrO ₃ single crystals grown by the FZ method					
RE ³⁺ =	Y ³⁺	Eu ³⁺	Gd ³⁺	Tb ³⁺	Dy ³⁺
4d ⁿ ion	0				
4f ⁿ ions		6	7	8	9
S	0	3	7/2	3	5/2
L	0	3	0	3	5
J	0	0	7/2	6	15/2
дı	-	-	2	1.5	1.33
25 + 1 LJ	¹ S ₀	⁷ F ₀	⁸ S _{7/2}	⁷ F ₆	⁶ H _{15/2}
$\mu_{ m eff-meas}(\mu_{ m B})$	3.95	6.44	8.40	10.51	11.35
$\mu_{ m eff-theo}^{ m RE}(\mu_{ m B})$	0	0	7.937	9.721	10.646
$\mu_{ ext{eff-theo}}^{ ext{total}}(\mu_{ ext{B}})$	3.873	3.873	8.832	10.464	11.328
$M_{ m meas}(\mu_{ m B})$	~0.147	0.245 (1)	6.43	6.248 (1)	4.834 (1)
$M_{ m sat-theo}^{ m RE}(\mu_{ m B})$	0	0	7	9	10
$M_{ m sat-theo}^{ m total}(\mu_{ m B})$	3	3	7.616	9.487	10.440
Т _N (К)	141.5 (1)	181.6 (1)	169.3 (1)	157.9 (1)	148.5 (1)
$\theta_{\rm CW}$ (K)	-433.2 (6)	-450.4 (15)	-20.33 (4)	-53.3 (1)	-56.5 (1)
$RE^{3+} =$	Ho ³⁺	Er ³⁺	Tm ³⁺	Yb ³⁺	Lu ³⁺
4f ⁿ ion	10	11	12	13	14
S	2	3/2	1	1/2	0
L	6	6	5	3	0
J	8	15/2	6	7/2	0
дı	1.25	1.2	1.167	1.143	-
^{2S+1} LJ	⁵ I ₈	⁴ <i>I</i> _{15/2}	³ H ₆	² F _{7/2}	¹ S ₀
$\mu_{\rm eff-meas}(\mu_{\rm B})$	11.03	10.20	8.35	5.63	4.98
$\mu_{ ext{eff-theo}}^{ ext{RE}}(\mu_{ ext{B}})$	10.607	9.581	7.561	4.536	0
$\mu_{\rm eff-theo}^{\rm total}(\mu_{\rm B})$	11.292	10.334	8.495	5.964	3.873
$M_{ m meas}(\mu_{ m B})$	3.999 (1)	6.385 (1)	2.868 (1)	0.883 (1)	1.197 (1)
$M_{ m sat-theo}^{ m RE}(\mu_{ m B})$	10	9	7	4	0
$M_{ m sat-theo}^{ m total}(\mu_{ m B})$	10.440	9.487	7.616	5	3
Т _N (К)	143.2 (1)	135.4 (1)	125.9 (1)	117.9 (1)	122.3 (1)
θ _{CW} (K)	19.6 (1)	-30.0 (1)	-90.6 (4)	-17.4 (1)	-110.4 (2)

We listed values of the measured (meas) ($\mu_{eff-meas}$) and theoretical (theo) effective PM moments $\left(\mu_{eff-theo}^{Cr} = g_J \mu_B \sqrt{S(S+1)}\right) = 3.873 \mu_B \left(Cr^{3+} : 3d^3, J = S = \frac{3}{7}\right)$

 $g_{J} = 2$, $\mu_{\text{eff-theo}}^{\text{RE}} = g_{J}\mu_{B}\sqrt{J(J+1)}$, and $\mu_{\text{eff-theo}}^{\text{total}} = \sqrt{(\mu_{\text{eff-theo}}^{\text{RE}})^{2} + (\mu_{\text{eff-theo}}^{C_{f}})^{2}}$, the measured moment (M_{meas} per formula at 1.8 K and 14 T), and the theoretical

saturation moments ($M_{sat-theo}^{Cr} = g_J \mu_B S = 3\mu_B$, $M_{sat-theo}^{RE} = g_J \mu_B J$, and $M_{sat-theo}^{total} = \sqrt{(M_{sat-theo}^{RE})^2 + (M_{sat-theo}^{Cr})^2}$). The values of $T_{N, \mu_{eff-meas}}$ and CW temperature (θ_{CW}) were extracted from the *M*-*T* measurements by the CW-law fitting. The values of M_{meas} were extracted from the *M*-*B* data. The numbers in parenthesis are the estimated standard deviations of the (next) last significant digit. Some parameters of YCrO₃ (Zhu et al., 2020a) and GdCrO₃ (Zhu et al., 2020c) were referred to in our previous studies.

PM moment $\mu_{eff-meas} = 6.44 \,\mu_B$, which is considerably larger than the theoretical value $\mu_{eff-theo}^{total} = 3.873 \,\mu_B$ (Table 1) and a CW temperature $\Theta_{CW} = -450.4(15)$ K.

The field dependence of magnetization measured at 1.8 K is displayed in Figure 3C, where clear magnetic hysteresis loops are observed at 1.8 and 20 K, and there is nearly no difference between them. Remanent magnetization $M_r \sim 0.91$ emu g⁻¹ and coercive field $B_c \sim 95$ Oe were determined. The magnetic hysteresis loop closes at ~ 867 Oe, after which the ZFC magnetization increases linearly as a function of the magnetic field, with a slope of dM/dB= 0.322(1) emu g⁻¹ T⁻¹ (Figure S2A). Given that the theoretical saturation

Figure 3. Magnetic property of EuCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

magnetic moment of Cr³⁺ ions is $M_{\text{sat-theo}}^{\text{Cr}} = g_J \mu_B S = 3 \mu_B$, where $g_J = 2$ and $S = \frac{3}{2}$ for pure ionic Cr³⁺ ions (Table 1), it is inferred that attaining a full magnetic saturation state requires $B \approx 203$ T. At 1.8 K and 14 T, a magnetization of $M_{\text{meas}} = 0.245$ (1) μ_B/Cr was reached (Figure S2A), which is equal to $\sim 8.2\%$ of the theoretical value $M_{\text{sat-theo}}^{\text{total}} = 3\mu_B/\text{Cr}$.

Our study indicates a possible existence of competition between FM and AFM exchange interactions. We did not observe the magnetic ordering of Eu^{3+} ions, which is consistent with a previous study on polycrystalline EuCrO₃ samples (Taheri et al., 2016).

TbCrO₃

We determined that $T_N^{Cr} = 157.9(1)$ K for a TbCrO₃ single crystal (Figure 4A). Below T_N^{Cr} , the ZFC magnetization at 0 Oe was negative, whereas the magnetization curves at 50 and 100 Oe increased gradually after a sharp enhancement around T_N^{Cr} within ~ 0.56 K. Below ~ 70 K, the ZFC magnetization at 100 Oe evidently exceeded that measured at 50 Oe. At ~ 7.7 K, a kink appeared in the magnetization at 50 and 100 Oe (ZFC at 50 and 100 Oe: downturr; FC at 100 Oe: uturn), indicating the formation of Tb³⁺ spin ordering. Below ~ 4.5 K, a sharp decrease in the magnetization at 50 and 100 Oe and a sharp increase in that at 0 Oe were observed. Below ~ 3 K, the ZFC magnetization at 0, 50, and 100 Oe approached zero. Therefore, we observe elaborate magnetic phase transitions with temperature in the TbCrO₃ single crystal.

The CW fitting result of $\mu_{eff-meas} = 10.51 \ \mu_B$ (Figure 4B) is nearly equal to the theoretical value $\mu_{eff-theo}^{total} = 10.464 \ \mu_B$. The CW temperature $\Theta_{CW} = -53.3(1)$ K indicates a weak competition between the FM and AFM interactions in our TbCrO₃ single crystal.

A clear magnetic hysteresis loop was observed with $M_r \sim 2.75$ emu g⁻¹ and $B_c \sim 48$ Oe at 15 K (Figure 4C), indicating a weak FM state of the Cr³⁺ ions. When T = 1.8 K, both Tb³⁺ and Cr³⁺ spins order, and the observed magnetization loop was stretched along the *B* axis and squeezed along the magnetization axis, leading to a parallelogram-shaped hysteresis loop with $M_r \sim 1.82$ emu g⁻¹ and $B_c \sim 2500$ Oe (Figure 4C). Such a twisted loop has not been previously observed in either polycrystalline or single-crystalline (grown by the flux method) samples (Vagadia et al., 2018; Yin et al., 2016). This indicates a stronger coupling between the Cr³⁺ and Tb³⁺ spins in our TbCrO₃ single crystal. As *B* increased, the loop at 1.8 K gets a quick saturation at $B_s \sim 1.67$ T, whereas that at 15 K increased

Figure 4. Magnetic property of TbCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

smoothly and attained a plateau at \sim 6.8 T. At 1.8 K and 14 T, the magnetization reached $M_{\text{meas}} = 6.248(1) \mu_{\text{B}}$, which is \sim 34% smaller than the theoretical value $M_{\text{sat-theo}}^{\text{total}} = 9.487 \mu_{\text{B}}$ (Table 1).

TbCrO₃ entered a long-range canted AFM state of Cr³⁺ ions below $T_N^{Cr} = 157.9(1)$. The possible long-range AFM order of Tb³⁺ ions was formed below $T_N^{Tb} \sim 7.7$ K. Strong coupling was observed between the spin orders of the Cr³⁺ and Tb³⁺ ions. In addition, a weak competition between the FM and AFM interactions of the Cr³⁺ ions was observed.

DyCrO₃

The DyCrO₃ single crystal underwent a magnetic phase transition from the PM state to a canted AFM phase at $T_{\rm SR}^{\rm Cr}$ = 148.5(1) K. (Figure 5A), corresponding to the formation of Cr³⁺ spin ordering. A kink appeared at $T_{\rm SR}^{\rm Cr} \sim 38$ K in the magnetization at 0, 50, and 100 Oe (Figure 5B), which is attributed to the spin reorientation of the Cr ions. A similar observation was previously reported for DyCrO₃ single crystals grown by the flux method, where the appearance of the kink was believed to be caused by the spin reorientation of Dy³⁺ ions (Yin et al., 2016). Below $T_{\rm N}^{\rm Cr}$, the magnetization increased smoothly until the onset of a sharp enhancement at ~ 17 K, reaching a maximum at ~ 2.54 K and then followed by a quick reduction. Therefore, we observed an AFM phase transition of the Dy³⁺ ions at $T_{\rm N}^{\rm Dy} \sim 2.8$ K.

The CW fitting produces $\mu_{eff-meas} = 11.35 \ \mu_B$ (Figure 5C), which is nearly equal to the theoretical value $\mu_{eff-meas}^{total} = 11.328 \ \mu_B$. CW temperature, $\Theta_{CW} = -56.5(1)$ K (Table 1).

Isothermal magnetic hysteresis loops were observed at 1.8 ($M_r \sim 4.7 \text{ emu g}^{-1}$; $B_c \sim 639 \text{ Oe}$) and 10 K ($M_r \sim 1.1 \text{ emu g}^{-1}$; $B_c \sim 41 \text{ Oe}$) (Figure 5D), confirming that Cr^{3+} spins hold a canted AFM state. For the Dy³⁺ sublattices, we could only conclude that the spins form an AFM state. At both 1.8 and 10 K, the magnetization curves finally flattened with $M_{meas} = 4.834$ (1) μ_B at 14 T (Figure S2C). This value was $\sim 53.7\%$ less than the theoretical value of $M_{sat-theo}^{total} = 10.440 \ \mu_B$ (Table 1).

HoCrO₃

We determined that $T_N^{Cr} = 143.2(1)$ K for a HoCrO₃ single crystal (Figure 6A). Below T_N^{Cr} , the ZFC magnetization at 0 Oe was negative, whereas those at 50 and 100 Oe were positive and increased smoothly in the

Figure 5. Magnetic property of DyCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Schematically showing the determination of the spin-reorientation temperature $T_{\rm SR}$.

(C) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(D) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

temperature regimes of ~ 19 K (at 50 Oe) and ~ 47 K (at 100 Oe) and then flatten until $T_N^{Ho} \sim 7.82$ K, at which Ho³⁺ ions order antiferromagnetically. Below ~ 2.4 K, all curves were flattened. When 2.4 K< $T < T_N^{Ho}$, the magnetization curves at ZFC (down turn) and FC (up turn) 100 Oe demonstrated an inverse trend; above T_N^{Ho} , they coincided. The degree of canting of the Cr³⁺ AFM structure determines the strength of the resulting ferromagnetism along the c axis. This prevents the formation of an AFM structure of the Ho³⁺ ions. The difference between the ZFC and FC magnetization at 100 Oe is controlled by the competition between the Zeeman energy generated by the applied magnetic field, crystal field, AFM interaction strength of Ho³⁺ ions, and magnetic anisotropy (Li, 2016).

We obtained $\mu_{eff-meas} = 11.03 \ \mu_B$, which is comparable to $\mu_{eff-theo}^{total} = 11.292 \ \mu_B$, and $\Theta_{CW} = 19.6(1) \ K$ (Figure 6B and Table 1). The previous study on polycrystalline HoCrO₃ sample shows $\mu_{eff-meas} = 11.55 \ \mu_B$ and $\Theta_{CW} = -24.0 \ K$ (Su et al., 2011). Obtaining evidence of short-range exchange interactions and magnetic fluctuations of Ho³⁺ spins reported previously by quasielastic and inelastic neutron scattering studies on HoCrO₃ powder samples (Chatterji et al., 2017; Kumar et al., 2016) necessitates more in-house characterizations with the HoCrO₃ single crystal.

At 1.8 and 15 K, we observed magnetic hysteresis loops in step-increasing mode (Figure 6C). We extracted $M_r \sim 3.5$ (1.8 K) and 1.9 (15 K) emu g⁻¹ and the corresponding $B_c \sim 140$ and 72 Oe, respectively. At 15 K, the magnetization increased linearly at B \leq 618 Oe and then proceeded smoothly into a plateau at ~ 3.2 T; in contrast, at 1.8 K and B \leq 1092 Oe, the magnetization almost increased linearly with increasing magnetic field and then attained $M_{\text{meas}} = 3.999(1) \ \mu_{\text{B}}$ at 14 T (Figure S2D). This value was only $\sim 38.3\%$ of the theoretical value $M_{\text{startheo}}^{\text{total}} = 10.440 \mu_{\text{B}}$ (Table 1).

ErCrO₃

Below $T_N^{Cr} = 135.4(1)$ K (Eibschütz et al., 1970), there was a small sharp enhancement in the magnetization within ~ 0.72 K, which then increased smoothly until an onset of a sudden decrease at $T_{SR}^{Cr} \sim 9.7$ K (Figure 7A). The decrease in magnetization is attributed to the spin reorientation of Cr^{3+} ions from $\Gamma_4(G_x, A_y, F_z; F_z^R)$ to $\Gamma_1(A_x, G_y, C_z; C_z^R)$ or the $\Gamma_1(0)$ spin configuration (Su et al., 2010b, 2012). Below

Figure 6. Magnetic property of HoCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

 $T_N^{Er} \sim 8$ K, the magnetization at 0, 50, and 100 Oe decreased linearly. No difference was found in the ZFC and FC magnetization at 100 Oe.

The CW fitting resulted in an effective PM magnetic moment of 10.20 μ_B , in agreement with the theoretical value of 10.334 μ_B , and a CW temperature of -30.0(1) K (Figure 7B and Table 1).

No magnetic hysteresis loop appeared in the *M*-*B* measurements (Figure 7C). In contrast, clear hysteresis loops were observed previously for polycrystalline ErCrO_3 samples (Shi et al., 2018). For the magnetization curve at 1.8 K, a gate magnetic field of ~ 650 Oe existed. When $0 \le B \le B_{\text{gate}} = 650$ Oe, the magnetization increased linearly from 0 to ~ 0.45 emu g⁻¹. Then, it quickly flattened when $B \sim 0.617$ T and attained $M_{\text{meas}} = 6.385(1) \mu_B$ at 14 T (Figure S2E).

TmCrO₃

We determined that $T_{\rm V}^{\rm Cr}$ = 125.9(1) K for the TmCrO₃ single crystal (Figure 8A), which is consistent with a previous study of polycrystalline TmCrO₃ (Wang et al., 2016a; Yoshii, 2012). Below T^{Cr}_N, the ZFC magnetization at 0 Oe was negative. The magnetization at 50 and 100 Oe was positive and increased sharply within ~ 1 K. This is because Cr^{3+} spins order into a canted AFM state of the Γ_2 configuration ($F_xC_{\gamma}G_2$) (Tamaki et al., 1977; Yoshii, 2012). Upon further cooling, the magnetization increased smoothly until it reached a maximum at $T_{max}^{Cr} \sim$ 74 K. After that, the magnetization reduced smoothly and attained negative values suddenly at T_{SR} ~ 37.2 K (for ZFC at 50 and 100 Oe) and ~ 40.1 K (for FC at 100 Oe), followed by a sharp increase with positive values appearing again at a compensation temperature $T_{comp} \sim 28.72$ K. The sharp drop observed at \sim 40.1 K could be ascribed to the spin reorientation of Cr³⁺ ions accompanied by a 90° rotation of the spins, that is, from one crystallographic axis to another, probably because of the competition between anisotropic exchanges and single-ion anisotropy (Li, 2016). This feature became smooth in the polycrystalline samples (Wang et al., 2016a; Yoshii, 2012). Our study revealed a reversal of the magnetization behavior. The ZFC and FC magnetization at 100 Oe nearly coincided with each other. This is different from the observations with polycrystalline TmCrO₃ (Yoshii, 2012). We observed a magnetic phase transition at $T_N^{Tm} \sim 19.6$ K, which probably correlates with the AFM order of Tm³⁺ ions. This was not observed in polycrystalline TmCrO₃ samples (Wang et al., 2016a; Yoshii, 2012).

Figure 7. Magnetic property of ErCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

We obtained $\mu_{eff-meas} = 8.35 \ \mu_B$, which is almost identical to the theoretical value $\mu_{eff-theo}^{total} = 8.495 \ \mu_B$, and $\Theta_{CW} = -90.6(4)$ K (Figure 8B and Table 1).

We observed different magnetic hysteresis loops (Figure 8C): (i) at 20 K, a parallelogram-shaped loop with $M_r \sim 1.4 \text{ emu g}^{-1}$ and $B_c \sim 111 \text{ Oe}$. (ii) At 1.8 K, a twisted loop with $M_r \sim 0.75 \text{ emu g}^{-1}$ and $B_c \sim 38.2 \text{ Oe}$. The magnetization reached $M_{\text{meas}} = 2.868(1) \mu_B$ at 14 T (Figure S2F and Table 1).

YbCrO₃

We determined that $T_{\rm C}^{\rm Cr} = 117.9(1)$ K for the YbCrO₃ single crystal (Figure 9A), which is the lowest magnetic phase transition temperature of Cr³⁺ sublattices among all rare-earth orthochromates. Below $T_{\rm N}^{\rm Cr}$, the ZFC magnetization at 0 Oe reduced sharply to negative values, whereas the magnetization at 50 and 100 Oe increased sharply and attained the maximum values at $T_{\rm max}^{\rm Cr} \sim 99.3$ K (for ZFC at 50 Oe), 86.3 K (for ZFC at 100 Oe), and 69.6 K (for FC at 100 Oe), followed by smooth decreases to negative values at compensation temperatures $T_{\rm comp1} \sim 63.7$ K (for ZFC at 50 Oe), 47.5 K (for ZFC at 100 Oe), and 15.5 K (for ZFC at 100 Oe). The positive values of magnetization at 0, 50, and 100 (ZFC) Oe reappeared at $T_{\rm comp2} \sim 15.5$ K (for ZFC at 0 Oe), 17.6 K (for ZFC at 50 Oe), and 19.5 K (for ZFC at 100 Oe), whereas the magnetization at FC 100 Oe still remained negative. Below $T_{\rm N}^{\rm Yb} \sim 7$ K, all the ZFC magnetization curves flattened (Su et al., 2010a). Notably, a large difference exists between the curves of the ZFC and FC magnetizations at 100 Oe. The FC magnetization at 100 Oe resembles that observed in the polycrystalline samples (Wang et al., 2016b).

The CW fitting resulted in $\mu_{eff-meas} = 5.63 \,\mu_{B}$, which was slightly lower than the theoretical value $\mu_{eff-theo}^{total} = 5.964 \,\mu_{B}$, and $\Theta_{CW} = -17.4(4)$ K (Figure 9B and Table 1).

No magnetic hysteresis loop appeared in the ZFC *M-B* curves at 15 and 300 K, whereas we observed magnetic hysteresis loops with a similar shape at 1.8 K ($M_r \sim 0.24$ emu g⁻¹; $B_c \sim 1200$ Oe), 25 K ($M_r \sim 0.14$ emu g⁻¹; $B_c \sim 1200$ Oe), and 40 K ($M_r \sim 0.25$ emu g⁻¹; $B_c \sim 1780$ Oe) (Figure 9C). The measured magnetization $M_{\text{meas}} = 0.883(1) \mu_{\text{B}}$ at 1.8 K and 14 T, which is merely $\sim 17.7\%$ of $M_{\text{sat-theo}}^{\text{total}} = 5\mu_{\text{B}}$ (Figure S2G and Table 1).

Figure 8. Magnetic property of TmCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

LuCrO₃

The LuCrO₃ single crystal exhibited magnetic behaviors similar to those observed in single-crystal TmCrO₃ (Figures 8A and 10A). We determined $T_N^{Cr} = 122.3(1)$ K, $T_{max}^{Cr} \sim 79$ K (for ZFC and FC at 100 Oe), $T_{SR} \sim 33$ K (for ZFC at 50 Oe) and 31 K (for ZFC and FC at 100 Oe), $T_{comp2} \sim 28$ K (for all data), and $T_N^{Lu} \sim 2.3$ K for the

Figure 9. Magnetic property of YbCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-coolings measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

Figure 10. Magnetic property of LuCrO₃

(A) Magnetization as a function of temperature from 1.8–200 K measured at 0, 50, and 100 Oe. We performed both zero-field and field-cooling measurements at 100 Oe.

(B) Zero-field cooling inverse magnetic susceptibility χ^{-1} (solid circles) at an applied magnetic field of 1000 Oe as a function of temperature in the range of 220–350 K. The solid lines represent the fits with a Curie-Weiss law from 250–350 K. The Curie-Weiss law fits were extrapolated to low temperatures shown as short-dashed lines.

(C) Magnetic hysteresis loops measured at low applied magnetic fields with selected temperatures.

 $LuCrO_3$ single crystal. No clear difference was observed in the ZFC and FC magnetization at 100 Oe. Our $LuCrO_3$ single crystal demonstrated magnetic behaviors different from those of previous polycrystalline samples (Durán et al., 2014).

The CW fitting results in $\mu_{\text{eff-meas}} = 4.98 \ \mu_{\text{B}}$, which is ~ 28.1% higher than the theoretical value $\mu_{\text{eff-theo}}^{\text{total}} = 3.873 \ \mu_{\text{B}}$, and $\Theta_{\text{CW}} = -110.4(2)$ K (Figure 10B and Table 1).

We observed magnetic hysteresis loops at: 1.8 K ($M_r \sim 0.13 \text{ emu g}^{-1}$; $B_c \sim 25 \text{ Oe}$), 15 K ($M_r \sim 0.14 \text{ emu g}^{-1}$; $B_c \sim 32 \text{ Oe}$), 25 K ($M_r \sim 0.054 \text{ emu g}^{-1}$; $B_c \sim 125 \text{ Oe}$), and 40 K ($M_r \sim 0.12 \text{ emu g}^{-1}$; $B_c \sim 28 \text{ Oe}$) (Figure 10C). The measured magnetization, M_{meas} 1.197(1) μ_{B} , at 1.8 K and 14 T is merely $\sim 39.9\%$ of $M_{\text{sat-theo}}^{\text{total}} = 3\mu_{\text{B}}$ (Figure S2H and Table 1).

We summarize the magnetic behaviors of single-crystal RECrO₃ compounds as follows: (i) TbCrO₃, DyCrO₃, and ErCrO₃ displayed similar temperature dependencies as did TmCrO₃ and LuCrO₃ single crystals. (ii) DyCrO₃ and ErCrO₃ did not exhibit negative magnetization, whereas the others did. (iii) Reversal magnetic behaviors (positive \rightarrow negative \rightarrow positive) occurred for TmCrO₃, YbCrO₃, and LuCrO₃ single crystals. (iv) We did not observe any indication of Eu³⁺ magnetic ordering, which may require lower temperatures. (v) Obvious magnetic hysteresis loops were observed for RECrO₃, except for ErCrO₃. (vi) The measured magnetization at 1.8 K and high magnetic fields plateaued for RECrO₃ (RE = Tb, Dy, Ho, Er, and Lu) single crystals. (vii) The measured effective PM moments of EuCrO₃ and LuCrO₃ were not consistent with the theoretical values. (viii) The applied magnetic field of 14 T was far less to saturate RECrO₃ at 1.8 K. (ix) Only HoCrO₃ demonstrated a positive CW temperature. Finally, we observed the complex and coupled magnetic phase transitions of RE³⁺ (except for Eu³⁺) and Cr³⁺ ions.

We also summarize the magnetic structures of RE³⁺ and Cr³⁺ ions in RECrO₃ (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds in the literature (Table 2). The magnetic SR transition of Cr³⁺ ions has been reported for GdCrO₃ (Cooke et al., 1974) and ErCrO₃ (Hornreich, 1978; Shamir et al., 1981) compounds. The detailed magnetic structures of Tm³⁺ and Yb³⁺ ions in TmCrO₃ (Shamir et al., 1981) and YbCrO₃ (Shamir et al., 1981) and YbCrO₃ (Shamir et al., 1981) compounds remain controversial. A F_x magnetic component of Yb³⁺ ions had to be included for a satisfactory fit of the neutron powder diffraction data of YbCrO₃ in the temperature range

Ho, Er, Im, Yb, and Lu) compounds				
	RE ³⁺	Cr ³⁺	SR	Cr ³⁺
RECrO ₃	$\overline{(T < T_N^{RE})}$	$(T < T_{SR}^{Cr})$	(Cr ³⁺)	$\overline{(T_{SR}^{Cr} < T < T_N^{Cr})}$
GdCrO3	F _x C _y	F _x G _z	\checkmark	G _x F _z
TbCrO ₃	$F_x C_y$	_	-	F_xG_z
DyCrO ₃	G _x A _y	-	-	F_xG_z
HoCrO ₃	$-F_x - C_y$	-	-	Gz
ErCrO ₃	$-C_z$	Gy	\checkmark	$G_x F_z$
TmCrO ₃	-	-	-	F_xG_z
YbCrO ₃	-	-	-	F_xG_z
LuCrO ₃	-	-	-	F _x G _z

Table 2. Summary of the previously reported magnetic structures of RE³⁺ and Cr³⁺ ions in RECrO₃ (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds

The crystal structure is orthorhombic with the *Pbnm* space group (No. 62). Here $T_N^{RE} = AFM$ transition temperature of RE^{3+} ions; SR = spin reorientation; $T_{Sr}^{Cr} = SR$ temperature of Cr^{3+} ions; $T_N^{Cr} = AFM$ transitions temperature of Cr^{3+} ions. The check mark ($\sqrt{}$) represents that there exists a magnetic SR phase transition. These were summarized from the following references: GdCrO₃ (Cooke et al., 1974), TbCrO₃ (Gordon et al., 1976), DyCrO₃ (Bertaut, 1963; Krynetskii and Matveev, 1997; Tamaki et al., 1975), HoCrO₃ (Shamir et al., 1981; Su et al., 2011), ErCrO₃ (Hornreich, 1978; Shamir et al., 1981), TmCrO₃ (Shamir et al., 1981), YbCrO₃ (Shamir et al., 1981).

of 1.5–120 K (Deepak et al., 2021). Unraveling the nature of the magnetic phase transitions necessitates neutron scattering studies on single-crystal samples with modern techniques (Li, 2008).

DISCUSSION

Superexchange interactions between the neighboring spins of transition metals can be realized through VCT via intermediate O^{2-} ions. During this process, the tilting of the oxygen octahedron corresponds to the change in the metal-oxygen-metal bond angles and may lead to t_{2g} and e_g orbital overlapping. This facilitates the hopping of $t_{2g\uparrow}$ electrons via the bridge of O^{2-} ions to occupy the empty e_g band and the interaction with filled $t_{2g\downarrow}$ electrons at the same site, that is, the intersite *t*-e orbital hybridization (Zhou et al., 2010; Zhou and Goodenough, 2008). In the framework of *t*-e hybridization, the superexchange parameter *J* consists of the following two parts (Zhou et al., 2010):

 $J = J^{\pi} - J^{\sigma}_{\rm hb}, \qquad (\text{Equation 2})$

where J^{π} denotes AFM coupling via the VCT of $t_{2g}^3 - O - t_{2g}^3$, and J_{hb}^{σ} represents FM coupling via the VCT of $t_{2g}^3 - O - e_g^2$. Both processes are schematically depicted in Figure 11A for Cr^{3+} ions. For example, for a half-filled transition metal like $Fe^{3+}(t_{2g}^3e_g^2)$, the effect of t-e hybridization on superexchange interactions may not be evident because the electron hoppings of $Fe^{3+}(t_{2g1}^3) - O^{2-}Fe^{3+}(t_{2g1}^3)$ and $Fe^{3+}(t_{2g1}^3) - O^{2-} - Fe^{3+}(e_{g1}^2)$ themselves are AFM couplings already (Zhou et al., 2010; Zhou and Goodenough, 2008). In contrast, for less than half-filled 3d electrons like Cr^{3+} ions $(t_{2g}^3e_g^0)$ in RECrO₃ compounds, the t-e orbital hybridization favors the VCT of $Cr^{3+}(t_{2g1}^3) - O^{2-} - Cr^{3+}(e_g^0)$ (Qian et al., 2014; Siddique et al., 2021; Zhou et al., 2010). Electron hopping of $t_{2g}^3 - O - e_g^0$ can increase the FM coupling component J_{hb}^{σ} . When RE³⁺ ions change from La to Lu in RECrO₃, the competition between the AFM (J^{π}) and FM (J_{hb}^{σ}) components would probably result in a variation in T_{Cr}^{Cr} .

To quantitatively describe the Cr^{3+} - $O^{2-}Cr^{3+}$ superexchange interactions as well as the $t_{2g} - e_g$ (*t-e*) orbital overlapping degree as a function of the ionic radii of the RE³⁺ ions, we calculated the exchange parameters and electronic structures of RECrO₃ (RE = Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds. We mainly considered the NN exchange parameters of the Cr^{3+} sublattices within the crystallographic *ab* plane (J_1) and along the *c* axis (J_2) (Figure 11B). We extracted the values of J_1 and J_2 using the so-called energy mapping method with four types of magnetic structure sing DFT calculations, projecting each collinear spin state onto the following spin Hamiltonian of a Heisenberg model

Figure 11. Process of virtual charge transfer and crystal structure

(A) Crystal field splitting of the 5-fold degenerate d orbitals of Cr^{3+} ions (3d³) in a cubic environment that splits the d-level into 2-fold degenerate e_g and 3-fold degenerate t_{2g} levels. The arrows represent the spins of chromium. We schematically show the virtual charge transfers, leading to FM and AFM states, respectively.

(B) Refined crystal structure of RECrO₃ in one unit cell (solid lines) with *Pbnm* space group (No. 62). The RE, Cr, O1, and O2 ions are labeled. J_1 and J_2 represent the NN spin-exchange parameters within the *ab* plane and along the *c* axis, respectively.

$$H = -\sum J_{ij}S_i \cdot S_j, \qquad (Equation 3)$$

where J > 0 represents FM interactions, and J < 0 denotes AFM couplings. Using Equation (3), we can solve for J_1 and J_2 as (Bernal et al., 2021; Fujioka et al., 2008)

$$J_1 = (E_G + E_C - E_A - E_F)/8S^2$$
, and (Equation 4)

$$J_2 = (E_G - E_C + E_A - E_F)/4S^2.$$
 (Equation 5)

Thus, we can calculate the Néel temperatures of the RECrO $_3$ compounds using the mean-field approximation (MFA) (Fujioka et al., 2008), that is,

$$T_{\rm N} = \frac{2S(S+1)}{3k_{\rm B}}(-4J_1 - 2J_2). \tag{Equation 6}$$

To depict the hybridization degree, we calculated the overlap of $t_{2g\downarrow}$ and $e_{g\uparrow}$ (Table 3) using their DOS (Figure S4) product over the corresponding energy region.

$$I_{t_{2g\downarrow}-e_{g\uparrow}} = \int_{E_F}^{E_c} D_{t_{2g\downarrow}}(E) D_{e_g\uparrow}(E) dE, \qquad (Equation 7)$$

where $D_{t_{2g\downarrow}}(E)$ and $D_{e_{g\uparrow}}(E)$ are the DOSs for the $t_{2g\downarrow}$ and unoccupied $e_{g\uparrow}$ states of Cr^{3+} ions, respectively. E_F and E_c represent the Fermi level and cutoff energy of the $t_{2g\downarrow} - e_{g\uparrow}$ hybridization, respectively. With Equation (7), we could quantitatively describe the *t*-e hybridization in RECrO₃ orthochromates (Table 3).

To illustrate the effect of on-site Coulomb interactions of Cr^{3+} ions on the superexchanges in rare-earth orthochromates, we chose YbCrO₃ as an example and carried out a calculation of U_{eff} scan from 0 to 5 eV as shown in Figure 12A, where we can see the U_{eff} -dependent evolution of *t*-e orbital hybridizations from the DOSs. Based on these calculations, the U_{eff} -dependent exchange parameters of J_1 and J_2 were extracted and shown in Figure 12B. The increase in on-site Coulomb interactions enhances both the crystalline-field splitting and the exchange splitting (with a relatively larger enhancement). The overall super-exchange interactions could be expressed as (Zhou et al., 2010)

$$J = J_0 \left[(b^{\pi})^2 - \eta (b^{\sigma}_{hb})^2 \right], \text{ and}$$
(Equation 8)
$$\eta \propto \frac{U + \Delta_{ex}}{U + \Delta_c},$$
(Equation 9)

ordered effective moment $(M_{Cr^{3+}})$ of Cr ³⁺ ions in RECrO ₃ orthochromates						
Parameter (unit)	J ₁ (meV)	J ₂ (meV)	J_2/J_1	Т _N МFA (К)	l _{t2g↓} -eg↑ (states ² /eV)	Μ _{Cr³⁺} (μ _B)
EuCrO ₃	-1.420	-1.390	0.98	245.7	-2.2104	2.933
GdCrO ₃	-1.330	-1.210	0.91	224.8	-2.2743	2.931
TbCrO ₃	-1.140	-0.940	0.82	186.5	-2.3571	2.929
DyCrO ₃	-1.050	-0.760	0.72	165.9	-2.4040	2.928
YCrO ₃	-0.990	-0.630	0.63	151.0	-2.4387	2.930
HoCrO ₃	-0.940	-0.430	0.46	134.3	-2.4602	2.928
ErCrO ₃	-0.850	-0.230	0.27	112.4	-2.5064	2.927
TmCrO ₃	-0.720	-0.120	0.17	90.2	-2.5396	2.926
YbCrO ₃	-0.690	-0.001	0.01	80.5	-2.5786	2.925
LuCrO ₃	-0.760	-0.046	0.06	91.3	-2.5394	2.925

Table 3. Calculated nearest-neighbor (NN) exchange parameters J_1 and J_2 , as well as the ratio J_2/J_1 , Néel temperature (T_N^{MFA}) based on the mean-field approximation, t-e orbital overlapping degree $(I_{t_{2g_1}-e_{g_1}})$, and the ordered effective moment $(M_{cr^{3+}})$ of Cr^{3+} ions in RECrO₃ orthochromates

where U denotes the on-site Coulomb interactions, Δ_{ex} and Δ_c are the exchange splitting and the crystalline-field splitting, respectively (Zhou et al., 2010). In the RECrO₃ system, different RE³⁺ ions lead to different crystallographic structures of RECrO₃. The increase of U_{eff} favors the ferromagnetic component in the entire superexchange interactions, leading to a strong competition between ferromagnetic and antiferromagnetic components, and finally may result in $J_2>0$, that is, ferromagnetism would be generated along the crystallographic c axis.

Different U_{eff} -value settings have a relatively minor effect on the t-e hybridization; therefore, our calculations are based on the on-site Coulomb interactions between Cr^{3+} ions using Hubbard $U_{eff} = 3.3$ eV derived under the framework of a linear-response ansatz, which is in good agreement with the measured band gaps (Singh et al., 2018). Meanwhile, the electron dispersions are not largely influenced by fixing U_{eff} , which assures the calculation of reliable t-e orbital hybridizations of RECrO₃ orthochromates by considering only the influence of RE³⁺ ions.

Based on the foregoing discussion, we first optimized the structural parameters of RECrO₃ orthochromates (Tables S1 and S2) (Kumar et al., 2008). Our calculations also indicate that the G-type AFM is the most stable magnetic structure for all the RECrO₃ orthochromates (Figure S3 and Table S3). Subsequently, we extracted the optimized values of J_1 , J_2 , Néel temperature (T_N^{MFA}), and the $t_{2g} - e_g$ orbital overlapping degree ($I_{t_{2g}}-e_g$) (Table 3).

When RE³⁺ ions varies from Eu to Lu, the changes of the calculated $I_{t_{2g}-e_g}$ (Figure 13A), T_N^{MFA} (Figure 13B), and \angle Cr-O1-Cr and \angle Cr-O2-Cr (Figure 13C) demonstrated a similar trend, indicating a strong correlation between them and a clear effect of the RE³⁺ radii (Winter, 2021) on the superexchange interactions. The calculated T_N^{MFA} coincided with the experimental T_N^{Cr} values (Table 1, Figure 13B). The average value ((\angle Cr – O – Cr)) of the \angle Cr-O1(2)-Cr bond angles changed from 148.34° (EuCrO₃) to 142.81° (YbCrO₃) (Tables S1 and S2), leading to the *t*-e hybridization ($I_{t_{2g}-e_g}$) changing from –2.2104 (EuCrO₃) to –2.5786 states²/eV (YbCrO₃) and the corresponding T_N^{MFA} decreased from 245.7 (EuCrO₃) to 80.5 K (YbCrO₃) (Table 3). Therefore, the decrease in bond angles of \angle Cr-O1(2)-Cr facilitated *t*-e hybridization by enhancing the FM component (J_{hb}^{σ}) within the entire superexchange interaction. Both our experimental and theoretical studies produced the minimum AFM transition temperature for YbCrO₃ in the system (Figure 13B), which is inconsistent with a previous study on polycrystal RECrO₃ samples, where the minimum T_N and (\angle Cr – O – Cr), occurred to LuCrO₃ (Zhou and Goodenough, 2008).

Our DFT calculations demonstrate that the magnetic anisotropy of Cr^{3+} sublattices can be tuned by RE³⁺ ions. The ratio of J_2/J_1 is a good parameter that inversely expresses anisotropy. It indeed reduces from $J_2/J_1 \sim 0.98$ (EuCrO₃) to ~0.01 (YbCrO₃) (Table 3) and strongly correlates with the values of the \angle Cr-O1(2)-Cr bond angles. The \angle Cr-O1-Cr angle was outside the *ab* plane, and its value was smaller than that of \angle Cr-O2-Cr within the *ab* plane (Inset, Figure 13C). Therefore, we infer that the VCT of $t_{2q1}^3 - O^{2-} - t_{2q1}^3$ produces

Figure 12. Calculated DOSs, J_1 and J_2 of YbCrO₃

(A) Calculated DOSs of t_{2g} and e_g orbitals (as marked) of Cr^{3+} ions in YbCrO₃ at $U_{eff} = 0, 1, 2, 3, 4, and 5 eV$. The positive and negative values represent high-spin and low-spin states, respectively. The vertical short-dotted lines at energy = 0 eV denote the Fermi level.

(B) Calculated exchange parameters J_1 (within the *ab* plane) and J_2 (along the *c* axis) as a function of U_{eff} for the YbCrO₃ compound. Related to Discussion.

the major AFM spin interactions within the *ab* plane, whereas the VCT of $t_{2g\uparrow}^3 - O^{2-} - e_g^0$ can generate strong FM couplings along the *c* axis. This is in good agreement with the previously proposed magnetic model (Van der Ziel and Van Uitert, 1969). The difference between the \angle Cr-O1(2)-Cr values increases when RE³⁺ varies from Eu to Lu, indicating that the competition between in-plane AFM interactions and out-of-plane FM couplings becomes increasingly strong with an enhancement of FM interactions. The largest difference between \angle Cr-O1-Cr and \angle Cr-O2-Cr occurred for YbCrO₃, leading to the smallest J_2/J_1 ratio (~0.01), and thus the largest magnetic anisotropy.

The FM coupling J_{hb}^{σ} directly acts on the overall Cr-O-Cr superexchange. This is induced by the $t_{2g}-t_{2g}$ orbital hybridization and could compete with AFM coupling, leading to an overall exchange $J = J^{\pi} - J_{hb}^{\sigma}$ (Zhou et al., 2010). The state of Cr³⁺, that is, the $3d^3$ configuration with half-filled t_{2g} orbital and empty e_g orbital, makes it a special ion compared with other elements such as V, Fe, and Mn (Streltsov and Khomskii, 2008). By chemical engineering (Yaresko, 2008) or applying high pressure (Fita et al., 2021), one may strengthen $t_{2g} - t_{2g}$ hopping but simultaneously weaken $t_{2g} - t_{2g}$ hopping. Eventually, this could result in an overall FM component superexchange between neighboring Cr³⁺ cations. The weak ferromagnetism results from competition between the Heisenberg exchange and DM interactions in orthochromates. This is one case of an AFM structure with a small canting, leading to a noncollinear spin configuration and thus a net FM component. Unraveling the competing degree of different spin interactions necessitates inelastic neutron scattering studies on single-crystal orthochromates.

Conclusion

We have successfully grown a series of RECrO₃ (RE = Y, Eu–Lu) single crystals with a laser-diode FZ furnace. The grown crystals are centimeter (gram)-scale with a good quality. We performed magnetization measurements as functions of temperature and applied magnetic field, providing more reliable and intrinsic magnetic properties. We theoretically investigated the t-e hybridization by quantitatively calculating the t_{2g} and e_g orbital overlapping degree ($I_{t_{2g_1}-e_{g_1}}$) based on DOS calculations. As RE³⁺ ions change from Eu to Lu, the calculated AFM transition temperatures demonstrate a similar trend with those determined experimentally. The changes in the \angle Cr-O1(2)-Cr bond angles strongly influence the weight factor of FM couplings

Figure 13. Coincidence between experimental and theoretical properties

(A) Calculated t-e orbital overlapping degree $(I_{t_{2g_1}-e_{g_1}})$. (B) Experimental (T_N^{Cr}) (right) and calculated (T_N^{MFA}) (left) AFM transition temperatures.

(C) Theoretically optimized values of ∠Cr-O1(O2)-Cr bond angles of RECrO₃ (RE = Eu, Gd, Tb, Dy, Y, Ho, Er, Tm, Yb, and Lu) compounds. Inset of (C) shows the geometry of bond angles. The horizontal axis represents ionic radii of RE³⁺ ions.

within the entire superexchanges interactions by (dis)favoring the VCT of $t_{2g\uparrow}^3 - O^{2-} - e_g^0$. This may be the origin of the weak ferromagnetism appearing within the main AFM matrix of RECrO3. The difference between \angle Cr-O1(2)-Cr bond angles results in a magnetic anisotropy between within the *ab* plane and along the c axis. The change of t-e hybridization coincides well with that of \angle Cr-O1(2)-Cr and that of T_N^{MFA} . Our research sheds light on the origin of the intriguing magnetism in the RECrO₃ system.

Limitations of the study

The single crystal growth of orthochromates is extremely difficult. First, traditional FZ furnaces equipped with four IR-heating halogen lamps and four ellipsoidal mirrors (such as Model FZ-T-10000-H-VI-VPO-PC from Crystal Systems Inc.) cannot even access the melting temperature of orthochromates so that the seed and feed rods could not be melted, thus the crystal growth could not be performed. Second, the evaporation of Cr-based oxides is very heavy like a thick haze. Third, the process of crystal growth is time-consuming and labor-intensive, and one needs to optimize various growth parameters. Presently, we are unable to measure magnetic properties as a function of the crystallographic orientation because of technique difficulties, which is left for future work.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - O Lead contact
 - Materials availability
 - Data and code availability
- METHOD DETAILS

- O Single crystal growth procedure and parameters
- Neutron Laue diffraction
- O Magnetization measurements
- First-principles calculations
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104111.

ACKNOWLEDGMENTS

The work at City University of Hong Kong was supported by grants from the Research Grants Council of the Hong Kong SAR (Project Nos. 11305618 and 11306219) and City University of Hong Kong (SRG-Fd Project No. 7005496 and SIRG Project No. 7020017). The work at State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, was supported by the Technology Commission of Shanghai Municipality (19DZ1100703 and 19511107600), the Research Program of Chinese Academy of Sciences (YJ- 267 KYYQ20180025). The work at University of Macau was supported by the opening project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Grant No. SKL201907SIC), Science and Technology Development Fund, Macao SAR (File Nos. 0051/2019/AFJ and 0090/2021/A2), Guangdong Basic and Applied Basic Research Foundation (Guangdong-Dongguan Joint Fund No. 2020B1515120025), University of Macau (MYRG2020-00278-IAPME and EF030/IAPME-LHF/2021/GDSTIC), and Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology (Grant No. 2019B121205003).

AUTHOR CONTRIBUTIONS

Y.H.Z., J.C.X., and S.W. contributed equally.

Y.H.Z., J.C.X., S.W., Y.Z., L.W., H.W., J.H.F., C.Y.W., T.W., Y.S., and J.D.Y. grew the single crystals. Y.H.Z., S.W., Y.Z., L.W., and H.W. performed the Laue experiments. Y.H.Z., J.C.X., S.W., and K.T.S. performed magnetization measurements. Y.H.Z., Y.W.Y., Y.L.Z., H.W.K., and R.Q.Z. carried out the theoretical calculations. All authors discussed and analyzed the results. Y.H.Z. and H.F.L. wrote the main manuscript text. All authors reviewed the paper. R.Q.Z. and H.F.L. conceived and directed the project.

DECLARATION OF INTERESTS

The authors declare the following competing financial interest(s): Y. H. Zhu, S. Wu, and H.-F. Li have a 2021 China Invention Patent (CN110904497B) through University of Macau based on this work: A method of centimeter-sized single crystal growth of chromate compounds and related storage device.

Received: January 20, 2022 Revised: March 6, 2022 Accepted: March 15, 2022 Published: April 15, 2022

REFERENCES

Bernal, F.L.M., Lundvall, F., Kumar, S., Hansen, P.-A.S., Wragg, D.S., Fjellvåg, H., and Løvvik, O.M. (2021). Jahn-teller active fluoroperovskites ACrF₃ (A = Na⁺, K⁺): magnetic and thermo-optical properties. Phys. Rev. Mater. *5*, 064420.

Bertaut, E.F. (1963). Spin Configurations of Ionic Structures: Theory and Practice. In Magnetism iii, 3, G.T. Rado and H. Suhl, eds (Academic Press), pp. 149–209.

Besbes, O., Nikolaev, S., Meskini, N., and Solovyev, I. (2019). Microscopic origin of ferromagnetism in the trihalides CrCl₃ and Crl₃. Phys. Rev. B *99*, 104432. Chatterji, T., Demmel, F., Jalarvo, N., Podlesnyak, A., Kumar, C., Xiao, Y., and Brückel, T. (2017). Quasielastic and low-energy inelastic neutron scattering study of HoCrO₃ by high resolution time-of-flight neutron spectroscopy. J. Phys. Condens. Matter 29, 475802.

Cheng, H.-M. (2017). Metre-size single-crystal graphene becomes a reality. Sci. Bull. 62, 1039–1040.

Cococcioni, M., and de Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105. Coffey, D., Rice, T.M., and Zhang, F.C. (1991). Dzyaloshinskii-Moriya interaction in the cuprates. Phys. Rev. B 44, 10112–10116.

Cooke, A.H., Martin, D.M., and Wells, M.R. (1974). Magnetic interactions in gadolinium orthochromite, GdCrO₃. J. Phys. C: Solid State Phys. 7, 3133–3144.

Deepak, Kumar, A., and Yusuf, S.M. (2021). Intertwined magnetization and exchange bias reversals across compensation temperature in YbCrO₃ compound. Phys. Rev. Mater. 5, 124402.

Dmitrienko, V.E., Ovchinnikova, E.N., Collins, S.P., Nisbet, G., Beutier, G., Kvashnin, Y.O.,

Mazurenko, V.V., Lichtenstein, A.I., and Katsnelson, M.I. (2014). Measuring the Dzyaloshinskii-Moriya interaction in a weak ferromagnet. Nat. Phys. 10, 202–206.

Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: an Isda+u study. Phys. Rev. B 57, 1505–1509.

Durán, A., Meza F., C., Morán, E., Alario-Franco, M.A., and Ostos, C. (2014). Biferroic $LuCrO_3$: structural characterization, magnetic and dielectric properties. Mater. Chem. Phys. 143, 1222–1227.

Eibschütz, M., Holmes, L., Maita, J.P., and Van Uitert, L.G. (1970). Low temperature magnetic phase transition in ErCrO₃. Solid State Commun. *8*, 1815–1817.

El Amrani, M., Zaghrioui, M., Ta Phuoc, V., Gervais, F., and Massa, N.E. (2014). Local symmetry breaking and spin-phonon coupling in SmCrO₃ orthochromite. J. Magn. Magn. Mater. 361, 1–6.

Fiebig, M., Lottermoser, T., Meier, D., and Trassin, M. (2016). The evolution of multiferroics. Nat. Rev. Mater. 1, 16046.

Fita, I., Puzniak, R., and Wisniewski, A. (2021). Pressure-tuned spin switching in compensated $GdCrO_3$ ferrimagnet. Phys. Rev. B 103, 054423.

Franchini, C., Podloucky, R., Paier, J., Marsman, M., and Kresse, G. (2007a). Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128.

Franchini, C., Podloucky, R., Paier, J., Marsman, M., and Kresse, G. (2007b). Ground-state properties of multivalent manganese oxides: density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128.

Fujioka, Y., Frantti, J., and Nieminen, R.M. (2008). Electronic energy band structure of the double perovskite Ba₂MnWO₆. J. Phys. Chem. B 112, 6742–6746.

Gordon, J.D., Hornreich, R.M., Shtrikman, S., and Wanklyn, B.M. (1976). Magnetization studies in the rare-earth orthochromites. v. TbCrO₃ and PrCrO₃. Phys. Rev. B 13, 3012–3017.

Hornreich, R.M. (1978). Magnetic interactions and weak ferromagnetism in the rare-earth orthochromites. J. Magn. Magn. Mater. 7, 280–285.

Huang, K.-W., Yi, S.-H., Jiang, Y.-S., Kao, W.-C., Yin, Y.-T., Beck, D., Korolkov, V., Proksch, R., Shieh, J., and Chen, M.-J. (2021). Sub-7-nm textured ZrO_2 with giant ferroelectricity. Acta Materialia 205, 116536.

Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., and Cheong, S.-W. (2004). Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395.

Jones, P.P., Gaw, S.M., Doig, K.I., Prabhakaran, D., Hétroy Wheeler, E.M., Boothroyd, A.T., and Lloyd-Hughes, J. (2014). High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. *5*, 3787.

Ko, E., Kim, B.J., Kim, C., and Choi, H.J. (2007). Strong orbital-dependent *d*-band hybridization and fermi-surface reconstruction in metallic Ca₂. _xSr_xRuO₄. Phys. Rev. Lett. *98*, 226401.

Kresse, G., and Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Compt. Mater. Sci. *6*, 15–50.

Kresse, G., and Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B *54*, 11169–11186.

Kresse, G., and Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B *59*, 1758–1775.

Krynetskii, I.B., and Matveev, V.M. (1997). Metamagnetism and magnetostriction of the Ising antiferromagnet DyCrO₃. Phys. Solid State *39*, 584–585.

Kumar, A., Verma, A., and Bhardwaj, S. (2008). Prediction of formability in perovskite-type oxides. Open Appl. Phys. J. 1, 11–19.

Kumar, C.M.N., Xiao, Y., Nair, H.S., Voigt, J., Schmitz, B., Chatterji, T., Jalarvo, N.H., and Brückel, T. (2016). Hyperfine and crystal field interactions in multiferroic HoCrO₃. J. Phys. Condens. Matter 28, 476001.

Landron, S., and Lepetit, M.-B. (2008). Importance of t_{2g} - e_g hybridization in transition metal oxides. Phys. Rev. B 77, 125106.

Li, H.-F. (2008). Synthesis of CMR Manganites and Ordering Phenomena in Complex Transition Metal Oxides (Forschungszentrum Jülich GmbH Press), Ph.D. thesis.

Li, H.-F. (2016). Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets. Npj Comput. Mater. 2, 1–8.

Li, H., Su, Y., Persson, J., Meuffels, P., Walter, J., Skowronek, R., and Brückel, T. (2006). Correlation between structural and magnetic properties of La_{7/8}Sr_{1/8}Mn_{1-γ}O_{3+δ} with controlled nonstoichiometry. J. Phys. Condens. Matter 19, 016003.

Li, H., Su, Y., Persson, J., Meuffels, P., Walter, J., Skowronek, R., and Brückel, T. (2007). Neutrondiffraction study of structural transition and magnetic order in orthorhombic and rhombohedral $La_{7/8}Sr_{1/8}Mn_{1-\gamma}O_{3+\delta}$. J. Phys. Condens. Matter 19, 176226.

Li, H.-F., Su, Y., Xiao, Y., Persson, J., Meuffels, P., and Brückel, T. (2009). Crystal and magnetic structure of single-crystal La_{1-x}Sr_xMnO₃ (x \approx 1/8). Eur. Phys. J. B 67, 149–157.

Li, Y.-T., Gou, G.-Y., Li, L.-S., Tian, H., Cong, X., Ju, Z.-Y., Tian, Y., Geng, X.-S., Tan, P.-H., Yang, Y., et al. (2018). Millimeter-scale nonlocal photosensing based on single-crystal perovskite photodetector. IScience 7, 110–119.

Li, H., Zhu, Y., Wu, S., and Tang, Z. (2021). A Method of Centimeter-Sized Single Crystal Growth of Chromate Compounds and Related Storage Device, China Patent CN110904497B. Looby, J.T., and Katz, L. (1954). Yttrium chromium oxide, a new compound of the perowskite type. J. Am. Chem. Soc. *76*, 6029–6030.

Monkhorst, H.J., and Pack, J.D. (1976). Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192.

Oliveira, G. (2017). Local Probing Spinel and Perovskite Complex Magnetic Systems (Universidade do Porto), Ph.D. thesis.

Oliveira, G.N.P., Teixeira, R.C., Moreira, R.P., Correia, J.G., Araújo, J.P., and Lopes, A.M.L. (2020). Local inhomogeneous state in multiferroic SmCrO₃. Sci. Rep. 10, 4686.

Ouladdiaf, B., Archer, J., McIntyre, G.J., Hewat, A.W., Brau, D., and York, S. (2006). Orientexpress: a new system for laue neutron diffraction. Physica B Condens. Matter *385*, 1052–1054.

Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

Philipp, J.B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M.S., Simon, J., Walther, T., Mader, W., et al. (2003). Structural and doping effects in the half-metallic double perovskite A₂CrtWO₆ (A = Sr, Ba, and Ca). Phys. Rev. B 68, 144431.

Preethi Meher, K.R.S., Wahl, A., Maignan, A., Martin, C., and Lebedev, O.I. (2014). Observation of electric polarization reversal and magnetodielectric effect in orthochromites: a comparison between LuCrO₃ and ErCrO₃. Phys. Rev. B *89*, 144401.

Qian, X., Chen, L., Cao, S., and Zhang, J. (2014). A study of the spin reorientation with t–e orbital hybridization in SmCrO₃. Solid State Commun. 195, 21–25.

Rajeswaran, B., Khomskii, D.I., Zvezdin, A.K., Rao, C.N.R., and Sundaresan, A. (2012). Field-induced polar order at the Néel temperature of chromium in rare-earth orthochromites: interplay of rareearth and Cr magnetism. Phys. Rev. B *86*, 214409.

Serrao, C.R., Kundu, A.K., Krupanidhi, S.B., Waghmare, U.V., and Rao, C.N.R. (2005). Biferroic YCrO₃. Phys. Rev. B 72, 220101.

Shamir, N., Shaked, H., and Shtrikman, S. (1981). Magnetic structure of some rare-earth orthochromites. Phys. Rev. B 24, 6642–6651.

Shi, J., Yin, S., Seehra, M.S., and Jain, M. (2018). Enhancement in magnetocaloric properties of $ErCrO_3$ via A-site Gd substitution. J. Appl. Phys. 123, 193901.

Shick, A.B., Liechtenstein, A.I., and Pickett, W.E. (1999). Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769.

Siddique, M.N., Faizan, M., Riyajuddin, S., Tripathi, P., Ahmad, S., and Ghosh, K. (2021). Intrinsic structural distortion assisted optical and magnetic properties of orthorhombic rare-earth perovskite $La_{1,x}Eu_xCrO_3$: effect of te hybridization. J. Alloys Compd. 850, 156748.

Singh, K.D., Pandit, R., and Kumar, R. (2018). Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates;

Sci. 85, 70-75.

RCrO₃ (R = La, Nd, Eu, Gd, Dy, and Y). Solid State Tamaki,

Slater, J.C., and Koster, G.F. (1954). Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524.

Spaldin, N.A., and Ramesh, R. (2019). Advances in magnetoelectric multiferroics. Nat. Mater. *18*, 203–212.

Streltsov, S.V., and Khomskii, D.I. (2008). Electronic structure and magnetic properties of pyroxenes (Li,Na)TM(Si,Ge)₂O₆: low-dimensional magnets with 90°bonds. Phys. Rev. B 77, 064405.

Su, Y., Zhang, J., Feng, Z., Li, L., Li, B., Zhou, Y., Chen, Z., and Cao, S. (2010a). Magnetization reversal and Yb³⁺/Cr³⁺ spin ordering at low temperature for perovskite YbCrO₃ chromites. J. Appl. Phys. *108*, 013905.

Su, Y., Zhang, J., Li, L., Li, B., Zhou, Y., Deng, D., Chen, Z., and Cao, S. (2010b). Temperature dependence of magnetic properties and change of specific heat in perovskite ErCrO₃ chromites. Appl. Phys. A. 100, 73–78.

Su, Y., Zhang, J., Feng, Z., Li, Z., Yan, S., and Cao, S. (2011). Magnetic properties of rare earth HoCrO₃ chromites. J. Rare Earth. *29*, 1060–1065.

Su, Y., Zhang, J., Li, B., Kang, B., Yu, Q., Jing, C., and Cao, S. (2012). The dependence of magnetic properties on temperature for rare earth $ErCrO_3$ chromites. Ceram. Int. 38, S421–S424.

Sun, D., Deng, G.-H., Xu, B., Xu, E., Li, X., Wu, Y., Qian, Y., Zhong, Y., Nuckolls, C., Harutyunyan, A.R., et al. (2019). Anisotropic singlet fission in single crystalline hexacene. iScience *19*, 1079– 1089.

Taheri, M., Razavi, F.S., Yamani, Z., Flacau, R., Reuvekamp, P.G., Schulz, A., and Kremer, R.K. (2016). Magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO₃ nanopowders. Phys. Rev. B 93, 104414.

Tamaki, T., Tsushima, K., and Yamaguchi, Y. (1975). Magnetization process in DyCrO₃. AIP Conf. Proc. 24, 69–70. Tamaki, T., Tsushima, K., and Yamaguchi, Y. (1977). Spin reorientation in TmCrO₃. Physica B+C *86*, 923–924.

Vagadia, M., Rayaprol, S., and Nigam, A. (2018). Influence of mn-substitution on the magnetic and thermal properties of TbCrO₃. J. Alloys Compd. 735, 1031–1040.

Wang, L., Rao, G.H., Zhang, X., Zhang, L.L., Wang, S.W., and Yao, Q.R. (2016a). Reversals of magnetization and exchange-bias in perovskite chromite TmCrO₃. Ceram. Int. 42, 10171–10174.

Wang, L., Wang, S.W., Zhang, X., Zhang, L.L., Yao, R., and Rao, G.H. (2016b). Reversals of magnetization and exchange-bias in perovskite chromite YbCrO₃. J. Alloys Compd. 662, 268–271.

Winter, M. (2021). Source: Webelements. http:// www.webelements.com/.

Wu, S., Zhu, Y., Gao, H., Xiao, Y., Xia, J., Zhou, P., Ouyang, D., Li, Z., Chen, Z., Tang, Z., et al. (2020). Super-necking crystal growth and structural and magnetic properties of SrTb₂O₄ single crystals. ACS omega 5, 16584–16594.

Xiong, P., Peng, M., and Yang, Z. (2021). Nearinfrared mechanoluminescence crystals: a review. iScience *24*, 101944.

Yaresko, A.N. (2008). Electronic band structure and exchange coupling constants in ACr_2X_4 spinels (A = Zn, Cd, Hg; X = O, S, Se). Phys. Rev. B 77, 115106.

Yekta, Y., Hadipour, H., Şaşıoğlu, E., Friedrich, C., Jafari, S.A., Blügel, S., and Mertig, I. (2021). Strength of effective Coulomb interaction in twodimensional transition-metal halides MX_2 and MX_3 (M = Ti, V, Cr, Mn, Fe, Co, Ni; X = CI, Br, I). Phys. Rev. Mater. 5, 034001.

Yin, L., Yang, J., Tong, P., Luo, X., Park, C., Shin, K., Song, W., Dai, J., Kim, K., Zhu, X., et al. (2016). Role of rare earth ions in the magnetic, magnetocaloric and magnetoelectric properties of RCrO₃ ($R = D_y$, Nd, Tb, Er) crystals. J. Mater. Chem. C 4, 11198–11204.

Yin, L.H., Shi, T.F., Zhang, R.R., Park, C.B., Kim, K.H., Yang, J., Tong, P., Song, W.H., Dai, J.M., Zhu, X.B., et al. (2018). Electric dipoles via $\operatorname{Cr}^{3+}(d^3)$

ion off-center displacement in perovskite $DyCrO_3$. Phys. Rev. B 98, 054301.

Yin, L.H., Yang, J., Kan, X.C., Song, W.H., Dai, J.M., and Sun, Y.P. (2015). Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO₃ single crystal. J. Appl. Phys. 117, 133901.

Yoshii, K. (2012). Magnetization reversal in TmCrO₃. Mater. Res. Bull. 47, 3243–3248.

Yoshii, K., and Ikeda, N. (2019). Dielectric and magnetocaloric study of TmCrO₃. J. Alloys Compd. *804*, 364–369.

Zhang, Y. (2020). Building a library of metre-scale high-index single-crystal copper foils. Sci. Bull. 65, 1694–1695.

Zhou, J.-S., Alonso, J.A., Pomjakushin, V., Goodenough, J.B., Ren, Y., Yan, J.-Q., and Cheng, J.-G. (2010). Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO₃. Phys. Rev. B *81*, 214115.

Zhou, J.-S., and Goodenough, J.B. (2008). Intrinsic structural distortion in orthorhombic perovskite oxides. Phys. Rev. B 77, 132104.

Zhu, Y., Fu, Y., Tu, B., Li, T., Miao, J., Zhao, Q., Wu, S., Xia, J., Zhou, P., Huq, A., et al. (2020a). Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide. Phys. Rev. Mater. 4, 094409.

Zhu, Y., Wu, S., Tu, B., Jin, S., Huq, A., Persson, J., Gao, H., Ouyang, D., He, Z., Yao, D.-X., et al. (2020b). High-temperature magnetism and crystallography of a YCrO₃ single crystal. Phys. Rev. B 101, 014114.

Zhu, Y., Zhou, P., Li, T., Xia, J., Wu, S., Fu, Y., Sun, K., Zhao, Q., Li, Z., Tang, Z., et al. (2020c). Enhanced magnetocaloric effect and magnetic phase diagrams of single-crystal GdCrO₃. Phys. Rev. B *102*, 144425.

Van der Ziel, J.P., and Van Uitert, L.G. (1969). Magnon-assisted optical emission in $YCrO_3$ and $LuCrO_3$. Phys. Rev. 179, 343–351.

STAR*METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER			
Chemicals, Peptides, and Recombinant Prot	Chemicals, Peptides, and Recombinant Proteins				
Yttrium(III) oxide	Alfa Aesar	CAS: 1314-36-9			
Gadolinium(III) oxide	Alfa Aesar	CAS: 12064-62-9			
Terbium(III, IV) oxide	Alfa Aesar	CAS: 12037-01-3			
Dysprosium(III) oxide	Alfa Aesar	CAS: 1308-87-8			
Holmium(III) oxide	Alfa Aesar	CAS: 12055-62-8			
Erbium(III) oxide	Alfa Aesar	CAS: 12061-16-4			
Thulium(III) oxide	Alfa Aesar	CAS: 12036-44-1			
Ytterbium(III) oxide	Alfa Aesar	CAS: 1314-37-0			
Lutetium(III) oxide	Alfa Aesar	CAS: 12032-20-1			
Chromium(III) oxide	Alfa Aesar	CAS: 1308-38-9			
Software and Algorithms					
Origin2016	OriginLab Corporation	https://www.originlab.com/			
OrientExpress	(Ouladdiaf et al., 2006)	https://neutronoptics.com/OrientExpress. html			
VASP 5.4.4	(Kresse and Furthmüller, 1996a, 1996b)	https://www.vasp.at/			

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Prof. Dr. Hai-Feng Li (haifengli@um.edu.mo).

Materials availability

This long-term project produced a series of $RECrO_3$ (RE = Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) single crystals utilizing the innovative method described in the China Invention Patent (CN110904497B). We welcome potential collaborations.

Data and code availability

- All data reported in this article will be shared by the lead contact upon request.
- Code with instructions reported in this article will be shared by the lead contact upon request.
- Any additional information required to reanalyse the data reported in this study is available from the lead contact upon request.

METHOD DETAILS

Single crystal growth procedure and parameters

Using raw materials of Y_2O_3 (Alfa Aesar, 99.9%), Gd_2O_3 (Alfa Aesar, 99.9%), Tb_4O_7 (Alfa Aesar, 99.9%), Dy_2O_3 (Alfa Aesar, 99.9%), Ho_2O_3 (Alfa Aesar, 99.9%), Er_2O_3 (Alfa Aesar, 99.9%), Tm_2O_3 (Alfa Aesar, 99.9%), Yb_2O_3 (Alfa Aesar, 99.9%), Lu_2O_3 (Alfa Aesar, 99.9%), and Cr_2O_3 (Alfa Aesar, 99.9%), polycrystalline RECrO_3 samples were synthesized with solid-state reactions. We first obtained homogeneous polycrystalline powder with a single phase. After that, cylindrical feed rods with additional treatments (Li et al., 2021) were shaped by a hydrostatic pressure of ~70 MPa (Wu et al., 2020; Zhu et al., 2020b). Then RECrO_3 single crystals were grown by a laser-diode floating-zone furnace (Model: LD-FZ-5-200W-VPO-PCUM). The floating-zone method assures no introduction of impurities (Li, 2008). The growth speed was fixed at 5–15 mm/h to attain a stable growth state. Due to the intense volatility of chromium oxides, we added extra

5-15% mole raw chromium oxide for the synthesis of polycrystalline samples and for the growth of single crystals.

Neutron Laue diffraction

To determine the quality of the grown single crystals, we performed a neutron Laue diffraction study on the diffractometer, OrientExpress, located at ILL, Grenoble, France. Simultaneously, we simulated the recorded neutron Laue patterns along the three crystallographic axes with the software of OrientExpress (Ouladdiaf et al., 2006) to confirm the quality of the grown crystals.

Magnetization measurements

Magnetization was measured using the option of a vibrating sample magnetometer of Quantum Design physical property measurement system. Small RECrO₃ single crystals (5–15 mg) were glued on a quartz sample holder with GE Varnish. The dc magnetization was measured at applied magnetic fields of 0, 50, and 100 Oe with zero-field cooling and field cooling modes in the temperature range of 1.8–400 K. The magnetic field dependent hysteresis loops were measured from -14 to 14 T at different temperatures within 1.8–300 K.

First-principles calculations

The first-principles calculations of RECrO₃ compounds were carried out within density functional theory. The exchange and correlation term in Kohn-Sham equation was treated with the Perdew-Burke-Ernzerhof (PBE) and (PBE + *U*) functionals (Perdew et al., 1996; Franchini et al., 2007a, 2007b; Shick et al., 1999) using the Vienna Ab-initio Simulation Package (Kresse and Furthmüller, 1996a, 1996b). The core electrons were frozen, and the projected-augmented-wave method was used (Kresse and Joubert, 1999). The Cr 3d4s, RE (RE = Eu–Lu) elements 5p5d6s, Y (4s4p5s4d), and O 2s2p electrons were treated as valence electrons. It is well known that the 4f orbitals are tightly localized in comparison to the *d* orbitals. In the present study, we aim mainly to unravel the effect of lattice variation on $Cr^{3+}-O^{2-}-Cr^{3+}$ superexchange interactions, and the energy scale of RE³⁺-RE³⁺ exchange interactions is about two magnitudes smaller than that of $Cr^{3+}-Cr^{3+}$, hence the 4f electrons of lanthanide ions could be frozen reasonably. A Gaussian broadening of 0.05 eV was chosen. The set of plane-wave basis with an energy cutoff of 500 eV was used. Brillouinzone integrations were performed with a Gamma-point-centered 7 × 7 × 5 Monkhorst-Pack k-point mesh (Monkhorst and Pack, 1976). The ionic relaxation was performed with a convergency criterion of 10^{-5} eV/ primitive cell for each relaxation step and stopped moving when residual force <0.01 eV/Å. A convergency accuracy of 10^{-6} eV per conventional cell was chosen for subsequent static self-consistent calculations.

We first optimized the structures with collinear magnetic configurations of FM and A-type, C-type, and G-type AFM, to determine the magnetic ground state of each compound. Furthermore, to avoid an underestimation of the band gap, the Hubbard U value ($U_{eff} = U - J$) of each compound was calculated using the linear response ansatz (Dudarev et al., 1998; Cococcioni and de Gironcoli, 2005). With appropriate Hubbard U value, static electronic self-consistent calculations were performed using the (PBE + U) method to obtain the exact total energy of the four magnetic states. The exchange parameters, J_{ii} , under classical Heisenberg model could be deduced with the energy mapping method, as does T_N^{Cr} based on the mean-field approximation (MFA). Finally, the electronic structures of the RECrO₃ compounds were calculated with reading the charge density of ground state of the magnetic configuration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sensitivity analysis (one-at-a-time) was carried out to see the effects of parameters in the numerical model.