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Abstract

Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent 
sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological 
interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism 
is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field 
with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite. 
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Introduction
The protist parasite Trichomonas vaginalis is the causative agent 
of trichomoniasis, one of the most prevalent sexually trans-
mitted diseases worldwide. In the most recent estimate by the  
World Health Organization1, 110 million infections worldwide 
were ascribed to T. vaginalis in 2016; that is somewhat less than 
ascribed to chlamydia but much more than to gonorrhea and  
syphilis. Symptoms of trichomoniasis are usually more severe 
in women than in men and affect the vagina, the cervix, or the 
urethra or a combination of these. Vaginal pruritus and odor-
ous vaginal discharge are the most common sequelae, but 
severe inflammation of the cervix can also occur. In men,  
T. vaginalis can cause urethritis and prostatitis, albeit with 
lower frequency. Trichomoniasis can persist for years and 
sour the life of those infected, but it also increases the risk 
for adverse pregnancy outcomes and the risk of acquiring  
HIV2. It is now firmly established that underlying trichomo-
niasis increases the risk to acquire HIV by 1.5- to 2-fold3. This 
poses serious problems in countries where both pathogens are 
highly endemic (for example, in the southern part of Africa). 
T. vaginalis has also been suggested to predispose for cervical 
cancer and prostate cancer, although there is far less support for  
this supposed link4–6 than with HIV.

However, T. vaginalis not only is of medical importance but 
also is a fascinating microorganism in its own right. Once  
considered a primordial eukaryote because of its anaerobic  
metabolism and the absence of mitochondria, it is now known 
to host hydrogenosomes7, hydrogen gas–producing organelles 
derived from mitochondria. Furthermore, T. vaginalis, like other  
trichomonads, has a huge haploid genome of 160 Mb which  
contains a very large number of transposable elements (TEs)8.  
T. vaginalis is commonly believed to be asexual and to exist 
only as a trophozoite-stage flagellate, but the recent discovery of 
meiosis-specific genes9, amongst other features typical of sexual  
organisms, and of a cyst-like stage with a cell wall10 might  
lead to a revaluation of these tenets.

The present overview focuses on the major scientific advances 
in the T. vaginalis field in the last five years and covers genetics,  
biochemistry, cell biology, ecology, and infection biology 
of the parasite. Drug testing and resistance will also be dis-
cussed. However, more clinical aspects of trichomoniasis, such 
as epidemiology, diagnosis, and management, were surveyed  
recently in another review published at F1000 Research11 and  
are not included here.

Genome and gene expression
As compared with other protists, T. vaginalis has an enor-
mously large genome of 160 Mb in length12, which encodes 
about 60,000 protein-coding genes. A surprisingly large portion 
of the genome consists of TEs13,14, and as many as 40,000 TEs  
come from several families. This has slowed down efforts to 
assemble the genome because of the immensely high number of 
sequence repeats. Still, the availability of the genome sequence,  
if not fully assembled, has allowed substantial scientific advances 
on T. vaginalis evolution on the one hand and on its genetic  
machinery on the other.

Strikingly, T. vaginalis has a predicted number of only 62 
introns. A detailed study on introns in T. vaginalis confirmed 
the existence of 32 genes with introns, whereas 18 candidates 
were found to be non-functional as they were not removed  
from the respective transcripts15. Eleven new introns which 
group into two different types with regard to sequence and 
splice motifs were identified in this study. Transcription of 
protein-encoding genes is commonly initiated at an initiator  
element16 or two alternative promoter elements, M3 and M5,  
respectively17. Interestingly, the M3 element resembles a Myb 
recoginition element and was found to be bound by a novel 
transcription factor with a Myb-like DNA-binding domain17.  
Surprisingly, however, a TATA box was found to be missing 
from promoters of protein-encoding genes. T. vaginalis none-
theless does encode two TATA box-binding proteins (TBPs) 
which bind to initiator-binding protein 39 (IBP39)16 and to DNA 
as determined in electrophoretic mobility shift assays18. How-
ever, it seems that binding to DNA by these T. vaginalis TBPs is  
unspecific19. Instead, they might have a role in the transcrip-
tion of spliceosomal U6 snRNA. Also of interest is the mRNA 
capping apparatus in T. vaginalis which is structurally similar 
to its counterparts in metazoans and plants rather than to those  
in other protists20.

Transcription rates not only are determined by sequences 
proximal to the transcription start site but also are dependent  
on epigenetic regulation. Consequently, epigenetic regula-
tion in T. vaginalis was addressed in a number of studies.  
N6-methyladenine (6mA) was found to be the major DNA  
methylation mark in T. vaginalis21. It occurs frequently in 
intergenic regions (in 94% of all sequenced methylated DNA 
stretches) and probably localizes to chromatin loops, indicat-
ing a role of 6mA in the regulation of gene expression. Also, 
histone acetylation was identified as an important modula-
tor of gene expression in two independent studies22,23. Indeed,  
T. vaginalis has a large arsenal of histone deacetylases (HDACs) 
of the Sir2 type and of histone acetyl transferases22. Methyla-
tion and acetylation of histone 3 (H3K27Ac and H3K4Me3, 
respectively) near transcription initiation sites were found to 
be positively correlated with transcription rate, and the HDAC 
inhibitor trichostatin A was found to strongly affect gene  
expression23. Independently of the transcription rate, mRNA 
levels can also be regulated, a process termed RNA interfer-
ence (RNAi). For RNAi, the presence of small RNAs (sRNAs), 
which are complementary to their target mRNA and recruit the 
so-called RNA-induced silencing complex, is a prerequisite.  
Importantly, two Argonaute proteins (T. vaginalis AGO1 and 2), 
which constitute central components of this complex, have been 
found in the genome14. Furthermore, a large number of sRNAs 
of the PIWI domain–interacting type (piRNA) were found. 
Arguably, T. vaginalis AGO1 and 2 interact with sequence-
specific piRNA to degrade transposase mRNAs as encoded by  
myriads of TEs in the T. vaginalis genome14.

The last step of expression of protein-coding genes (that is, 
translation) has also been studied in recent years. Translation  
efficiency of transcripts was found to be tuned by stretches 
of low sequence complexity at the 5′ end of the mRNA,  
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followed by a highly structured region more downstream24. The  
newly introduced iLOV fluorescent protein25 was used as a 
marker to gauge the effect of the prospective regulatory sequences  
on protein expression.

In addition to the fundamental research on T. vaginalis genet-
ics as stated above, the repertoire of genetic tools in this parasite 
was refined and enlarged. In a comprehensive study, reference 
genes for quantitative polymerase chain reaction studies were 
evaluated26. Importantly, the frequently chosen glyceraldehyde  
3-phosphate dehydrogenase (GAPDH) gene was identified as 
highly unreliable when exposing T. vaginalis to various condi-
tions due to the strongly variable expression levels observed. 
In contrast, the genes for DNA topisomerase 2, α-tubulin, and 
actin were found to be much more suitable; the best dual com-
bination was DNA topisomerase 2 and α-tubulin. Hopefully,  
these results will be taken into account in future studies on 
gene expression in T. vaginalis. Furthermore, RNAi was 
applied successfully for the first time in T. vaginalis27, although 
downregulation of the respective transcripts was rather low  
(33–72% at the most), which might be insufficient for many 
scientific questions. As a word of caution, the feasibility of 
the method still awaits confirmation from other researchers 
in the field. In the meantime, gene knockouts using CRISPR/
Cas-9 technology might prove highly instrumental. In a pilot  
study28, CRISPR/Cas-9 was successfully applied to knock 
out the non-essential genes for ferredoxin-1 and migration 
inhibitory factor. Importantly, the efficiency of the necessary 
transfection procedures was highly improved when a newly  
developed nucleofection protocol was applied.

Cell biology and biochemistry
T. vaginalis diverges strongly from most other protists by having 
an anaerobic metabolism and by hosting an unusual organelle, 
the hydrogenosome. These issues have attracted considerable 
interest throughout the last 50 years, and the last five years 
have yielded further important insights into the physiology of  
this parasite.

The hydrogenosome was originally believed to have evolved 
from a bacterial endosymbiont in a trichomonad progenitor 
but is now known to derive from mitochondria29. Many bio-
logical processes relating to hydrogenosomal function, however, 
remained incompletely understood in the past. Protein import into  
hydrogenosomes, for example, is of pivotal importance as 
no protein translation takes place within the organelle. Some 
hydrogenosomal proteins have an N-terminal targeting sequence 
(NTS) but others do not30,31. Moreover, in many cases, the NTS 
seems to be dispensable for protein import, and even ectopic  
import into yeast mitochondria without NTS is possible31,32. 
This indicates that predominantly internal signals earmark  
certain proteins for import into hydrogenosomes. In the case of  
tail-anchored (TA) proteins which localize to the T. vaginalis 
hydrogenosome33, the responsible amino acid sequences have 
been studied in more detail: in the C-terminal region next to  
the trans-membrane domain of TA proteins, the net charge must 
be positive to ensure reliable import. The translocase of the outer 

membrane (TOM) complex is mainly responsible for conduct-
ing protein import into the hydrogenosome34. The translocation 
channel is mainly formed by TvTOM40-2 which is divergent 
from TOM40 proteins from other eukaryotes but which nev-
ertheless can partially complement for TOM40 mutations in  
yeast34. Despite its apparent simplicity, the protein import machin-
ery of the hydrogenosome is highly effective. In recent decades, 
there was an intense discussion about whether certain highly 
expressed hydrogenosomal proteins such as pyruvate:ferre-
doxin oxidoreductase (PFOR), malic enzyme, and succinyl-coA  
synthetase (SCS) are also trafficked to the cell surface to act 
there as adhesin proteins, facilitating adhesion to host epithe-
lium. This issue has now been conclusively settled by a recent 
study which showed that these enzymes are exclusively trafficked  
into the hydrogenosomes35. However, trafficking of proteins 
to membrane compartments in general (that is, to destinations 
including the hydrogenosome but not being restricted to it) 
seems to have a different underlying mechanism as demonstrated  
for the cyclophilins TvCyP1 and TvCyP236.

The major hydrogenosomal pathway deploys PFOR, SCS, malic 
enzyme, and hydrogenase for the breakdown of pyruvate and 
malate to carbon dioxide and hydrogen gas. But also pathways 
for amino acid catabolism are hosted in the organelle. These 
become more important under glucose restriction, especially  
the arginine dihydrolase pathway37. The arginine dehydro-
lase pathway also indirectly leads to the formation of nitric  
oxide (NO) levels and this has a stabilizing effect on hydrogeno-
somal membranes under glucose restriction38. Several hydrog-
enosomal enzymes (for example, PFOR and hydrogenase) are 
sensitive to oxygen and its derivatives such as hydrogen per-
oxide and superoxide radical anion and need to be protected 
by appropriate antioxidant enzymes (reviewed in 39). The  
most recently discovered antioxidant enzyme of the hydrog-
enosome is the osmotically inducible protein C (OsmC), which 
detoxifies peroxides after receiving electrons from lipoate via  
the glycine decarboxylase L and H proteins40.

Pyruvate and malate are broken down in the hydrogeno-
some but derive from glycolysis taking place in the cytosol.  
Glucose, in turn, is obtained mostly from the breakdown of 
intracellular glycogen41 or of glycogen from the vaginal envi-
ronment. T. vaginalis secretes several glycosidases42 (includ-
ing most notably β-amylase43,44), which break down glycogen to 
maltose. Maltose is further broken down to glucose by another  
glucosidase45, followed by glucose import into the cell. Of 
course, carbohydrate uptake is not the only form of nutrient  
uptake T. vaginalis is capable of. The hydrolysis of nucle-
otides from the host by T. vaginalis ectonucleoside triphos-
phate diphosphohydrolase (E-NTPDase) and the subsequent  
uptake of the resulting nucleosides have been studied in a suite  
of studies in recent years46,47.

Trichomonas vaginalis as a member of the vaginal 
microbiome
The main habitat of T. vaginalis, the human vagina, accommo-
dates a highly complex microbiome48 which strongly influences 
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the chances of T. vaginalis to successfully colonize its host. 
The microbiota of the vagina are roughly grouped into five 
community state types (CSTs) of which four (CST-I, -II, -III,  
and -V) are dominated by lactobacilli, whereas CST-IV is domi-
nated by anaerobic bacteria such as Gardnerella vaginalis and 
mollicutes such as Mycoplasma spp.49. Lactobacilli preserve 
an acidic environment (pH ~4.5), whereas CST-IV leads to a 
higher vaginal pH. T. vaginalis is predominantly associated with 
CST-IV50. The presence of certain anaerobic bacteria (that is,  
Prevotella amnii and Sneathia sanguinegens) is positively  
correlated with the acquisition of T. vaginalis51. Interestingly, 
representatives of the CST-IV microbiome enhance adherence of  
T. vaginalis to epithelial cells through formation of a biofilm52 
and both can cooperatively compromise the integrity of the 
vaginal epithelium by disrupting intercellular tight junctions53. 
In contrast, lactobacilli clearly antagonize T. vaginalis. In a  
revelatory study, Lactobacillus gasseri strain ATCC 985754 was 
shown to strongly inhibit adhesion of T. vaginalis to host cells  
in a contact-dependent manner. In fact, L. gasseri ATCC 9857 
could even displace already-adhering trichomonads from vagi-
nal epithelial cells. Arguably, aggregation-promoting factor 2  
(APF-2) as encoded by the lactobacilli is responsible for this 
remarkable capability. T. vaginalis, however, is by no means 
defenseless. It expresses nine peptidoglycan hydrolases of the  
NlpC/P60 family which can kill bacteria55. To date, these 
enzymes have been tested only on Escherichia coli and it will 
be interesting to learn more about their activity against vaginal  
bacteria.

Even if most details of the interplay of T. vaginalis with the 
microbiota of the vagina remain to be discovered, the asso-
ciation of T. vaginalis with mollicutes, predominantly with  
Mycoplasma spp., has been studied in considerable detail. The  
proportion of T. vaginalis isolates harboring Mycoplasma  
hominis varies strongly depending on geographic origin but 
usually is substantial and can be even higher than 80%56. 
Thus, coinfections with T. vaginalis and M. hominis are very 
common and therefore should be taken into account by all 
means when speaking of trichomoniasis. The interactions of  
T. vaginalis and M. hominis are mutually beneficial. Most 
importantly, the growth rate of T. vaginalis is greatly enhanced 
(that is, by 20%) if intracellular M. hominis is present57. This 
is probably due to the arginine dihydrolase (ADH) pathway 
which is shared by the two microorganisms and which leads 
to the production of more ATP when L-arginine is present as a  
substrate. Indeed, intracellular M. hominis was shown to  
enhance ATP production substantially after supplementation with 
L-arginine whereas in symbiont-free T. vaginalis supplementa-
tion of arginine had only a minimal effect. This also has impli-
cations for the host defense because NO production by immune 
cells is greatly diminished if L-arginine is scavenged by the  
T. vaginalis/M. hominis consortium. There are probably many 
more interactions, and there is some evidence that M. hominis 
can alter gene expression in T. vaginalis to a certain extent58. Like  
T. vaginalis, M. hominis has been linked to adverse preg-
nancy outcomes59. There is an indication that the cohabitation 
with T. vaginalis promotes this, especially when T. vaginalis  

is eliminated by metronidazole treatment and liberated  
M. hominis infects host tissue60,61. In addition to M. hominis,  
another Mycoplasma species is closely associated with  
T. vaginalis: Mycoplasma girerdii. This species was discov-
ered only recently62, possibly because it might exist merely as 
an intracellular symbiont of T. vaginalis. A recent study, how-
ever, casts doubt on this notion51. In any case, M. girerdii is at 
least as common as M. hominis63 but its pathogenic potential  
remains to be elucidated.

In addition to hosting bacterial symbionts, T. vaginalis hosts 
T. vaginalis virus (TVV), which is grouped into four strains  
(TVV1–4) and belongs to the family of Totiviridae64. Little is 
known about the life cycle of TVV but it has been suggested to 
exacerbate trichomoniasis by enhancing the immune response65,  
and a recent study showed that the presence of TVV mitigates 
the response of vaginal epithelial cells to trichomonads66. How-
ever, another recent study of 355 T. vaginalis isolates, of which 
40% hosted TVV, did not find any association of TVV and  
clinical symptoms67.

Pathogenesis of trichomoniasis
After a long period of scientific neglect, the pathogenesis of tri-
chomoniasis is now finally receiving the attention it deserves. 
In recent years, pertinent studies have been forthcoming in 
increasing numbers, covering numerous aspects ranging from  
host response to parasite virulence factors (reviewed in 68).

Arguably the most significant response of the host to T. vaginalis  
is the production of cytokines by immune cells at the site of 
infection. Mainly interleukin 1 (IL-1), IL-6, IL-8, and IL-1769–71  
are induced and this is characteristic of a pro-inflammatory  
response. Interestingly, the cytokine profile was influenced 
by the presence of the M. hominis as IL-1 and IL-6 levels were 
several-fold higher after exposure to T. vaginalis G3 with the 
endosymbiont as compared with the same strain without69.  
Notably, IL-6 was reported to induce polarization of  
THP-1–derived macrophages into M2-type macrophages72 and  
IL-1 production is linked to activation of the NLRP3 inflam-
masome in macrophages resulting in processing of precursor  
IL-1β to bioactive IL-173. IL-1, in turn, can induce pyrop-
totic cell death in macrophages73. The host cell response to  
T. vaginalis further centers on Toll-like receptor 2 (TLR2), 
whose expression is also triggered by T. vaginalis71,74. Conse-
quently, in TLR2−/− mouse macrophages, immune mediators 
such as p38, ERK, and p65 NF-κB were found to be phosphor-
ylated to a lesser extent after stimulation with T. vaginalis75. 
In contrast to these observations, intraepithelial dendritic cells 
and regulatory T cells were shown to react to exposure with  
T. vaginalis or one of its major antigens, actinin-2, with the 
expression of IL-10, which is an anti-inflammatory cytokine75.  
Cytokine production, however, is not restricted to the human 
host as T. vaginalis also produces cytokines to ensure  
its survival. The parasite secretes a homologue of human mac-
rophage migration inhibition factor (TvMIF), which increases  
survivability under serum starvation several-fold76. Serum 
contains several essential nutrients for T. vaginalis, such as 
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amino acids, lipids, and precursors of nucleotides. T. vaginalis  
also secretes leukotriene B4 (LTB4), which induces exocy-
totic degranulation in mast cells, thereby promoting tissue  
inflammation77.

T. vaginalis interacts with the host tissue by shedding extra-
cellular vesicles (EVs) carrying cargo which promotes the 
infection process (thoroughly reviewed in 78). Two types of  
T. vaginalis EVs have been identified: exosomes (50–150 nm)79  
and microvesicles80, which are considerably larger (100–1000 nm). 
The former derive from intracellular multivesicular bodies 
whereas the latter are shed from the cell membrane. The vesi-
cles contain protein factors involved in mediating adherence,  
such as tetraspanins or BspA-domain proteins, and arguably 
in tuning the host’s response. Notably, the content of the small 
vesicles was found to be altered in the presence of TVV66. In  
addition to proteins, EVs contain RNA81; that is, mainly tRNA  
fragments or tRNA halves (tsRNA), respectively, which 
have also been described to be part of the cargo in EVs of 
trypanosomatid parasites82,83. The precise role of tsRNA in  
host–parasite interactions, however, remains to be elucidated. 
Finally, the uptake of exosomes by host cells is mediated by 
4-α-glucanotransferase (Tv4AGT) on the EV surface which  
binds to heparan sulfate of host cell surface proteoglycans84.

Adherence of T. vaginalis to host epithelium is indeed a key 
event in trichomoniasis. In this process, the host’s surface pro-
teins galectin-185 and -386 have an essential role by binding to 
lipoglycan (LG) on the parasite’s surface85. Host galectins are 
also instrumental in dimming the host response to T. vaginalis,  
and TvLG binding can further tune this86. However, numer-
ous other cell surface–associated factors, such as a novel  
cadherin-like protein87, actinin-288, and triosephosphate  
isomerase89, promote adherence of T. vaginalis to host epithe-
lium. The last of these is a glycolytic protein which can also be 
associated with the parasite’s cell surface and bind to fibronec-
tin and laminin. Two other groups of proteins, the BspA and 
Pmp domain-containing proteins, seem to enhance adherence90, 
and the former have been found to be transported to the host  
in EVs79. Finally, palmitoylation of proteins was found to  
positively affect adherence of T. vaginalis to host cells91.

Eventually, adherence is followed by cell lysis. Damage to 
host cells can be inflicted by parasite proteases such as metal-
loprotease TvMP5092 or cysteine proteinase 2 (CP2)93,94, and  
antibody treatment against either of these factors greatly dimin-
ished cytotoxicity as exerted by T. vaginalis. Interestingly,  
T. vaginalis cysteine proteases do also degrade the anion chan-
nel CFTR on the host cell surface, leading to elevated intracel-
lular Cl− concentrations and induction of NF-κB signaling95.  
Another protease, the rhomboid protease TvROM1, exerts an  
indirect effect by cleaving T. vaginalis substrate proteins, 
resulting in enhanced attachment and damage to host cells96.  
Just recently, saponin-like pore-forming proteins (TvSaplips) 
were identified in the T. vaginalis genome97 and one of these, 
TvSaplip12, was expressed and characterized. TvSaplip12 is 
strongly upregulated upon contact with host cells and has a  

strong lytic activity against bacteria and HeLa cells. Conse-
quently, it has been proposed to act as a Trichopore, in accord-
ance with Amoebapore in Entamoeba histolytica98. To summarize,  
the picture of pathogenesis of trichomoniasis is still incomplete  
but the gaps are being filled at an increasing pace.

Anti-trichomonadal drugs: established and 
experimental
Throughout the last six decades, the 5-nitroimidazole drug met-
ronidazole has remained the mainstay of anti-trichomonadal 
chemotherapy99, although resistance has become an increas-
ingly worrying issue. Clinical metronidazole resistance 
is a complex phenomenon affecting numerous enzymatic 
pathways in T. vaginalis99. In a large-scale study on gene  
expression in metronidazole-sensitive and -resistant strains13,  
several genes were found to be differentially expressed in  
three metronidazole-resistant strains assayed. Flavin reduct-
ase 1 (FR1), an oxygen-scavenging enzyme which pro-
duces hydrogen peroxide, had been previously identified as a  
mediator of metronidazole resistance100 and was found to be 
downregulated in all three isolates. Various nitroreductases,  
likewise identified previously101–103, were also downregu-
lated. In contrast, multidrug resistance pump and metal ABC 
transporter genes were upregulated in all three resistant 
strains. The relative contribution of all of these factors to  
metronidazole resistance remains to be determined.

Importantly, treatment failures with metronidazole are not 
always caused by resistance as such. Treatment regimens can 
also strongly affect treatment outcome. It was demonstrated 
recently that a seven-day course with 500 mg metronidazole 
twice per day is clearly more effective than a single dose with 
2 g104. In addition, it is necessary to test alternative treatments 
within the drug class of 5-nitroimidazoles, such as secnidazole105  
or novel derivatives106,107.

Cross resistance, however, is often a problem with  
5-nitroimidazole drugs, so completely different drugs have 
also been explored for anti-trichomonadal activity. Argu-
ably, the most promising candidate is auranofin, a repurposed  
anti-rheumatic drug which was shown to be effective against 
a larger number of parasites108. Indeed, auranofin is also  
effective against T. vaginalis and can cure experimentally 
infected mice109. It was also successfully administered topi-
cally in mice on nanoparticles suspended in a hydrogel110.  
Thioredoxin reductase has been proposed to be the main tar-
get of auranofin, but this needs further confirmation as observa-
tions in another parasitic anaerobic flagellate, Giardia lamblia,  
contradict this notion111. Numerous other candidate drugs, 
including proteasome inhibitors such as carmaphycin-17112,  
zinc sulfate and zinc complexes113,114, bisbenzimidazole  
analogues115, boric acid116, and tetracycline117, were also evaluated.  
For a more complete overview of recent anti-trichomonadal  
drug research, a comprehensive review is available118.

As a concluding note, it is important to emphasize that assay 
conditions can be of very high importance when evaluating  
efficacies of established and novel anti-trichomonadal drugs. 
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For example, cysteine, which is routinely used in growth 
media for T. vaginalis, has a highly protective effect against  
metronidazole and auranofin119.

Concluding remarks
During the writing of this review, it became quickly appar-
ent that the number of high-quality research articles in the  
T. vaginalis field has increased in the last five years as com-
pared with the preceding quinquennial period120, a development  

which is also reflected in a larger number of references  
cited in this review. This is highly encouraging and indicates 
that T. vaginalis now receives more attention than before.  
There were substantial advances in our understanding of how  
T. vaginalis interacts with its host and, equally important, 
with the microbiome of which it is a part. As to the latter, 
the formation of consortia of protistologists, bacteriologists, 
and mycologists might even accelerate the pace of insightful  
discoveries in the future.
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