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ABSTRACT: Accurate source apportionment of particulate matter
(PM), especially of organic aerosol (OA), is crucial for targeted
mitigation efforts. Positive Matrix Factorization (PMF) is powerful
in source attribution of primary OA (POA); however, it often
struggles to differentiate sources of oxygenated OA (OOA) due to
their similar chemical profiles. In this study, a support vector
regression machine learning (ML) model was developed to enhance
the OOA source apportionment in Dublin from 2016 to 2023.
Rolling PMF analysis identified four POA factors and differentiated
OOA into less- and more-oxidized (LO-OOA and MO-OOA),
highlighting the significant role of the OOA (47−74% of total OA).
The ML model further distinguished locally produced OOA (LO-
OOAlocal and MO-OOAlocal) from transboundary transport OOA
and exhibited robust performance across different pollution scenarios. The relative importance analysis revealed that LO-OOAlocal
was more impacted by fossil fuel emissions like hydrocarbon-like OA (20%) and coal (14%), whereas MO-OOAlocal was most
influenced by LO-OOA (17%), providing insights into their sources and formation mechanisms. During a mixed pollution episode,
the results show that despite the significant contribution of transboundary transport, local heating emissions were more critical
sources of OA, with local OA accounting for 68% of total OA and reaching 78% during heating hours. These findings highlight the
ongoing need to reduce local emissions to achieve cleaner air in Dublin. The ML model’s ability to quantitatively separate local and
transboundary OOA offers invaluable insights for future air quality regulations.
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1. INTRODUCTION
Particulate matter (PM) suspended in the atmosphere
significantly impairs air quality and influences the regional
and global climate directly and indirectly, introducing large
uncertainties in radiative forcing estimation.1,2 Additionally,
PM adversely impacts human health, causing millions of
premature deaths every year.3−5 Organic aerosol (OA),
constituting 20−90% of submicron PM,6 has been found to
be more toxic than inorganic species such as nitrate and sulfate,
raising greater health concerns.7−9 However, OA remains the
least understood component due to the high complexity in its
composition, sources, physicochemical properties, and for-
mation pathways.10 Positive Matrix Factorization (PMF) has
been widely used as a powerful tool achieving meaningful OA
source apportionment for better understanding of its
origins.6,11,12 While PMF analysis can provide valuable
information on primary OA (POA) sources, especially when
combined with the multilinear engine algorithm (ME-2), it
faces significant challenges in distinguishing oxygenated OA

(OOA) from different sources/processes. This is mainly
because OOA loses original source signatures as it undergoes
atmospheric oxidation, leading to increasingly similar chemical
profiles.13 When measured by aerosol mass spectrometer,
OOA tends to fragment into only a few main ions, such as
CO2

+ and C2H3O+,6,14 posing challenges for source apportion-
ment, particularly for unit mass resolution data. As a result,
OOA factors are typically classified by their relative oxidation
degree, e.g., less oxidized OOA (LO-OOA), which serves as a
surrogate of fresher, less-aged secondary OA (SOA) and more
oxidized OOA (MO-OOA), a proxy of regional, more-aged
SOA.11,15 However, this differentiation provides limited
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information on their sources and formation processes.12

Additionally, the PMF model has inherent limitations. Most
importantly, it assumes linear relationships between sources
and observations,16 which may not always be true for complex
atmospheric processes where nonlinear interactions and
secondary formation are involved, introducing uncertainty
and ambiguity in OA source apportionment.
In recent decades, machine learning (ML) algorithms have

been widely applied in atmospheric science across various
topics.17,18 For example, extensive studies have utilized
machine learning methods on air quality forecasting and
prediction,19,20 evaluating the relative influences on PM
concentrations from emissions and meteorological condi-
tions,21,22 investigating the source impacts on visibility,23 and
exploring the nonlinear relationship among volatile organic
compounds (VOCs), PM2.5, and O3.

24 Additionally, the
applications of machine learning algorithms for PM source
apportionment are also rapidly increasing and are less
computationally expensive. For instance, Qiao et al.25 utilized
the decision tree algorithm to attribute atmospheric oxy-
genated organic molecules to their precursors. Heikkinen et
al.26 deployed the k-means clustering method to identify OA
subtypes in a remote boreal forest site in Southern Finland,
where the OA mass concentration remains low and traditional
PMF is ineffective. Pande et al.27 developed a two-step
machine learning method, combining a multinomial logistic
classifier and an ensemble regression model for rapid OA
source apportionment. The results showed high classification
accuracy and broad qualitative agreement with PMF analysis.
These extensive and successful applications of machine
learning algorithms on air pollution data analysis demonstrate
their unique advantages in capturing nonlinear effects and
discerning subtle patterns within multidimensional data sets.
This makes machine learning methods well-suited to enhance
the apportionment of the OOA source, linking the OOA to
more specific sources.
Ireland once experienced extreme air pollution in the 1980s

primarily caused by coal combustion.28 Although a series of
bans on smoky coal burning since 1990 have significantly
alleviated the air pollution in Ireland, Lin et al.29 pointed out
that extreme air pollution events were still regularly occurring
in Dublin during the residential heating season. The OA source
apportionment revealed that these extreme air pollution events
primarily result from disproportionately high emissions from
domestic solid fuel burning within the broader Dublin urban
area (referred to as local). Importantly, in addition to
significantly elevated primary species, OOA also shows
substantial increase during these local events.30 On the other
hand, air pollution events resulting from transboundary
transport are also often observed in Ireland, with OA being
overwhelmingly dominated by OOA.31,32 In other words, the
OOA always plays a crucial role in causing air pollution in
Dublin. However, as highlighted above, traditional PMF
analysis is often insufficient for OOA attribution, leading to
significant ambiguity in its source identification and
quantification of relative contributions, which hinders the
implementation of more targeted control measures to reduce
OA pollution.
In this study, the capabilities of machine learning in

enhancing source apportionment of OOA were explored. A
supervised machine learning model was developed in
combination with rolling-PMF analysis, trained with a carefully
selected data set from pollution events dominated by local

emissions. Model performance was evaluated using statistical
metrics and further validated with two distinct pollution
episodes: one dominated by local sources and one dominated
by transboundary sources. The ML model was also applied to a
mixed pollution event with overlapping impacts from local and
transboundary sources to quantify their relative contributions
on the OOA. Importantly, none of the three pollution episodes
selected for case studies were included in the training data set,
ensuring valid evaluations.

2. MATERIALS AND METHODS
2.1. Instruments and Data Collection. The measure-

ments of chemical-speciated submicrometer PM (i.e., PM1,
particulate matter with a diameter less than 1 μm) were
conducted at the urban background site in Dublin, Ireland,
from August 2016 to December 2023. Detailed introduction of
the sampling site can be found in Lin et al.30 An Aerodyne
Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM,
Aerodyne Research Inc., USA) was deployed for the
measurements of nonrefractory species in PM1 (NR-PM1)
including Organic Aerosol (OA), sulfate (SO4), nitrate (NO3),
ammonium (NH4), and chloride (Cl). More details about the
sampling protocol of Q-ACSM can be found in previous
studies.33,34 The Q-ACSM deployed in this study was regularly
calibrated following standard calibration protocols to ensure
data quality.34 Additionally, the chemical composition
collection efficiency35 was applied to NR-PM1 species
consistently across all years. More details on NR-PM1
measurements in Dublin are summarized in S1.1, including
deployed Q-ACSM instruments, data coverage, NR-PM1
concentration ranges (Tables S1−S2), and also instrument
stability (Figure S1a). An Aethalometer (model AE33 from
Magee Scientific) was also deployed to measure the optical
attenuation at 7 wavelengths. The mass concentration of
equivalent black carbon (eBC) was then retrieved using
attenuation at 880 nm with a standard mass absorption cross-
section value of 7.77 m2 g−1. In addition, a Scanning Mobility
Particle Sizer (SMPS) was collocated to measure the PM
number concentration and size distribution in the range 10−
500 nm. Hourly meteorological parameters, including wind
speed (WS), wind direction (WD), relative humidity (RH),
and ambient temperature (T) were from Dublin Airport
(https://www.met.ie/climate/available-data/historical-data).
To ensure consistency of temporal resolution across all data
sets, hourly mean values were used for further analysis.
A rigorous flagging process was implemented to remove

periods with operational issues or anomalies, ensuring data set
reliability. To validate the data quality and accuracy of the data
set from Dublin site in this study, the reconstructed PM1 (=
NR-PM1 + eBC) was compared with the collocated SMPS
measurements, with the PM1 mass concentration converted
into volume concentration by dividing the mass concentrations
of each species by their respective densities.36 Additionally,
PM2.5 mass concentration measurements from the Rathmines
monitoring station located around 3 km from the Dublin site
were used as an external comparison data set. The
intercomparisons showed high correlation coefficients ranging
from 0.83 to 0.97, associated with reasonable slopes (0.84 for
PM2.5/PM1 and 1.15 for PM1/SMPS, respectively), which
validated the Dublin data set (Figure S1b-c). Additionally, the
good agreement with PM2.5 measurements from Rathmines
confirmed that the impacts from nearby local point sources are
insignificant at the Dublin sampling site.
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2.2. Rolling Positive Matrix Factorization (Rolling
PMF). The raw data set collected by Q-ACSM was processed
using standard data analysis software (version 1.6.1.1) based
on Igor Pro (Wavemetrics Inc.) to obtain the mass
concentration of NR-PM1 species. The concentration and
uncertainty matrices of OA were also exported from this
software and averaged to hourly resolution, serving as inputs of
PMF analysis. To enhance the separation of OA factors
originating from different sources, mass profiles of peat (OA
from peat burning), wood (OA from wood burning), and coal
(OA from coal burning) obtained from burning experi-
ments37−39 and the hydrocarbon-like OA (HOA) profile
from AMS UMR MS database (https://cires1.colorado.edu/
jimenez-group/AMSsd/), which was measured in Paris,40 were
used as reference profiles to constrain the POA factors using
ME-2 algorithm under Source Finder pro (SoFi-pro). Taking
the dynamic nature of OA factors into consideration, the
advanced rolling-PMF analysis, which is able to dynamically
adjust the mass profiles over time,41 was performed, with a
rolling time-window of 14 days and shifting step of 1 day,
respectively. In addition, segmented PMF analysis and the
“limits” a-value approach were applied to further account for
potential source variability over time. The constraining
strategies and bootstrap resampling applied to the data set in
this study are consistent with our previous studies in
Dublin.39,42 More details are provided in S1.2, and the criteria
for PMF run selection are summarized in Table S3.

2.3. Machine Learning Model. 2.3.1. Training Data Set
Selection. A supervised machine learning model was
developed (Figure S2) to enhance the differentiation of the
OOA into local and transboundary sources in this study.
Pollution events dominated by local emissions were selected as
the model training data set to establish relationships between
OOA from local sources and their corresponding predictor
variables. To ensure the reliability of selected local air pollution
events, a set of screening criteria (Table S4) was implemented
to exclude impacts from regional sources: (1) Previous studies
have demonstrated that, in Dublin, the air pollution events
caused by local residential heating emissions mainly occur in
cold months,42 so only data from October to March were
selected for model training; (2) Data points when OA mass
concentration was lower than 0.5 μg m−3 were excluded to
avoid high uncertainty associated with lower signal-to-noise
ratios; (3) The mass fraction of POA factors to total OA was
constrained to be higher than OOA (POA fraction >50%) to
ensure the dominance of local emissions; (4) The mass ratio of
OA to NO3 was constrained to be higher than 2 to exclude
significant impacts from regional transport, which features high
contribution of NO3;

32 and (5) Data points were selected only
when WS was below 5 m s−1, as stagnant meteorological
conditions favored extreme pollution events. The thresholds of
filtering criteria were chosen to balance the selection of
representative local events, while ensuring adequate data for
reliable model training. Sensitivity tests, as shown in Figure

S3a, confirmed that the model effectively captures the
characteristics of local emissions without overly dependent
on specific thresholds. As a result, ∼5% of the entire data set
(2733 out of 56176 data points) was selected for model
training and feature selection.

2.3.2. Model Selection, Optimization, and Evaluation. A
support vector regression (SVR) model was chosen in this
study to predict the OOA from local sources due to its well-
documented advantages in handling nonlinear relationships,
robustness even with relatively small data sets, and its
resistance to overfitting.43 The choice of SVR was further
validated through comparisons with other machine learning
algorithms (Figure S3b). The selection of model predictors
was optimized to ensure the best model performance (Figure
S4a,b), with further details provided in the Supplement (S1.3).
As summarized in Table S4, primary species (POA, eBC, and
Cl) were included as model inputs as they tend to spike
concurrently with OOA during pollution events dominated by
local emissions.29,30 WD was also incorporated in the model, as
it provides information about air mass origins, which is crucial
for understanding local pollution dynamics. Hour of day was
also considered, as local domestic heating emissions follow
distinct diurnal patterns,30 offering additional information to
differentiate local emissions from transboundary transport.
Total OA was chosen to serve as a rough threshold of the
model prediction, preventing large deviations from the
measured concentrations. In addition, LO-OOA was included
as a predictor for MO-OOA due to their common sources
during local-emission-dominated periods and the fact that LO-
OOA can potentially evolve into MO-OOA through further
oxidation.6,11,14 Ambient T was excluded to avoid potential
bias because the training period focused on winter, where T is
consistently lower compared to summer (Figure S5a).
Additionally, local emissions from home heating tend to be
higher in winter than during periods in warmer months that
have comparable temperatures, while sporadic residential
heating during cooler summer periods further complicates
the relationship between T and local emissions (Figure S5b).
RH was excluded since it remains consistently high throughout
the year in Ireland (monthly averaged RH > 75%, Figure S5c),
providing minimal additional information. WS was not used,
because it was already applied in data screening. The selected
training data set was randomly split into two parts: 80% for
model training and 20% for model testing. The distribution of
the number of data points used for model training and testing
can be found in Figure S4c. The model was optimized using a
grid search, which involves systematically testing a range of
hyperparameters and 5-fold cross-validation to ensure
reasonable predictions. After evaluation and validation, the
model was applied to the entire Dublin data set from 2016 to
2023. Once the local sources-related OOA (LO-OOAlocal and
MO-OOAlocal) were estimated, the contributions from trans-
boundary transport (LO-OOATBT and MO-OOATBT) were
extracted accordingly using equations as below:

=
>

LO OOA
LO OOA LO OOA if LO OOA LO OOA

if LO OOA LO OOA0TBT
PMF local PMF local

PMF local

l
moo
noo
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=
>

MO OOA
MO OOA MO OOA if MO OOA MO OOA

if MO OOA MO OOA0TBT
PMF local PMF local

PMF local

l
moo
noo

The Monte Carlo simulation44 was applied to evaluate the
model robustness by randomly omitting 20% of the training
data and repeating this process 1000 times. In addition,
permutation importance analysis was performed for all
predictors to identify critical factors that affect the model’s
accuracy, and the partial dependence plots were used to
illustrate the relationship between LO-OOAlocal and MO-
OOAlocal on their predictors. These analyses help identify how
different predictors influence the model outputs and provide
additional insights into local sources and the underlying
processes driving the local formation of an OOA.

3. RESULTS AND DISCUSSIONS
3.1. OA Identification with Rolling PMF. The six-factor

solution was consistently selected as the optimal result for each
segmented rolling-PMF analysis over the years. This solution
successfully distinguished four POA factors from different fuel
types, including Peat, Wood, Coal, and hydrocarbon-like OA
(HOA), as well as two OOA factors, i.e., LO-OOA and MO-
OOA. Increasing the number of factors did not yield more
physically meaningful sources; e.g., as presented in Figure S6,
the 8-factor solution resulted in two splitting factors with the r2
with LO-OOA reaching as high as 1 for profiles and 0.96 for
time series.
As depicted in Figure 1a, the mass spectra of HOA exhibited

apparently stronger signals at m/zs (mass-to-charge ratios) that
are related to hydrocarbon emissions, i.e., CnH2n−1 (m/z 27,
41, 55, 69, etc.) and CnH2n+1 (m/z 43, 57, 71, etc.), and
showed overall high correlation with eBC (r2=0.74). It is worth
noting that, while HOA is commonly attributed to traffic
emissions in many studies,15,45 domestic oil burning was
identified as a significant source of HOA in Dublin during
residential heating hours, characterized by much higher HOA
to eBC ratios compared to vehicle emissions.30 The mass

profile of Wood was characterized by significant contributions
at m/z 60 (0.07) and m/z 73 (0.03), key tracers of
anhydrosugars such as levoglucosan that are produced from
the pyrolysis of cellulose during biomass material combustion
processes.46,47 Coal showed pronounced fractions at m/zs that
are tightly correlated with polycyclic aromatic hydrocarbons
(PAHs) such as m/z 91 and 115. Peat had a lower but notable
fraction at m/z 60 (0.02), consistent with the lower cellulose
content in peat.29,39 These profile signatures serve as useful
markers to distinguish POA factors from different sources.
Comparatively, the two OOA factors exhibited much higher
signal at m/z 44 (0.19−0.29), which is mostly CO2

+ serving as
a good indicator of atmospheric aging,48,49 effectively
distinguishing them from POA factors (0.01−0.03), with
MO-OOA having highest m/z 44 fraction (0.29). However,
both OOA factors are overwhelmingly dominated by m/zs less
than 50 (0.71 for LO-OOA and 0.86 for MO-OOA), providing
very limited information to further link them to specific
sources. Given that segmented PMF analysis was performed
for the Dublin data set, we also evaluated whether the mass
profiles of OOA factors significantly changed over time. As
displayed in Figure S7, despite minor variations in LO-OOA,
both OOA factors exhibited highly consistent mass profiles
over the years, with MO-OOA remaining particularly stable (r2
= 1.0), indicating the stability of their chemical composition
over time.
The pie charts in Figure 1b present the average chemical

composition of PM1 and OA during different seasons, i.e., cold
months (October to March) and warm months (April to
September) in Dublin from 2016 to 2023. In the cold months,
PM1 was dominated by carbonaceous components (OA and
eBC), with an average mass contribution of 62%. In addition,
POA contributed a significant fraction to total OA at 53%, with
Peat being the most significant contributor (25%), followed by

Figure 1. (a) Mass profiles of six OA factors identified by rolling-PMF analysis including Peat, Wood, Coal, HOA, LO-OOA, and MO-OOA,
averaged over all segmented analysis periods. (b) The average chemical composition of total PM1 and OA during cold (October to March) and
warm months (April to September) and (c) diurnal variations of OA factors in cold months (solid lines) and warm months (dashed lines) from
2016 to 2023 in Dublin.
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HOA (15%), consistent with previous studies that were
conducted in Dublin,30 indicating significant roles of local
domestic heating emissions. Meanwhile, OOA factors (LO-
OOA and MO-OOA) also shared a significant portion of total
OA in this season (47%). It is important to note that the
diurnal variations of both LO-OOA and MO-OOA showed
high similarities with POA factors (Figure 1c), with significant
elevations during heating hours (17:00−24:00), indicating
their common sources. Additionally, OOA factors were often
observed to concurrently spike with primary species (POA and
eBC) during local events,29,30 further suggesting the significant
contributions from local domestic heating emissions on OOA.
This is likely due to the condensation of semivolatile
components and the rapid oxidation of primary species.29,42

On the contrary, in warm months, the contributions of
secondary inorganic species (SIA, i.e., SO4 + NO3 + NH4)
shared equal mass fraction with carbonaceous components.
Consistently, OOA contributed more significantly to total OA
during warm months (74%), with MO-OOA alone contribu-
ting 45% of total OA mass, indicating higher impacts from
transboundary transport in this season. In addition, OOA
factors showed relatively flat diurnal patterns in warm months,
exhibiting typical diurnal variation characteristics of trans-
boundary transport. The results reveal that OOA factors play
important roles in causing air pollution events in Dublin,
constituting 47−74% of total OA, and are significantly
influenced by both local emissions and transboundary
transport, with pronounced seasonal variations in composition
and sources. However, as noted earlier, traditional PMF

analysis was not able to distinguish between local and
transboundary OOA.

3.2. Evaluation of Model Performance. A supervised
SVR ML model was developed to enhance differentiation of
the OOA into local and transboundary sources. The high
similarity in the PM1 and OA composition for selected training
data with that of a representative extreme local pollution event
(Figure S8a-b) demonstrates the effectiveness of the screening
criteria in accurately extracting local emission-dominated
pollution events. Additionally, the diurnal patterns of both
LO-OOA and MO-OOA mirrored the variations of primary
species (Figure S8c), further validating the fundamental
assumption of the ML model that OOA was predominantly
originated from local sources during local events.

3.2.1. Overall Model Performance. Figure 2 shows the
scatter plots of model predicted local OOA versus PMF-
derived OOA during selected pollution events dominated by
local domestic heating emissions, including comparisons of
LO-OOA, MO-OOA, and total OOA. The prediction of LO-
OOAlocal achieved an r2 of 0.94 (0.91) for the training (testing)
data, which comprises 80% (20%) of the selected data,
indicating the ability of the model in effectively capturing the
temporary variations of LO-OOA from local sources. The root-
mean-square error (RMSE) values, which measure the average
magnitude of model prediction errors, were 0.78 μg m−3 for
training data and 0.88 μg m−3 for testing data for LO-OOA,
corresponding to 1.7% and 3.4% of the PMF-derived LO-OOA
concentrations (0−46 μg m−3 for training data and 0−26 μg
m−3 for testing data, respectively), demonstrating the reliability

Figure 2. Scatter plots comparing predictions from the model and rolling-PMF analysis for (a) LO-OOA, (b) MO-OOA, and (c) total OOA during
selected local events. Panel (d) shows the scatter plot of OOATBT calculated from the model versus measured NO3 filtered for transboundary
transport (NO3 TBT).
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of the model predictions. A slope close to 1 (0.90−0.92)
further validated the strong agreement between the model
predictions and PMF-derived LO-OOA during selected local
events. Despite higher uncertainty in the prediction of MO-
OOAlocal compared to that of LO-OOAlocal, as shown by the
scatter plot in Figure 2b, the model achieved an r2 of 0.85 for
training data and 0.77 for testing data. Additionally, the RMSE
values for MO-OOA were 0.58 μg m−3 for training data and
0.74 μg m−3 for testing data, being reasonably low at 4.8% and
8.2% of the respective PMF-derived MO-OOA concentrations
(0−12 μg m−3 for training data and 0−9 μg m−3 for testing
data respectively). This suggests that the model prediction of
MO-OOAlocal was reasonable. The higher uncertainty in MO-
OOAlocal may arise from the more complex oxidation processes
and diverse origins associated with the highly aged nature of
MO-OOA,11,14 making it more challenging to establish robust
relationships with primary species. Even with higher
uncertainty in the MO-OOA prediction, the prediction of
total OOA achieved overall strong agreement, with r2 ranging
from 0.92 to 0.95, slopes between 0.92 and 0.96, and low
RMSE values of 0.96−1.17 μg m−3, corresponding to 1.8−
6.5% of the PMF-derived OOA mass concentration. It is worth
noting that the ML model predictions tend to be more
conservative during periods of extremely high concentrations
(OOA > 40 μg m−3), leading to slightly underestimated OOA
from local sources. This conservative bias can be explained by

the rarity of extreme concentrations, which results in less
adequate model training in this high concentration range. The
box plots in Figure S9a-b illustrate the model’s robustness on a
monthly average basis, derived from the Monte Carlo
stimulations. The narrow interquartile ranges (25th and 75th
percentiles) and short whiskers (10th and 90th percentiles)
indicate low variability in the model predictions under various
pollution scenarios, especially for LO-OOAlocal. Additionally,
the monthly average standard deviation of LO-OOAlocal and
MO-OOAlocal ranged from 3 to 6% and 7−13% of their
respective concentrations, further confirming the strong
robustness of the local OOA predictions throughout the year.
Additionally, the model retrieved OOA originating from

transboundary sources was compared to NO3, a potential
tracer of transboundary transport in Ireland.31,32 Although its
semivolatile nature and contribution of local sources can
complicate its temporary variations, NO3 remains a valuable
indicator of transboundary transport, particularly during
episodes with high transboundary contributions when the
concentration of NO3 can be equal to or even exceed that of
OA. A ratio of NO3/OA larger than 1.2 was used to filter NO3
from transboundary transport (NO3 TBT) without significant
contributions from local sources. As shown in Figure 2d, the
OOATBT calculated from the model showed a tight correlation
with NO3 TBT with r2 of 0.75, further indicating that the
apportionment of OOAlocal and OOATBT is robust and

Figure 3. Time series of PM1 species including OA, SO4, NO3, NH4, Cl, and eBC, and OA factors including Peat, Wood, Coal, HOA, LO-OOAlocal,
LO-OOATBT, MO-OOAlocal, and MO-OOATBT during selected (a) local- and (c) trans-boundary-dominated pollution episodes. Panel (b) presents
the average chemical composition for (a) PM1 (top) and OA composition from rolling PMF analysis (bottom left) and the model (bottom right).
Panel (d) provides the same data for episode (c).
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reasonable. This is further supported by their bivariate polar
plots. As shown in Figure S10, both LO-OOATBT and MO-
OOATBT show high concentrations under easterly winds and
stagnant conditions, in agreement with previous studies.31 In
contrast, LO-OOAlocal and MO-OOAlocal display distinct local
characteristics with no significant dependence on WD,
highlighting the effectiveness of the ML model in distinguish-
ing local and transboundary OOA. We also checked instances
where OOAlocal exceeded OOAPMF and found that they mostly
(∼90%) occurred at very low concentrations (<0.5 μg m−3),
where PMF uncertainty in separating OOA factors is highest.
Given that this low concentration range is not the primary
focus of this study, these overfitting occurrences have a
negligible impact on the findings.
The permutation importance analysis assessed the relative

influences of all predictors on the model predictions of LO-
OOAlocal and MO-OOAlocal. As depicted in Figure S9c, HOA
was found to be the most influential factor on LO-OOAlocal
prediction with a relative importance of 20%, followed by coal
(14%), with the relative impacts from all the remaining
primary species being significant at 12−13%. While for MO-
OOAlocal, the most influential predictor is LO-OOA (17%),
which is expected given their common sources during local
events and LO-OOA’s potential to form MO-OOA through
further oxidation.6 The most influential primary species on
MO-OOAlocal are Peat (13%) and Cl (13%). The impacts from
WD on both LO-OOAlocal and MO-OOAlocal remained
insignificant (<1%), further confirming that the Dublin
sampling site was not significantly influenced by nearby local
point sources.29 It is interesting to note that LO-OOAlocal
prediction is slightly more affected by fossil fuel-related POA
(e.g., HOA and Coal) than biomass burning-related POA. This
may be because of the lower reactivity of key SOA precursors
emitted from fossil fuel combustion (e.g., PAHs) under dark
conditions,50 leading to slower and less efficient oxidation.
Additionally, the majority of fossil fuel OA is typically water-
insoluble,51,52 limiting further aqueous-phase oxidation. These
characteristics may result in fossil fuel emissions being less
oxidized and, thus, more closely correlated with LO-OOA. The
ubiquitous nonlinear relationships between OOAlocal and
primary species (Figure S11) indicated that other factors,
such as oxidants availability, may also significantly affect the
formation of OOA, which needs further investigation in the
future.

3.2.2. Model Performance During Local and Trans-
boundary Pollution Episodes. To further validate the
performance of the model, two distinct air pollution events
were selected for detailed verification: one dominated by local
emissions and one by transboundary sources, neither of which
was included in the training data set. As presented in Figure 3a,
five consecutive air pollution episodes occurred from
November 29th to December 3rd, 2016, with PM1 mass
concentration peaking from 55 to 186 μg m−3. Those pollution
events typically started to build up in the late afternoon or
early evening (15:00−19:00) when ambient T dropped to as
low as 0 °C (Figure S12a) and domestic heating started, and
gradually dissipated in the early morning hours (00:00 to
05:00). During this period, as shown by the pie charts in
Figure 3b, PM1 was mainly composed of OA (45%) and eBC
(23%). OA was dominated by POA factors (79%), with Peat
being the most significant contributor (35%), followed by
HOA (28%). Comparatively, secondary species, including SIA
and OOA, contributed much less significantly; e.g., SIA

accounted for 27% of total PM1 mass, and OOA shared 21%
of total OA mass. Furthermore, as displayed in Figure 3a, both
LO-OOA and MO-OOA spiked concurrently with primary
species (POA and eBC), indicating a strong connection with
local emissions. This is particularly evident for LO-OOA,
which showed a high correlation with POA (r2 = 0.97) during
this period. The temporary trends and chemical composition
clearly highlighted the overwhelmingly dominant role of local
emissions.
In agreement with the PMF-derived OOA, which serves as a

reference during local-emission-dominated episodes, the model
attributed most of the LO-OOA to LO-OOAlocal, especially
during the most polluted heating hours, where the model
identified more than 98% of LO-OOA as LO-OOAlocal. On
average, only a negligible portion (4%) of LO-OOA was
attributed to transboundary sources, accounting for less than
0.5% of total OA mass throughout this period. Furthermore,
LO-OOAlocal showed almost no correlation with LO-OOATBT
(r2 = 0.09, Figure S13a), confirming that the ML model
reliably attributed LO-OOA to its respective local and
transboundary sources. For MO-OOA, although a slightly
higher fraction (23% on average) was attributed to trans-
boundary sources, the majority of MO-OOA (77%) was linked
to local sources, with MO-OOAlocal typically exceeding 80% of
MO-OOA during polluted hours. The lower fraction of MO-
OOAlocal overall could be due to the ubiquitous background
and higher model uncertainty caused by its more complex
atmospheric processes. Overall, the model showed strong
agreement with PMF-derived OOA during air pollution
episodes dominated by local domestic heating emissions.
Figure 3c presents an air pollution episode dominated by

transboundary transport. During this event, PM1 started to
increase from the evening of September 6th, 2021, from
around 6 μg m−3 to above 30 μg m−3 under easterly winds
(Figure S12b), lasting until the noon of September 9th with
stagnant meteorological conditions (WS < 5 m s−1). NO3 and
MO-OOA showed the most significant increases, rising from
around 0.5 μg m−3 to over 14 μg m−3 and 1.5 μg m−3 to
around 6 μg m−3, respectively. On average, PM1 was
predominantly composed of SIA (Figure 3d), with NO3
being the largest contributor (27%), followed by NH4
(15%). Although OA remained the most significant compo-
nent of PM1 (41%), the contribution from eBC was minor, at
7%. Importantly, OA was overwhelmingly composed of OOA,
with MO-OOA alone accounting for 55% of total OA mass,
and LO-OOA also contributing significantly at 30%. In
contrast, POA factors showed minor contributions, with their
average mass fractions ranging from 1 to 6% and mass
concentration under 1 μg m−3, showing no significant increase
during typical heating hours. The significant contributions of
NO3 and MO-OOA, alongside the much smaller fractions of
primary species, clearly highlighted the dominant role of
transboundary sources. Consistently, the model attributed 65%
of LO-OOA and 77% of MO-OOA to transboundary
transport, aligning well with the transboundary characteristics
of this pollution episode. It is worth noting that, although local
emissions contributed much less significantly than trans-
boundary sources during this episode, POA factors still
accounted for an average of 16% of total OA mass, peaking
at 30% during rush hours when traffic emissions were high.
This indicates that local sources may still play a notable role in
OOA formation, especially for LO-OOA which is fresher and
more strongly influenced by local emissions.53 Both LO-

ACS ES&T Air pubs.acs.org/estair Article

https://doi.org/10.1021/acsestair.4c00331
ACS EST Air 2025, 2, 891−902

897

https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00331/suppl_file/ea4c00331_si_001.pdf
pubs.acs.org/estair?ref=pdf
https://doi.org/10.1021/acsestair.4c00331?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


OOAlocal and MO-OOAlocal showed tight correlations with
POA, with r2 values of 0.71 and 0.68, respectively, suggesting
that the model is able to effectively capture OOA from local
sources even under significant impacts of transboundary
transport.

3.2.3. Model Application on Mixed Pollution Episode.
Mixed air pollution events, where both transboundary
transport and local emissions play substantial roles, pose
significant challenges for traditional PMF to attribute OOA
from different origins. As shown in Figure 4a, an air pollution
event started to build up from the evening of March 21st,
2022, with the mass concentrations of NO3 and OOA
significantly increased from <2 μg m−3 to ∼19 μg m−3 and
∼10 μg m−3, respectively. Favored by stagnant meteorological
conditions (e.g., WS < 5 m s−1, Figure S14), this pollution
episode lasted a few days until the morning of March 30th,
2022. The significant enhancement of NO3 and OOA,
associated with the relatively long duration of this pollution
episode, indicate strong impacts from transboundary trans-
port.31 Meanwhile, significant contributions from local
domestic heating emissions were observed at night, especially
from March 24th to 30th when T dropped below 5 °C. For
example, during this period, the mass concentrations of POA
and eBC spiked to 8−14 μg m−3 and 4−6 μg m−3 respectively
at night, while their daytime mass concentrations remained
below 2 μg m−3. Overall, as presented in Figure 4b, OA was the
most dominant species during this episode, with the average
mass fraction of 35%, accompanied by a notable contribution
of eBC (8%). Although the contribution from all POA was
minor compared to typical local events (36% vs >50%),30 the
fraction can reach up to 60% at night, indicating significant
influences from local domestic heating. On the other hand, the
fractional contribution of NO3 to total PM1 was nearly equal to
OA at 31%, and the OOA factors dominated total OA with
fractions of LO-OOA and MO-OOA being close at 33% and
31%, respectively. The results reveal that both local residential
heating emissions and transboundary transport contributed
significantly to this episode, but a clear breakdown of their

relative contributions could not be achieved using PMF
analysis alone.
The temporal variations of LO-OOAlocal and MO-OOAlocal

predicted by the ML model showed clear local emission
characteristics (Figure 4a), with significant concentration
increases only at night, spiking to 4.6 μg m−3 and 3.0 μg
m−3, respectively. These increases coincided with typical
residential heating hours, which were highly consistent with
POA and eBC. The correlation coefficients with POA reached
0.96 for LO-OOAlocal and 0.80 for MO-OOAlocal, respectively.
Comparatively, the r2 values of PMF-derived LO-OOA and
MO-OOA with POA were 0.78 and 0.02, respectively (Figure
S15a-b). LO-OOATBT and NO3 displayed similar temporal
trends, with both showing notable enhancements at night,
likely due to their semivolatile properties.11,54 Impacts from the
shallower nocturnal boundary layer are also expected, and local
residential heating emissions may also have played a role in the
NO3 increase. However, it is important to acknowledge that
the nighttime enhancement of LO-OOATBT may be linked to
the possible underprediction of LO-OOAlocal, as the most
pronounced LO-OOATBT increase coincided with the stron-
gest local emissions, despite their overall weak correlation (r2 =
0.20, Figure S13d). MO-OOATBT showed a strong correlation
with NO3 TBT during daytime (r2 = 0.79, Figure S15c) when
residential heating emissions were minimal (POA < 1.5 μg
m−3), while this correlation weakened at night (r2 = 0.57). The
weaker correlation may result from their different volatilities;
however, the MO-OOATBT concentration showed notable
decreases during nights when local domestic heating emissions
were particularly strong (March 24th to 29th), implying that
MO-OOAlocal might have been slightly overpredicted during
these nights. Despite some uncertainties, the results elucidate
that the model is capable of providing reasonable quantifica-
tions of local and transboundary sources, even during mixed
pollution episode.
Although both local and transboundary sources contributed

significantly during this mixed pollution episode, their relative
importance varied by time of day. During nonheating hours

Figure 4. (a) Time series of PM1 species including OA, SO4, NO3, NH4, Cl, and eBC, and OA factors including Peat, Wood, Coal, HOA, LO-
OOAlocal, LO-OOATBT, MO-OOAlocal, and MO-OOATBT during selected mixed pollution episode in March 2022. Panel (b) shows the average
chemical composition of PM1 (bottom) and OA from rolling PMF analysis (top left) and model (top right) during this episode.
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(POA < 1.5 μg m−3), NO3 contributed slightly more to total
PM1 than OA (33% vs 31%, Figure S16a), and OOATBT
dominated OA with the average fraction at 56%. This
qualitatively aligns with the traditional PMF analysis, where
OOA constituted 80% of total OA, indicating the dominant
role of transboundary transport. In contrast, during heating
hours, although NO3 still contributed significantly at 30%
(Figure S16b), the contribution of OA increased to 38%,
associated with a notable rise of eBC (6% vs 9%). PMF
analysis suggested that OOA still dominated OA at 55%,
although POA fractions significantly increased from 20% to
45%. However, the quantitative results from the model
elucidated that more than half (61%) of the OOA originated
from local emissions. On average, OA from local sources
(POA, LO-OOAlocal, and MO-OOAlocal) accounted for 78% of
total OA, highlighting the more critical role of local emissions
during heating hours. Over the span of this mixed pollution
episode, nearly half of both LO-OOA (45%) and MO-OOA
(50%) were emitted from local sources, and the remaining
contributions came from transboundary transport (Figure 4b).
Over the mixed pollution episode, OA originated from local
sources contributed 68% of total OA despite the strong
influences from transboundary sources, indicating that local
emissions played more critical roles, especially at night.
However, since the traditional PMF analysis showed
dominance of OOA (64%), the lack of detailed OOA origin
information could lead to contrary conclusions about trans-
boundary sources, ultimately resulting in ineffective control
strategies.

4. CONCLUSIONS
This study demonstrated the capability and effectiveness of a
machine learning model in enhancing the source attribution of
OOA for the Dublin data set from 2016 to 2023. While the
rolling-PMF analysis revealed that the OOA accounted for a
significant fraction of total OA in Dublin (47−74%), it lacked
the ability to differentiate the OOA from different sources. In
contrast, the machine learning model successfully distinguished
OOA contributions from local and transboundary sources,
providing quantitative insights into their relative impacts. The
model exhibited strong agreements with PMF-derived OOA
during local emission-dominated events, with robust predic-
tions reflected by low RMSE values and further supported by
Monte Carlo simulations. During events dominated by local
emissions, the model successfully attributed most of the LO-
OOA (96%) and MO-OOA (77%) to local sources. Similarly,
during pollution episodes dominated by transboundary
transport, the model effectively attributed the majority of the
OOA (66−77%) to transboundary sources. The relative
importance analysis indicated that LO-OOAlocal prediction
was more affected by fossil fuel emissions, such as HOA (20%)
and coal (14%), while MO-OOAlocal was primarily influenced
by LO-OOA (17%), implying their potential sources and
formation mechanisms. By applying the model to a mixed
pollution episode, the findings underscored that despite
substantial contributions from transboundary transport during
this episode, local emissions from residential heating were
more critical sources of OA, with local OA on average
accounting for 68% of total OA and reaching 78% during
heating hours. This highlights the continued need to reduce
local OA emissions and the importance of distinguishing local
OOA sources from transboundary transport for effective air
pollution control strategies. The successful application of the

machine learning model in this study demonstrated the
significant advantages of machine learning in enhancing the
OOA source apportionment, with potential for broader
applications beyond the OOA. However, this machine learning
method also has certain limitations. While it effectively
differentiates OOA from local and transboundary sources,
incorporating oxidants data (e.g., O3 and NOx) could further
reduce model uncertainty, especially for MO-OOA. The
approach currently relies on observational and statistical
methods, but validation against modeling results could further
strengthen confidence in its applicability. In addition, although
trained on a valuable multiyear data set (2016−2023), regular
updates with new ambient data are needed to account for
variability in emission sources over time.
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