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Abstract: Recent studies have reported the application of artificial neural network (ANN) techniques
on data of inertial measurement units (IMUs) to predict ground reaction forces (GRFs), which could
serve as quantitative indicators of sports performance or rehabilitation. The number of IMUs and their
measurement locations are often determined heuristically, and the rationale underlying the selection
of these parameter values is not discussed. Using the dynamic relationship between the center of
mass (CoM), the GRFs and joint kinetics, we propose the CoM as a single measurement location
with which to predict the dynamic data of the lower limbs, using an ANN. Data from seven subjects
walking on a treadmill at various speeds were collected from a single IMU worn near the sacrum.
The data was segmented by step and numerically processed for integration. Six segment angles of the
stance and swing leg, three joint torques, and two GRFs were estimated from the kinematics of the
CoM measured from a single IMU sensor, with fair accuracy. These results indicate the importance of
the CoM as a dynamic determinant of multi-segment kinetics during walking. The tradeoff between
data quantity and wearable convenience can be solved by utilizing a machine learning algorithm
based on the dynamic characteristics of human walking.

Keywords: biomechanics; machine learning; walking; ground reaction forces; joint torques; spring
mechanics; wearables

1. Introduction

Kinetic data of human motion, such as ground reaction forces (GRFs) and joint torques, serve as a
quantitative indicator of sports performance or the effect of rehabilitation. GRFs and joint torques have
served as indicators of injury risks and pain during running [1–5]. The progress of gait rehabilitation
of hemiparetic patients has been monitored by the magnitude and the degree of asymmetry of the
GRF [6–8]. The motion analysis used for these studies is performed in a laboratory with accurate
motion trackers and force transducers, which often impose spatial and temporal constraints on subjects.

With the development of sensor technology, the market for wearable motion monitoring systems
has rapidly grown. Wearable motion monitoring products such as Galaxy, Garmin, Fitbit, and Apple
watches monitor the overall rough motion information, such as the steps, cadence, distance, etc.
That rough motion information, however, makes it difficult to estimate the kinetic information for
the analysis of injury risks and rehabilitation. One of the common issues of current wearables is
how to increase the quantity and quality of the measured data with minimal increase in the system
complexity. In particular, obtaining force information using wearables is very challenging due to the
size and weight of the force transducers. Instead of direct measurement, researchers have attempted to
predict unmeasured GRF information from joint kinematics information. Oh et al. predicted 3D GRFs
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based on the whole body motion capture data, but the motion capture system still imposes spatial
and temporal constraints on subjects [9]. To overcome the constraints of the motion capture system,
Karatsidis et al. predicted GRFs using inertial measurement units (IMUs) on multiple limb segments,
and fairly accurately estimated the 3D GRFs from walking speeds of 0.9 to 1.6 m/s [9,10].

The number of IMUs measuring whole body motion, however, greatly limits the applicability
of the IMU based prediction method for wearable devices. To reduce the number of IMUs used for
GRF prediction, recent studies used the artificial neural network (ANN) with a limited amount of
measurement information. Using the ANN, researchers have utilized multi-IMU data located on the
shank or foot of both legs to predict the 3D GRFs in walking and running [11,12]. Using a single IMU
measurement taken at the sacrum, researchers predicted the vertical GRF [13] or the 3D GRF and used
additional sensor information to detect gait events such as heel strike or toe-off [14]. The ANN could
predict unmeasured force information from the IMUs, find the global optima of the loss function during
backpropagation [15–18], generalize without overfitting [19,20], and select appropriate input types
and size [10,21,22]. Selecting an appropriate type and size of the data plays a key role in improving
training efficiency and test accuracy [21,22], and dimension reduction techniques or the employment of
large datasets are often used for this purpose [10,23]. Oh et al. used self-organizing maps (SOM) and a
generic algorithm-general regression neural network (GA-GRNN) to reduce the dimensionality of the
input from 90 kinematic data points to 14, to predict 3D GRFs [10]. Johnson et al. collected kinematic
and kinetic data from over 400 subjects, and used eight trajectories of the kinematic marker data, body
parameters of mass and height, and gender information as inputs to the network [23]. Although a
sufficiently large input data size may help with the search for appropriate input combinations, the
search process often involves optimization and the use of heuristics.

To resolve some issues of the ANN listed above, one may use knowledge of the dynamic
characteristics of human walking. Whereas the multiple limbs used during walking are coordinated
and actuated in a complicated manner by multiple muscles, the resultant motion of the body CoM and
related forces are known to be describable by simple spring mechanics [24–28]. The experimental GRFs
at various walking conditions are well emulated by the springy mechanics of the CoM [25,26], leading
to the CoM motion being easily estimated by the GRF, and vice versa. By adding spring components
and geometrical constraints to the spring-loaded inverted pendulum (SLIP) model, recent studies have
shown the extended dynamic association of the CoM with the ankle joint torque and multiple joint
kinetics [29], as well as swing leg kinetics [30]. These findings highlight the importance of the CoM as a
dynamic determinant of multi-segment kinetics during gait. Noting that the ANN generates the output
from the weighted sum of the inputs, the mechanical coupling between the CoM and the joint kinetics
could be implemented in the ANN to efficiently and accurately predict the unmeasured joint kinetics.

In this study, using the dynamic relationship between the CoM, GRFs, and joint kinetics, we
propose the CoM as a single measurement location which can be used to predict unmeasured dynamic
data of the lower limbs using an ANN. Data from seven subjects walking on a treadmill at various
speeds were collected from a single IMU worn near the sacrum. The data was segmented by step and
numerically processed for integration. After training the ANN with the processed IMU data, lower limb
kinematics and kinetics at various gait speeds were predicted and tested by the leave-one-subject-out
(LOO) validation method.

2. Methods

We proposed a method for the prediction of six lower limb kinematics and five lower limb kinetics
data points from a single IMU measurement using the ANN, based on the biomechanical characteristics
of the CoM and the GRF during human walking (Figure 1). Mechanical coupling between the CoM,
the GRF, and joint kinematics were used to approximate the GRF and joint motion as a weighted
sum of the CoM, which is the basic input–output relationship of an ANN. We hypothesized that the
CoM kinematics measured from a single IMU, used as an input node to the ANN, could predict the
unmeasured GRF, joint kinematics and kinetics. The IMU measurement obtained from the sacrum was
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pre-processed to identify each step and to obtain position and velocity information. The processed
IMU data were then fed into the input node of the ANN, which consists of a single hidden layer of
20 nodes with sigmoid activation and eleven output nodes for the segment angles of the foot, shank,
and thigh of the stance and swing leg, the joint torques of the hip, knee, and ankle of the stance leg,
and the horizontal and vertical GRF, respectively. The details of the experimental protocols, the signal
processing of the IMU data, and the prediction algorithm are presented in Figure 1.
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Figure 1. Schematics of the procedures of lower limb kinetics prediction from a single inertial
measurement unit (IMU) using machine learning. Processed IMU signals, such as velocity, position
and time, were fed into input nodes of the network. The network has seven input nodes followed by
one hidden layer of 20 nodes and 11 output nodes. The output predictions are the angle of the thigh,
shank, and foot of the stance and swing leg and the joint torques of the hip, knee, and ankle and the
vertical and horizontal ground reaction forces.

2.1. Finding the Location of a Single Measurement by the IMU

To examine which part of body motion should be measured to best estimate the lower limb joint
kinetics, we used the dynamic characteristics of human walking. Since the outputs of the ANN are
obtained from the weighted sum of the inputs passed through a nonlinear activation function, the
equations of motion of the CoM during walking obtained from the recently published SLIP model [29]
were approximated, to estimate the GRF and joint dynamics in terms of the weighted sum of the
CoM. An approximation of the relationship between the CoM position and the state variables of the
mass–spring model of human walking was formulated (Equation (1)). The GRFs and angles of multiple
joints were formulated in terms of state variables (Equations (2) and (3)). Finally, the GRFs, ankle
joint torque, and angles of the foot, shank, and thigh were formulated as the weighted sum of the
CoM positions. These calculations led us to propose the CoM as the best measurement position for
prediction of the unmeasured GRF and joint dynamics. A brief summary follows, the details of which
can be found in the Appendix A.

The position of the CoM, x = (x, y), is expressed as model parameters of the SLIP, such as the leg
angle θ, the leg length l, the radius of the curvy foot R, the offset of the ankle joint with respect to the
foot d, and the ground contact position chs, with the subscript hs denoting values at the onset of the
stance phase (Figure 2), as follows:
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Figure 2. Compliant walking model with an off-centered, curvy foot combined with a springy foot-ankle
segment [29]. (A) The model parameters and state variables of the model, and (B) the force and torque
components. The position of the CoM in the sagittal plane; x and y are the positions of the horizontal
and vertical axes, respectively, and the model state variables l and θ are the total spring length and
angle, respectively, with a positive sign in the clockwise direction with respect to the vertical. The length
and stiffness of the CoM–ankle are represented by la and ka, respectively. The off-centered curvy foot
parameters d and R are the offset from the ankle from the center of the foot and the radius of the curvy
foot, respectively. The forces at the ground contact point are presented by fx and fy in the horizontal
and vertical directions, respectively. The constraint force, fa, acts on the ankle in the vertical direction
of the spring force, and the constraint ankle torque, Ta, is generated to prevent foot rotation relative
to the leg rotation, with a positive sign in the extension direction. With the kinematic constraint and
the positions of the CoM and the ankle, (C) multibody segment angles are determined by inverse
kinematics. Segment lengths and angles are represented by l and θ, respectively, with subscripts 1–3,
and angles are positive in the clockwise direction.

By linearization, we can obtain the mapping equation from the CoM position x to the augmented
state z = [l, θ, lθ]T, which includes the state parameters, l and θ of the SLIP model, and its nonlinear
term lθ as follows:

z = W1x + b1

where W1 =


0 1

y−1
hs 0
1 0

, b1 =


0
αy−1

hs
α

 (1)

where α = Rθhs − chs + d.
The relationship between the augmented state z and the augmented kinetics f = [fx, fy, Ta]T such

as GRF and ankle torque are obtained as follows:

f = W2z + b2

where W2 =


kdl0−1 k(l0 −R) k

(
Rl0−1

− 1
)
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−kdcl kRl0cl −kRcl

, b2 =


−kd
kl0
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 (2)



Sensors 2020, 20, 130 5 of 29

The relationship between the augmented state z and the augmented segment angles
θ = [θ1, θ2, θ3]T can be rewritten as follows:

θ = W3z + b3

where W3 =


(1− ck)l1−1 1 0
∓0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1

±0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1

,
b3 =


−(1− ck)l0l1−1

±

(
1− 0.125cl(cl − 2ck)l02l2−2

)
∓

(
1− 0.125cl(cl − 2ck)l02l2−2

)


(3)

In summary, the kinematics and kinetics of the lower limb can be approximated as a weighted
sum of augmented states z of the spring mechanics and the bias as follows:[

f
θ

]
=

[
W2W1

W3W1

]
x +

[
W1b1 + b2

W3b1 + b3

]
(4)

From the approximated relationship between the CoM position x and the lower limb kinetics and
kinematics [fT, θT] as a form of weighted sum of x and bias, we tried to predict the unmeasured lower
limb kinematics and kinetics using the sacrum motion profiles, the measurable approximation of the
CoM. We may use the terms ‘CoM’ and ‘sacrum’ interchangeably throughout the manuscript (see also
the Appendix A for the formulation of the lower limb kinematics and kinetics as an approximation of
the weighted sum of the CoM states).

2.2. Experimental Protocols and Data Collection

Seven young (25.0 ± 2.9 years) healthy male subjects with average heights and weights of
168.8 ± 7.5 cm and 72.1 ± 7.7 kg, respectively, participated in the data collection, after signing fully
informed consent forms approved by KAIST Institutional Review Board on 22 January 2018 (IRB-18-023).
The subjects participated in one-minute treadmill walking trials at three customized gait speeds, ranging
from 1.0 m/s to 2.3 m/s. The test speeds were determined by each subject’s preferred gait speed, the
midpoint between his preferred and maximum speeds, and a speed slower than the preferred speed
by an amount equal to approximately 20% of the difference between the preferred and maximum
speeds. The label ‘slow’, ‘moderate’, and ‘fast’ indicates slow speed, preferred speed, and fast speed,
respectively. The speed of each subject is in Table 1. Three one-minute gait trials per test speed were
randomly ordered. The kinematics of the lower back, which is assumed to be close to the CoM, were
measured by an IMU (EBIMU-9DOFV4) with an acceleration sensitivity of ±16 g, and resolution of
0.001 g. The width of the IMU was 15.6 mm, and the length was 18.6 mm. The IMU data were collected
at a sampling frequency of 100 Hz, and used the universal asynchronous receiver/transmitter (UART)
protocol for communication with a baud rate of 921,600 bps. The IMU was aligned with the subject’s
heading direction to set the local frame of the IMU to the body frame. The 2D acceleration data from the
IMU in the sagittal plane were used for the analysis. The lower limb kinematics and ground reaction
forces under each foot were measured by an optical motion capture system (Motion Analysis Hawk®)
and force plates (Bertec, FP 6012®), respectively. For the segment angle calculation, 12 markers were
located at the toe, heel, ankle, knee, and anterior and posterior superior iliac spine (ASI and PSI) of
both legs. The midpoint of the PSIs was used as the reference position for the IMU. Motion data and
force data were collected at the sampling frequency of 100 Hz and 200 Hz, respectively, and filtered
with a fifth-order low-pass Butterworth filter with a cutoff frequency of 10 Hz. The joint torque was
calculated by the inverse dynamics of the seven-segmental rigid body model, which includes the hip,
knee, and ankle. The mass distribution of the rigid body were based on the anatomical reports [31].
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Table 1. Speed of each subject’s slow, moderate, and fast speed used for data collection.

Subject 1 2 3 4 5 6 7 Average

Slow (m/s) 1.07 1.71 1.38 1.22 1.29 1.00 1.20 1.27 ± 0.23
Moderate (m/s) 1.21 1.87 1.49 1.37 1.51 1.14 1.36 1.42 ± 0.24

Fast (m/s) 1.54 2.26 1.78 1.76 2.07 1.49 1.76 1.81 ± 0.27

2.3. Preprocessing of IMU Data for ANN Input

The IMU measurement data that contain the double support phase must be segmented into one
stance phase per leg before feeding into the ANN for GRF prediction. The stance phase is defined
based on the GRF as the duration from the onset of heel strike (HS) to toe off (TO) (Figure 3A,C).
To identify the characteristic features of the IMU data which indicate the gait events of HS and TO,
the IMU acceleration and GRF profiles were aligned over time, and three characteristic features were
chosen: the CoM apex, HS, and TO (Figure 3). The filter frequency of IMU acceleration was selected
heuristically to best extract the characteristic features, and was chosen to be 40 Hz for identifying HS
and 10 Hz for identifying TO. The CoM apex is the point at which the height of CoM is maximal in
sagittal plane around the mid-stance phase, and the corresponding vertical GRF has a local minimum
(Figure 3B). The CoM apex was identified as the local minimum of the vertical IMU acceleration data
filtered with a cutoff frequency of 10 Hz (Figure 3B). The HS was identified as the first local minimum of
the vertical acceleration filtered by a 40 Hz cutoff frequency, following the positive local maximum after
CoM apex (Figure 3B). The TO was identified as the first local minimum of the horizontal acceleration
data filtered by a 10 Hz cutoff frequency after CoM apex (Figure 3D). The detailed process of IMU data
segmentation is shown in Figure 3E. The precedence of HS over TO was checked for validation. When
HS estimation follows the TO, the HS was re-identified as the preceding local minimum of vertical
acceleration compared with the one originally found. After completing segmentation of the full stance,
the consecutive segmentation process was performed by identifying the subsequent CoM apex based
on the acceleration profiles from the TO event, the last event of the previous step.

Another step of preprocessing the IMU data is to calculate the velocity and position of the CoM,
i.e., the sacrum, from the acceleration, which includes drift removal and identification of the integral
constant. To eliminate the integration drift, steady walking and random error were assumed. Then,
the drift was removed linearly with time over the duration from one apex to the following apex.

The drift-removed velocity of the CoM
^
v(t) could be obtained as follows:

^
v(t) = v(t) − (v(T) − v(0)) ·

t
T

(5)

where v (t) is the time integration of the acceleration data for time t over the duration of the stance
phase T. To satisfy the steady walking assumption, the mean velocity change was set to zero so that
position drift due to the random error was simultaneously removed.

The velocity and the position offsets were estimated in a heuristic manner to obtain the velocity
and the position from the acceleration integration. From the observed proportionality of the gait speed
v with the average magnitude of the acceleration, A, and the gait frequency, f, (0.79 and 0.73 Pearson
correlation coefficients, respectively), the gait speed offset v0 was estimated as follows:

v0 =
aA + b f + c

2
·

√
h · g (6)

where a, b, and c are the regression coefficients obtained in a least square manner. To minimize the size
effect of subjects, we normalized the speed with

√
h · g, where h and g are the height of the subject and

gravitational acceleration, respectively. The position of the sacrum was obtained by integrating the
compensated velocity with the position offset, defined as the subject’s leg length. All data processing
was conducted by MATLAB R2018a (Mathworks, Inc., Natick, MA, USA).
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Figure 3. Schematics of the gait event detection and IMU data segmentation algorithm. To detect the
gait events of heel strike (HS) and toe off (TO), the acceleration measurement in the (B) vertical and
(D) anteroposterior (AP) directions is compared with the (A) vertical and (C) eranteroposterior GRF
measurement. Timings of specific gait events, such as the CoM apex, HS, and TO, are marked with
reversed triangle. Data filtered by 10 Hz and 40 Hz cutoff frequencies are presented by black and gray
solid lines, respectively. (E) Gait event detection algorithm. From the local and global minimum points
of the vertical and A–P accelerations (see Methods section), the apex, HS and TO events are detected.

2.4. Structure of the ANN and Its Training and Test Procedures

The GRFs and segment angles of the lower limbs were approximated using the weighted sum of
CoM position (Equation (4)), so we hypothesized that a simple ANN that generates its output from the
weighted sum of inputs could be a good candidate for a prediction network. We used a fully connected
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feed-forward ANN with one input layer, one hidden layer and one output layer. The seven input
nodes consist of a 7 × 1 column vector consisting of a time t, and the corresponding CoM kinematics
(t, x, y, vx, vy, ax, ay), where x, y are horizontal and vertical position, respectively, and v and a are
velocity and acceleration measured at a specific time, such as t = t0. The position of the CoM was
reset to be zero at every HS, and we defined ‘displacement’ as the reset position. The eleven output
nodes constitute an 11 × 1 column vector consisting of the GRFs and the joint kinetics and kinematics
corresponding to t = t0, such as (GRFx, GRFy, Tank, Tknee, Thip, θfoot,stance, θshank,stance, θthigh,stance,
θfoot,swing, θshank,swing, θthigh,swing), where T, and θ are joint torque and segment angle, respectively,
with subscripts showing the names of the lower limb segment. All kinematic data of the sacrum, such
as the acceleration, velocity and displacement, were normalized by its maximum norm such that the
values ranged from 0 to 1. The hidden layer has 20 nodes, and node weights are iteratively updated to
best match the data. The sigmoid and linear activation transfer functions were used in the hidden and
output layers. The loss function of the network was set as the mean square error of the predicted angles
of both the stance and swing legs, the joint torque of the stance leg and the GRF with respect to the
observed data. The network employed an Adam optimizer for the back-propagation process. To match
the size of the training dataset collected at various gait speeds of many subjects, gait data of one stance
phase were interpolated into 200 points. As a quantitative measure of prediction performance, we used
the normalized root mean square error (NRMSE), which was normalized by the difference between the
maximum and minimum values of the outputs of each subject at each speed. The NRMSE value of
each subject represents the error of a total of 30 trials at one speed for one output. The neural network
programming was conducted using PyTorch 0.4.1 [32].

To test the proposed prediction methods, we used LOO cross validation. A total of 540 stance
phase trials obtained from six subjects was used as the training dataset, and the results were validated
using data from the remaining subject. Validation was performed for each of seven subjects. To evaluate
which kinematic information contributed most to the prediction accuracy, various combinations of
kinematic inputs, such as CoM kinematics with or without position, velocity, and acceleration, were
used as the inputs to the ANN. To examine whether the walking speed at which the training datasets
were collected affected the prediction accuracy of the GRFs at other speeds, the data collected at various
walking speeds were used as training datasets of the ANN.

3. Results

From the single IMU measurement at the lower back, the practical approximate of the CoM,
eleven joint kinetics data points were predicted by the ANN over walking speeds ranging from 1.0 to
2.3 m/s. The predicted joint data are the thigh, shank and foot angles of the swing and stance leg, the
hip, knee, and ankle joint torques of the stance leg, and the vertical and A–P ground reaction forces.

Gait event detection from the IMU data showed a reasonable match with those defined from the
GRF, with average detection errors of the HS and TO of 0.025 s and 0.014 s, respectively (Table 2).
The detection algorithm showed a more accurate performance for TO than that for HS, with the
accuracy increasing with the gait speed. With drift removal and the estimation of the integral constant
of the IMU measured acceleration, the velocity and displacement trajectories of the CoM were obtained
by integrating the IMU data based on the detected gait events (Figure 4). The calculated sacrum
speed and the displacement segmented by the stance phase matched well with the data obtained from
optical markers, with NRMSEs of approximately 25% and 12%, respectively (Table 3). No significant
tendencies were observed for the estimation errors of the sacrum kinematics as a function of the
gait speed.
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Table 2. Mean absolute error of heel-strike (HS) and toe-off (TO) timings with gait speed.

MAE (s) Slow Moderate Fast Total

HS 0.030 ± 0.022 0.025 ± 0.016 0.021 ± 0.017 0.025 ± 0.019
TO 0.016 ± 0.010 0.016 ± 0.011 0.010 ± 0.009 0.014 ± 0.010Sensors 2019, 19, x FOR PEER REVIEW 9 of 29 
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Figure 4. The average trajectories of (A) displacement and (B) speed of the CoM over 90 trials of seven
subjects at gait speeds ranging from 1.0 to 2.3 m/s. Vertical and horizontal components are presented in
the left and right columns, respectively. The experimental mean and standard deviation are depicted as
gray shaded and white solid lines, respectively, whereas the estimated values are depicted as thick and
thin black solid lines, respectively.

Table 3. Mean absolute error and normalized root mean square error (NRMSE) of displacement and
velocity of sacrum.

Error Slow Moderate Fast Total

Vertical
displacement

MAE (m) 0.006 ± 0.003 0.005 ± 0.002 0.006 ± 0.003 0.006 ± 0.003
NRMSE (%) 20.12 ± 10.67 16.83 ± 7.14 16.82 ± 7.48 17.93 ± 8.71

A–P
displacement

MAE (m) 0.06 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.03
NRMSE (%) 8.76 ± 4.72 5.96 ± 3.75 4.69 ± 2.90 6.47 ± 4.21

Vertical velocity MAE (m/s) 0.06 ± 0.02 0.06 ± 0.02 0.06 ± 0.03 0.06 ± 0.02
NRMSE (%) 15.89 ± 5.82 14.21 ± 4.84 12.77 ± 4.43 14.29 ± 5.22

A–P velocity MAE (m/s) 0.14 ± 0.079 0.12 ± 0.07 0.16 ± 0.08 0.14 ± 0.08
NRMSE (%) 43.98 ± 24.94 34.87 ± 20.82 43.96 ± 23.40 40.94 ± 23.48

The prediction results (NRMSE and R2) of each subjects are presented in Tables A1 and A2 in the
Appendix A. The lower-limb joint kinematics and kinetics at various gait speeds for all seven subjects
were fairly well predicted from the kinematics of the sacrum, such as the displacement, velocity, and
acceleration, with an average NRMSE of approximately 7% (Figures 5 and 6, Table 4). The segment
angles of the stance and swing leg showed a reasonably good match between the prediction and
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experimental data, even for the worst case test set (Figure 6A,B, Table 5), whereas the joint torques
and GRFs showed larger error, especially for the estimation of the high-frequency component of
the hip joint torques (Figure 6C,D, Table 5). The average prediction errors also showed a similar
trend in the prediction accuracy (Figure 5, Table 4). As long as the displacement information of the
sacrum is provided, the velocity and acceleration input to the ANN do not significantly improve the
prediction accuracy, whereas the omission of the displacement input significantly (p < 0.05) increases
the prediction errors of the segment angles, torques and GRFs up to 3% (Figure 7, Table 6). These results
imply that the position of the sacrum contributes most to the predictions of the lower-limb joint kinetics.

The ANN predicted the kinematics and kinetics of the lower limb at various gait speeds that were
not used for the training datasets. The joint kinematics and kinetics are known to vary as a function
of the walking speed. To examine the effect of the walking speed at which the training data sets are
collected to the prediction accuracy, the ANN was trained by the data collected at three different speed
conditions: at moderate speed only, at slow and moderate speeds, and at slow, moderate and fast
speeds (Figure 8). The results showed that the inclusion of the data of a specific gait speed, which
are to be predicted through the ANN, would slightly but not significantly increase the prediction
performance. More importantly, the sacrum kinematics measured at the moderate speed could predict
the eleven unmeasured joint kinetics at various walking speeds, which were not included in the
training of the ANN (Figure 8). The prediction results of the joint torques and GRFs at the various gait
speeds obtained from the ANN trained by trials of moderate speed showed a reasonable match with
the data (Figure 9, Table 7).

Table 4. Percentage of NRMSE values of all subjects as a function of the gait speed.

Speed Slow Moderate Fast

Segment angles of
stance leg

Thigh 8.25 ± 1.40 7.70 ± 1.82 7.58 ± 2.66
Shank 3.69 ± 1.30 3.66 ± 1.81 3.46 ± 0.66
Foot 4.06 ± 1.07 4.24 ± 1.27 4.23 ± 0.89

Segment angles of
swing leg

Thigh 9.42 ± 2.13 8.89 ± 2.52 7.94 ± 2.31
Shank 5.82 ± 1.41 5.40 ± 1.13 4.99 ± 1.43
Foot 6.43 ± 1.93 5.89 ± 1.20 5.64 ± 1.00

Joint torques of
stance leg

Hip 11.67 ± 2.03 10.74 ± 1.26 10.65 ± 1.06
Knee 10.58 ± 1.53 9.63 ± 1.40 9.33 ± 3.42
Ankle 9.63 ± 3.12 9.24 ± 1.91 9.37 ± 1.68

Ground reaction
forces

Vertical 6.80 ± 2.85 6.26 ± 1.24 8.21 ± 3.63
A–P 6.49 ± 2.51 6.16 ± 1.76 6.70 ± 2.99
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Figure 5. The prediction results and experimental data of (A) the segment angles of the stance leg,
(B) swing leg, (C) the joint torques of the stance leg, and (D) the ground reaction forces, averaged for
all seven subjects. The mean and standard deviations of the experimental data are depicted as white
solid lines with a gray shadow, and those of the prediction results are shown as thick and thin black
solid lines, respectively.
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Figure 6. The prediction results and experimental data of (A) the segment angles of the stance leg,
(B) swing leg, (C) the joint torques of the stance leg, and (D) the ground reaction forces. The mean and
standard deviations of the experimental data are depicted as a white solid line with a gray shadow,
and those of the prediction results are shown as thick and thin black solid lines, respectively. The data
correspond to three subjects with different levels of estimation errors of the minimum (NRMSE:
6.15 ± 2.52%), median (NRMSE: 7.11 ± 2.70%), and maximum errors (NRMSE: 8.21 ± 2.81%), shown
from left to right. The graph shows the average trajectories of 90 trials per subject collected at various
(slow, moderate, and fast) gait speeds.
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Table 5. Percentage of NRMSE values of specific subjects with different error levels.

Error Minimum Median Maximum

Segment angles of
stance leg

Thigh 5.80 ± 0.93 7.45 ± 1.41 8.59 ± 1.11
Shank 2.99 ± 0.80 2.90 ± 0.13 6.04 ± 1.55
Foot 4.36 ± 0.78 3.76 ± 0.39 5.93 ± 1.35

Segment angles of
swing leg

Thigh 6.43 ± 1.02 9.72 ± 1.23 12.33 ± 0.80
Shank 4.09 ± 0.36 6.79 ± 0.99 6.32 ± 0.62
Foot 5.33 ± 0.43 5.53 ± 0.20 7.73 ± 2.24

Joint torques of
stance leg

Hip 11.95 ± 0.64 12.14 ± 1.40 10.91 ± 1.75
Knee 8.32 ± 1.09 9.05 ± 0.87 9.72 ± 0.31
Ankle 8.25 ± 0.12 7.78 ± 0.50 11.78 ± 0.25

Ground reaction
forces

Vertical 4.63 ± 0.50 7.84 ± 0.65 6.03 ± 2.82
A–P 5.49 ± 0.41 5.28 ± 0.54 4.91 ± 0.65
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Figure 7. Normalized root mean square errors (NRMSEs) of the estimation of (A) the segment angles
of the stance leg, (B) the segment angles of the swing leg, (C) the joint torques of the stance leg, and (D)
the ground reaction forces as a function of the input variables fed into the neural network. Prediction
errors in response to the ANN input data with and without displacement (x) of the sacrum are shown
as black and gray bar graphs, respectively. Asterisk shows statistical significance (p < 0.05).
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Table 6. Percentage of NRMSE values of different kinematics combinations.

Inputs x, t x, v, t v, t x, v, a, t v, a, t

Segment angles
of stance leg 5.20 ± 2.42 5.23 ± 2.69 7.62 ± 2.71 5.21 ± 2.38 6.34 ± 2.71

Segment angles
of swing leg 7.22 ± 2.19 6.76 ± 2.30 8.44 ± 2.81 6.71 ± 2.25 8.37 ± 2.88

Joint torques of
stance leg 10.04 ± 2.64 10.44 ± 2.63 12.25 ± 3.57 10.09 ± 2.10 11.56 ± 3.91

GRF 6.95 ± 2.58 6.76 ± 2.31 10.18 ± 3.17 6.77 ± 2.55 8.06 ± 2.34

Total 7.39 ± 3.04 7.35 ± 3.19 9.57 ± 3.57 7.24 ± 2.95 8.63 ± 3.63
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Segment angles of stance leg 5.20 ± 2.42 5.23 ± 2.69 7.62 ± 2.71 5.21 ± 2.38 6.34 ± 2.71 
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 Speed Slow Moderate Fast 

Joint torques of stance leg 
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Figure 8. Prediction errors (NRMSEs) of (A) the segment angles of the stance leg, (B) the segment
angles of the swing leg, (C) the joint torques of the stance leg, and (D) the GRFs at various (slow,
moderate, and fast) gait speeds. The ANN was trained with data collected at slow, moderate and fast
speeds (dark gray bars), slow and moderate speeds (light gray bars), and moderate speed only (white
bar). There was no statistically significant difference.
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Figure 9. The experimental data and the prediction data of the (A) joint torques and (B) GRFs at various
gait speed obtained from the ANN trained by trials of moderate speed only. The average and standard
deviations of the experimental data are represented by a white line and gray shaded area, respectively,
and those of the estimation are represented by thick and thin black lines, respectively.
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Table 7. Percentage of NRMSE values of ANN trained with moderate speed only.

Speed Slow Moderate Fast

Joint torques of
stance leg

Hip 13.41 ± 2.91 11.42 ± 0.65 11.07 ± 1.41
Knee 11.35 ± 2.64 10.11 ± 2.23 9.92 ± 2.94
Ankle 10.38 ± 3.94 9.30 ± 2.29 9.41 ± 1.95

Ground reaction
forces

Vertical 6.64 ± 2.00 6.84 ± 1.30 7.93 ± 1.61
A–P 6.24 ± 2.05 5.93 ± 0.85 7.09 ± 2.83

4. Discussion

Biomechanical knowledge about walking dynamics was used to design an ANN to predict
unmeasured motion data from a single IMU measurement. Equations related to CoM dynamics
were reformulated to approximate the GRF and lower limb joint dynamics as the weighted sum of
the CoM, the basic input–output relationship of the ANN. Based on this approximation, the ANN
was designed to have input nodes receiving the kinematics of the CoM, with the layers being fully
connected. Using this ANN, eleven lower limb joint dynamics and the GRF data at various walking
speeds were predicted from a single and only IMU measurement near the sacrum. The predicted
segment angles, joint torques, and GRF data showed a reasonably good match with the experimental
data despite the very simple network structure (Figure 1) with a relatively small number of training
data sets (Figures 5–8). Although trained with the CoM data measured at a specific gait speed, the ANN
could predict multiple joint kinetics at various gait speeds that have not been used for network training.
These results imply that the CoM is important as a dynamic determinant of multi-segment kinetics
during walking, and that the tradeoff between data quantity and wearable convenience can be solved
by utilizing a machine learning algorithm based on the dynamic characteristics of human walking.

Based on a biomechanical analysis using 2D spring mechanics, we showed that the 2D acceleration
data of the CoM could predict the GRFs and joint dynamics in 2D fairly well. Due to the point mass
assumption of the CoM, no rotational motion of the CoM was assumed, and no gyroscope data were
used for prediction. We may improve the quality of the prediction heuristically with the full usage of
IMU sensors, such as 3D accelerations and 3D angular rates from the gyroscope. We do not, however,
have sound explanations as to why the addition of 3D data would help in obtaining better prediction.
We are investigating whether the 3D GRF could be well formulated using 3D CoM kinematics as
a form of simple mechanics, as was the case for 2D. Despite the lack of quantitative formulation,
there is considerable experimental evidence to show that full usage of the IMU data could predict
the unmeasured GRFs, metabolic cost, and joint angles [9,33,34]. Three dimensional acceleration and
angular rate measured from the 17 IMUs attached to the whole body have been used to successfully
predict 3D GRF data [9]. Similar to our study, the 2D joint angles of lower limbs have been estimated
from IMU measurement at the foot, shank, and thigh [34]. The 3D acceleration and gyroscope data
were processed using general regression neural networks and the authors found that foot acceleration
was sufficient to predict the other joint angles. Despite the larger number of sensors, the prediction
errors were slightly larger (4~9 degrees) than ours (2~3 degrees), implying that the CoM kinematics are
closely related to lower limb kinematics. The predicted quantities were not limited to the GRF or joint
kinematics. Metabolic cost is one of the key determinants for human motion [35–38]. Measurements of
energy expenditure, however, are limited to indoor settings, and the measurement procedures are often
tedious. Researchers attempted to estimate the metabolic cost during walking from IMU data measured
at the hip joint using Bayesian linear regression [33]. With the support of quantitative biomechanical
analysis of the target motion to be predicted, the IMU data could be used more effectively and efficiently.
There are studies that use machine learning technology to predict human motion, independent of
gait biomechanics, but often with the cost of increased measurement complexity of the prediction
errors. Oh et al. successfully predicted the joint torques and GRFs of human walking using a general
regression neural network (GRNN), with the cost of increased measurement of the whole body joint
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kinematics using an optical marker system [10], which is therefore limited for on-field applications.
The errors of the vertical and A–P GRF were comparable to ours (Table 8). Recently, without a great
loss of prediction accuracy, the number of IMUs were reduced to two, attached at each shank of the
subject [11]. To complement the reduced sensor information, a feed-forward neural network was used
to produce the best estimate of the GRFs. In this recent study, however, the training datasets included
part of the data from the test subject [11], which may have decreased the prediction accuracy when
LOO validation was performed. Because the GRF pattern could differ between subjects [39,40], we
used a conservative validation method, by excluding the test subjects’ data from the training dataset,
and following the LOO validation method to guarantee generalization.

Table 8. Prediction errors of ground reaction forces (GRF) (previous studies and proposed method).

S. E. Oh et al. (2013) G. Leporace et al. (2018) Proposed Method

Number of subjects 48 17 7

Measurement 11 Optical markers 2 IMUs at each shank 1 IMU at sacrum

Prediction method GRNN FFNN FFNN

Prediction parameters rRMSE (%) ρ MAD (%) ρ NRMSE (%) ρ

Vertical GRF 5.8 ± 1.0 0.98 4.6 ± 0.7 0.97 6.26 ± 1.24 0.96 ± 0.03

A–P GRF 7.3 ± 0.8 0.97 4.0 ± 0.8 0.98 6.16 ± 1.76 0.98 ± 0.01

ML GRF 19.8 ± 2.2 0.92 10.5 ± 3.3 0.80 - -

GRNN: General-regression neural network; FFNN: Feedforward neural network.

Machine learning techniques have been used to estimate joint angles and joint torques (Table 9) [34].
Luu et al. used GRNN and inverse fast Fourier transforms [41]. The predicted joint angles of lower
limbs showed relatively small errors, in the range of 3~5 degrees, compared to others, but the test data
were included in the training data set, which would produce less-accurate predictions when LOO
validation is performed. Joint torque predictions have been performed using joint angle data [42] as
well as surface electromyography (sEMG) [43]. The errors of the joint torque predictions were larger
than those of GRFs and/or joint angles, as was observed in our study (Table 10). Ardestani et al. used 14
sEMG data and showed relatively high accuracy in joint torque prediction [43], but, again, the inclusion
of test data in the training dataset of the four subjects may contribute to a misleadingly high prediction
accuracy. Compared to those of related works, we predicted more data at various walking speeds with
fewer measurements from the complementary combination of the biomechanics and the ANN.

Table 9. Prediction errors of stance leg angle (previous studies and proposed method).

A Findlow et al. (2008) T.P. Luu et al. (2014) Proposed Method

Number of subjects 8 17 7

Measurement 4 IMUs at each shank and
feet

2 Gait parameters + 4
Anthropometric data 1 IMU at sacrum

Prediction method GRNN GRNN FFNN

Prediction parameters
(proposed)

MAD
(degree) ρ

MAD
(degree) ρ

RMSE
(degree) ρ

Hip (thigh) 8.64 ± 1.45 0.80 ± 0.05 3.73 ± 1.64 0.98 ± 0.03 3.14 ± 1.49 0.99 ± 0.03

Knee (shank) 7.14 ± 1.33 0.89 ± 0.05 5.41 ± 2.01 0.97 ± 0.04 2.17 ± 1.23 0.99 ± 0.00

Ankle (foot) 4.91 ± 0.76 0.75 ± 0.06 3.58 ± 1.44 0.92 ± 0.07 3.35 ± 1.58 0.99 ± 0.01

The proposed prediction method using a combination of biomechanics and machine learning
could be used to resolve the tradeoff between data richness and measurement convenience inherent in
wearable technologies. The rehabilitation success of stroke patients can be assessed using the A–P
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direction of the GRF of the nonparametric leg [6–8], which would be challenging to measure if patients
have to regularly visit a motion analysis laboratory and undergo almost over an hour of data collection
procedures. Motion monitoring of those patients using simple wearables during their clinical visits or
even at home in daily life would greatly increase patients’ convenience, if the data from wearables
could produce data of quality and quantity comparable to those obtained in the lab. A recent study
demonstrated successful long-term monitoring of the range of motion (ROM) of the shoulders of
elderly people using the IMU, which showed a fairly good match with data from optical motion
capture systems [44]. Similarly, onsite monitoring of lower limb joint loading could be estimated
from a single IMU sensor for patients with rheumatoid arthritis or anterior cruciate ligament recovery.
As a quantitative comparison, the asymmetry of the GRFs of mild hemiparesis patients seemed to be
approximated as 50 N [7]. Kesar et al. proposed minimal detectable changes of the kinematic and
kinetic indicators of rehabilitation assessment of post-stroke patients to be about 3–10 degrees and
20–33 N, respectively [45]. In our study, the average prediction errors of segment angles are about
(3.1 degree) thigh, (2.2 degree) shank and (3.4 degree) foot, respectively. The approximate errors of
vertical and AP GRF are 58 N and 23 N, and those of hip, knee, ankle joint torques are 16.7 Nm,
11.4 Nm, and 15.3 Nm, respectively. Considering the observed changes of GRFs and joint kinematics
of stroke patients, the proposed method could serve well for kinematics monitoring, whereas the GRF
monitoring seemed to be feasible for A–P GRF but need improvement for vertical GRF. In addition
to the rehabilitation research, the number of studies monitoring sports activity is rapidly increasing.
Wearable monitoring systems are widely used for monitoring the effect of posture or loading conditions
on kinetics [46]. Data from sacrum-mounted IMUs were used to analyze the effect of load carriage
and fatigue on jumping motions. The change of kinematics due to fatigue was similar to that under
load conditions. IMUs on the lower body were used to estimate joint kinematics and GRF during
running [47,48]. Combining single IMU data from the sacrum with a convolutional neural network,
Johnson et al. estimated 3D GRF with the error of 4–9% during running and side-stepping [14]. A
leg-mounted IMU combined with a feed forward neural network predicted knee joint forces with
an error rate of 17% during running, changing direction, and jumping [49]. Issues to be addressed
for sports wearables include reducing the number of sensors and enhancing prediction accuracy.
The difference in kinetics with different foot strike patterns in running is about 10%–20% of joint torque
and 30% of GRF. [50]. A recent study showed that a magnitude of about 30% of GRF in response to
the breaking force could serve as an indicator for injury risk [51]. By assuming reference force and
length to be the average weight and height of our test subjects, the observed kinetic differences range
approximately 200 N and 18 Nm, respectively. Considering the error range of our study, the proposed
prediction method can be applicable for monitoring running.

Table 10. Prediction errors of joint torques (previous studies and proposed method).

M. M. Ardestani et al.
(2014) M. Mundt et al. (2018) Proposed Method

Number of subjects 4 12 7

Measurement 14 sEMGs 3D joint angles 1 IMU at sacrum

Prediction method WNN LSTM FFNN

Prediction parameters rRMSE (%) ρ MAD (%) ρ NRMSE (%) ρ

Hip 6.42 0.93 18.15 0.97 10.74 ± 1.26 0.90 ± 0.04

Knee 4.30 0.98 13.50 0.93 9.63 ± 1.40 0.96 ± 0.03

Ankle 4.20 0.98 6.41 0.98 9.24 ± 1.91 0.98 ± 0.01

WNN: Wavelet neural network; LSTM: Long-short term memory recurrent neural network.

The limitations of our study, and technical issues to be resolved, lie in the main components of
the prediction method, such as the biomechanical model, the processing of the IMU data, and the
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design of the ANN. First, the proposed prediction method utilized a spring-based biomechanical
model of CoM dynamics during steady gait trials in 2D. Pathological gaits, however, often show
increased asymmetry in the medial–lateral (M–L) as well as the A–P direction [52]. Thus, further
research is required into applying the proposed method to the monitoring of unsteady or abnormal
walking in 3D. Biomechanical modeling of human walking with a passive spring and asymmetric
foot could well emulate the human-like ankle joint torque [29], implying that the CoM and ankle
joint torque are mechanically coupled. The biomechanical model of the point mass CoM, however,
could not represent the activation of hip joint torques, so there is no mechanical and kinematical
correlation between the CoM motion and the hip joint torques. Since the ANN used for joint torque
prediction was designed based on the biomechanics of the CoM, the larger prediction errors in hip
joint torque presented in Figure 9A could be attributed to the limited representability of the hip joint
torque by the CoM. Secondly, one of technical challenges of handling IMU data is the determination of
appropriate and accurate segmentation. For long-term IMU data from motion monitoring, the very
first step to perform in signal processing is to extract meaningful data from a whole data collection.
A recent study used GPS information to specify the data segment of the action of interest out of
approximately two weeks of IMU data in daily life [24]. To expand the proposed prediction method
to gait monitoring during daily life, an appropriate activity recognition and extraction process must
be undertaken. Once the data were roughly segmented for a specific action, such as walking in the
hallway, further segmentation was carried out based on specific gait events, such as HS or TO. IMU
data gathered near a ground contact such as the shank or foot had more accurate event detection
results than when the IMU was mounted near the sacrum or lower back [53,54] possibly due to the
distal measurement of the indicating signal around the foot [54–56]. Similar to previous studies, the
identification of gait events and segmentation of the data were performed in a heuristic manner, but
in a simpler way than those presented in other studies, such as those using wavelet transforms [57].
For example, the filtering frequency of the IMU data was selected heuristically by choosing the one
that did not smooth the indicating signal of the gait event, while not including unnecessary peaks.
The proposed event detection method produced errors comparable to those of previous studies, ranging
from approximately 0.01–0.03 seconds [53,54]. The detection errors were reduced with gait speed
due to the highlighted singular motion of the sacrum at faster speeds [28]. The gait event detection
mostly follows the real gait event due to the delayed sacrum acceleration profile compared to that
of the true CoM acceleration, which is obtained from the GRF, and resulted in shifted estimation
of sacrum trajectory. Likewise, although small in magnitude, event detection errors could greatly
affect the prediction results when erroneously segmented IMU data are used for training an ANN.
An ANN is highly dependent on its input information, so poorly-estimated sacrum kinematics cause a
deterioration in prediction accuracy. Thus, the prediction performance is sensitively dependent on the
signal quality of the IMU and the following signal processing. Considering that supervised learning
is performed between the segmented IMU data and the segmented GRF, erroneously segmented
IMU data distort the coupling relationship between the CoM and the GRF, and the network will be
trained inaccurately and inefficiently. Further, there was a relatively large error (~25%) in the velocity
estimation (Figure 4). The integration of the acceleration had drift removal and offset compensation
issues, which were resolved in a heuristic manner. Thorough examination of the best estimation of
the gait speed was not performed in this study, so the error rate could potentially be reduced by
employing other estimation algorithms or machine learning techniques. The effects of erroneous
velocity estimation on the prediction results, however, are reduced when the velocity is fed into the
ANN after normalization. In addition, the validation conducted depends on the location of IMU. Since
the trunk has rotational motion with respect to the vertical axis, the location of IMU in the horizontal
axis can affect the prediction performance. Thus, the sensitivity analysis about the location of IMU
should be performed for validation of the reliable wearable motion monitoring system. Lastly, the
proposed ANN has much room for improvement of the prediction accuracy. The proposed ANN is a
very simple network, designed using a simplified mathematical approximation between the GRFs and
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the CoM. A more realistic approximation could be achieved by adding complexity to the network,
such as additional input nodes or hidden layers, or a change of activation function. A relatively small
number of training datasets, and reasonably good test results compared to previous studies with
more sensor data could support an efficiently trained ANN. However, a small training data set could
result in the limited performance accuracy of the network, which was observed by an increase error in
response to variations of the input. Since the GRF data are known to have high intra-subject variability,
training with a larger dataset should produce improved prediction results for diverse test subjects.

Biomechanical knowledge about walking dynamics was used to design the ANN that predicts the
unmeasured motion data from only a single IMU measurement. From the sacrum-mounted IMU data,
the motion and force information of multiple joints were well predicted at various gait speeds by a
simple ANN with a relatively small number of training datasets. This is attributed to the role of the
CoM as a key dynamic descriptor of multi-segment lower limb coordination during the human walking
behavior. The reliable prediction performance presented in this study implies the complementary roles
of biomechanics domain knowledge and machine learning technology in predicting motion kinetics.
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Appendix A

To examine whether the joint kinetics could be predicted through the ANN with CoM kinematics
as the input, we tried to approximate the joint kinetics as a form of weighted sum of the CoM
kinematics. Noting that the CoM dynamics are demonstrated by the spring mechanics, we started with
the equations of motion of the recently published spring loaded inverted pendulum (SLIP) model [29].
The position of the CoM, x = (x, y), is expressed as model parameters of the SLIP, such as the leg angle
θ, the leg length l, the radius of the curvy foot R, the offset of the ankle joint with respect to the foot d,
and the ground contact position chs, with the subscript hs denoting values at the onset of the stance
phase (Figure A1), as follows: x = R(θ− θhs) + (l−

√

R2 − d2) sinθ− d cosθ+ chs

y = R + (l−
√

R2 − d2) cosθ+ d sinθ

where chs = xhs − (lhs −
√

R2 − d2) sinθhs + d cosθhs

(A1)

By applying the small angle approximation and binomial approximation and neglecting
higher-order terms in Equation (A1), we can obtain the linearized mapping equation from the
CoM position x to the augmented state z = [l, θ, lθ]T, which includes the state parameters, l and θ of
the SLIP model, and its nonlinear term lθ as follows:

z = W1x + b1

where W1 =


0 1

y−1
hs 0
1 0

, b1 =


0
αy−1

hs
α

 (A2)

where α = Rθhs + d − chs.
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Figure A1. Compliant walking model with an off-centered, curvy foot combined with a springy
foot-ankle segment [29]. (A) The model parameters and state variables of the model, and (B) the force
and torque components. The position of the CoM in the sagittal plane; x and y are the positions of the
horizontal and vertical axes, respectively, and the model state variables l and θ are the total spring
length and angle, respectively, with a positive sign in the clockwise direction with respect to the vertical.
The length and stiffness of the CoM–ankle are represented by la and ka, respectively. The off-centered
curvy foot parameters d and R are the offset of the ankle from the center of the foot and the radius of
the curvy foot, respectively. The forces at the ground contact point are presented by fx and fy in the
horizontal and vertical directions, respectively. The constraint force, fa, acts on the ankle in the vertical
direction of the spring force, and the constraint ankle torque, Ta, is generated to prevent foot rotation
relative to the leg rotation, with a positive sign in the extension direction. With the kinematic constraint
and the positions of the CoM and the ankle, (C) multibody segment angles are determined by inverse
kinematics. Segment lengths and angles are represented by l and θ, respectively, with subscripts 1~3,
and angles are positive in the clockwise direction.

The relationship between the augmented state z and the GRF and ankle torque are obtained from
the CoM of the SLIP model as follows [29]:

fx = k(l0 − l) sinθ− fa cosθ
fy = k(l0 − l) cosθ+ fa sinθ
Ta = la fa

where fa =
k(l0−l)(R sinθ+d)

l−
√

R2−d2+R cosθ
, la = cll0 − ck(l0 − l)

(A3)

where the spring parameters k and l0 are the stiffness and the rest length of the spring, respectively, and
the geometric parameters of R and d are the radius of the curvy foot and the offset of the ankle joint
from the center of the curved foot, respectively. la and ka are the length and stiffness of the CoM–ankle,
as shown in Figure A1. The constants cl and ck are the ratio of the rest length of la to the rest length
of l and the ratio of the total leg stiffness k to the CoM–ankle stiffness ka, respectively (Figure A1).
The ankle torque Ta is expressed as fa and la, which are the constraint force applied to the ankle joint
and the distance from the ankle to the CoM, respectively. By applying a small angle approximation, a
small offset d approximation compared to the foot length R, such as d/R << 1, and the small length
deviation approximation of the leg length l, such as l = l0(1 + δ), with δ being assumed to be small,
then fa is approximated as follows:{

fa ≈ k(l0 − l)(Rθ+ d)l0−1
(
2− l · l0−1

)
(A4)

and the above Equation (A3) can be rewritten as follows:
fx = k(l0 − l)θ− k(l0 − l)(Rθ+ d)l0−1

(
2− l · l0−1

)
fy = k(l0 − l) + k(l0 − l)(Rθ+ d)θl0−1

(
2− l · l0−1

)
Ta = ((cl − ck)l0 + ckl)k(l0 − l)(Rθ+ d)l0−1

(
2− l · l0−1

) (A5)
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If we ignore higher-order terms of small value, such as θ2
≈ 0, then the augmented kinetics

f = [fx, fy, Ta]T can finally be obtained as follows:
fx
fy

Ta

 =


kdl0−1 k(l0 −R) k
(
Rl0−1

− 1
)

−k kd −kdl0−1

−kdcl kRl0cl −kRcl




l
θ
lθ

+

−kd
kl0

kdl0cl

 (A6)

f = W2z + b2

where W2 =


kdl0−1 k(l0 −R) k

(
Rl0−1

− 1
)

−k kd −kdl0−1

−kdcl kRl0cl −kRcl

, b2 =


−kd
kl0

kdl0cl

 (A7)

With the specified positions of the CoM and the ankle joint, the segment angles of the thigh and
shank can be kinematically constrained as a function of the augmented spring states θ as follows [29]:

θ1 = θ− tan
(
(1− ck)(l0 − l)l1−1

)
sinθ2 = 0.5la sinθ · l2−1

± cosθ
√

1− (0.5lal2−1)2

sinθ3 = (la sinθ− l2 sinθ2)l2−1

(A8)

where subscripts 1, 2, and 3 denote the foot, shank, and thigh, respectively, and l1 is the same as l2.
By applying small angle approximation and a small ankle length compared to the leg lengths,

such as la < 2l1, the segment angles θ = [θ1, θ2, θ3]T can be rewritten as follows:


θ1

θ2

θ3

 =


(1− ck)l1−1 1 0
∓0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1

±0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1




l
θ
lθ

+


−(1− ck)l0l1−1

±

(
1− 0.125cl(cl − 2ck)l02l2−2

)
∓

(
1− 0.125cl(cl − 2ck)l02l2−2

)
 (A9)

θ = W3z + b3

where W3 =


(1− ck)l1−1 1 0
∓0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1

±0.25clckl0l2−2 0.5(cl − ck)l0l2−1 0.5ckl2−1

,
b3 =


−(1− ck)l0l1−1

±

(
1− 0.125cl(cl − 2ck)l02l2−2

)
∓

(
1− 0.125cl(cl − 2ck)l02l2−2

)


(A10)

In summary, the kinematics and kinetics of the lower limb can be approximated as a weighted
sum of augmented states z of the spring mechanics and the bias as follows:[

f
θ

]
=

[
W2W1

W3W1

]
x +

[
W1b1 + b2

W3b1 + b3

]
(A11)

From the approximated relationship between the CoM position x and the joint kinematics and
kinetics [fT, θT], we tried to predict the 11 unmeasured joint kinetics during walking from a single
IMU measurement near the CoM.
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Table A1. Percentage of NRMSE values of each subjects.

Subject 1 2 3 4 5 6 7

Segment angles of stance leg

Slow
Thigh 8.81 9.38 8.34 5.27 8.58 9.32 8.03
Shank 3.17 4.06 3.01 2.12 3.25 3.98 6.24
Foot 3.49 3.84 3.48 4.03 3.02 4.24 6.31

Moderate
Thigh 5.45 10.04 8.19 5.26 9.48 7.64 7.86
Shank 2.58 4.25 2.94 3.16 3.10 2.12 7.48
Foot 4.06 3.82 4.21 3.80 3.31 3.47 7.04

Fast
Thigh 3.81 7.27 5.82 6.87 11.96 7.47 9.87
Shank 2.42 3.71 2.76 3.70 3.60 3.61 4.40
Foot 2.94 3.65 3.59 5.25 4.46 5.31 4.43

Segment angles of swing leg

Slow
Thigh 9.91 8.99 10.55 5.57 8.24 10.36 12.33
Shank 7.92 5.25 5.97 4.43 3.85 6.78 6.51
Foot 5.99 5.07 5.29 5.58 4.71 8.85 9.53

Moderate
Thigh 6.41 10.39 10.31 6.17 8.38 7.48 13.13
Shank 5.39 5.05 6.50 4.12 6.00 3.90 6.83
Foot 5.02 5.41 5.63 4.83 5.97 5.93 8.43

Fast
Thigh 4.21 8.00 8.31 7.55 9.53 6.45 11.53
Shank 4.15 4.94 7.89 3.72 4.64 3.99 5.63
Foot 4.23 5.20 5.65 5.56 7.46 6.16 5.22

Joint torques of stance leg

Slow
Hip 11.27 8.45 13.55 12.65 9.44 13.46 12.85

Knee 10.81 11.34 8.70 9.51 10.47 13.43 9.78
Ankle 8.58 8.90 7.65 8.33 6.44 15.62 11.88

Moderate
Hip 11.67 8.28 12.12 11.39 11.00 10.30 10.44

Knee 11.48 9.44 8.41 8.10 11.43 8.59 10.00
Ankle 7.96 8.99 8.33 8.11 7.41 11.94 11.97

Fast
Hip 11.67 9.79 10.75 11.80 11.59 9.52 9.44

Knee 7.67 8.28 10.04 7.36 16.50 6.06 9.39
Ankle 9.51 8.53 7.35 8.32 11.81 8.58 11.49

Ground reaction forces

Slow
Vertical 8.02 6.02 7.66 4.49 5.30 12.24 3.87

A–P 11.00 4.57 4.95 5.14 6.56 8.79 4.38

Moderate
Vertical 7.65 6.63 7.29 4.22 6.82 6.21 5.01

A–P 8.95 4.92 4.98 5.38 8.41 5.78 4.70

Fast
Vertical 6.10 6.75 8.55 5.19 15.77 5.91 9.21

A–P 5.22 5.80 5.90 5.93 13.43 4.95 5.64
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Table A2. R2 values of each subjects.

Subject 1 2 3 4 5 6 7

Angles of stance leg

Slow
Thigh 0.92 0.89 0.93 0.97 0.92 0.91 0.94
Shank 0.98 0.97 0.98 0.99 0.98 0.97 0.91
Foot 0.96 0.96 0.96 0.95 0.98 0.93 0.88

Moderate
Thigh 0.97 0.88 0.93 0.94 0.91 0.94 0.94
Shank 0.99 0.97 0.98 0.98 0.98 0.99 0.88
Foot 0.95 0.96 0.95 0.96 0.97 0.96 0.86

Fast
Thigh 0.99 0.95 0.97 0.96 0.85 0.95 0.91
Shank 0.99 0.98 0.99 0.98 0.98 0.97 0.96
Foot 0.98 0.97 0.97 0.94 0.96 0.94 0.95

Angles of swing leg

Slow
Thigh 0.90 0.91 0.90 0.97 0.93 0.90 0.87
Shank 0.95 0.98 0.97 0.98 0.99 0.96 0.96
Foot 0.96 0.97 0.97 0.97 0.98 0.91 0.91

Moderate
Thigh 0.96 0.88 0.89 0.97 0.93 0.95 0.85
Shank 0.98 0.98 0.96 0.99 0.97 0.99 0.96
Foot 0.97 0.97 0.97 0.98 0.97 0.96 0.93

Fast
Thigh 0.98 0.94 0.93 0.95 0.89 0.96 0.87
Shank 0.99 0.98 0.95 0.99 0.98 0.99 0.97
Foot 0.98 0.98 0.97 0.97 0.95 0.97 0.98

Joint torques of stance leg

Slow
Hip 0.42 0.76 0.31 0.45 0.69 0.22 0.42

Knee 0.80 0.73 0.85 0.84 0.79 0.70 0.81
Ankle 0.91 0.90 0.93 0.91 0.96 0.71 0.78

Moderate
Hip 0.41 0.75 0.37 0.56 0.56 0.54 0.58

Knee 0.78 0.72 0.86 0.88 0.71 0.87 0.75
Ankle 0.92 0.88 0.92 0.90 0.93 0.85 0.72

Fast
Hip 0.50 0.72 0.67 0.56 0.68 0.68 0.71

Knee 0.91 0.87 0.82 0.92 0.48 0.94 0.81
Ankle 0.87 0.90 0.92 0.88 0.83 0.90 0.76

Ground reaction forces

Slow
Vertical 0.88 0.82 0.87 0.95 0.94 0.70 0.96

A–P 0.79 0.96 0.95 0.95 0.92 0.84 0.96

Moderate
Vertical 0.87 0.90 0.88 0.95 0.90 0.82 0.93

A–P 0.86 0.95 0.96 0.95 0.87 0.94 0.96

Fast
Vertical 0.91 0.91 0.83 0.93 0.49 0.91 0.82

A–P 0.95 0.94 0.94 0.93 0.68 0.96 0.93
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