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Abstract: Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, man-
ganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation
defense, transcriptional regulation and the immune response. The misregulation of expression or
mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these
ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion
carriers have been detected, suggesting that particular mechanisms influenced by both ions might be
required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review
of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate
cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional
regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and
Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials.
We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement
current therapeutic strategies.

Keywords: zinc; manganese; transitional elements; microelements; cancer; tumorigenesis; molecular
pathways; cell growth signaling

1. Introduction

Transitional metals, including iron, manganese and zinc, are widely employed in
numerous biochemical reactions. According to the periodic table, Mn is located nearby Fe,
with a similar size of atoms and electron configuration of outer orbitals (Mn: 127 pm, 3d5
4s2 and Fe: 128 pm, 3d6 4s2), thus suggesting similar, but not identical, chemical properties.
In the biologically relevant 3+ ionization form, ionic radii and electron configurations are
also similar: Mn3+: 72 pm 3d4 and Fe3+: 69 pM, 3d5. In contrast, Zn: 134 pm, 3d10 4s2 has
the highest ionization energy among the transitional metals of the same period, and Zn2+,
with the electronic configuration 3d10, is a predominant ion in biological systems. Nature
exploits the low oxidation energy of transition metals to facilitate biochemical reactions that
involve electron transfer or the reduction of molecules in processes such as the deactivation
of reactive oxygen species (ROS) and mitochondrial energy production. Proteins interact
with transitional metal by so-called coordination, in which acidic amino acids form non-
covalent interactions with the ions of transition metals, thereby creating stable structures
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such as heme in hemoglobin and zinc fingers in zinc finger transcription factors. In general,
because Fe3+ and Mn3+ are much more electrophilic than Zn2+, the former (Fe3+ and
Mn3+) are readily used as electron acceptors, whereas Zn2+ is predominantly used as
a coordination metal and rarely as a cofactor. Fe3+ is abundant in Earth, and, perhaps
consequently, many more enzymes in humans use Fe3+ as a coordination metal; however, a
few enzymes specifically need Mn3+ [1].

To function properly, cells need a particular “just right” combination of trace ele-
ments [2]. An excess of Mn2+ leads to toxicity due to accumulation in mitochondria ([3] and
reference therein), and this is associated with the inhibition of mitochondrial enzymes [4,5]
and the overproduction of H2O2 by mitochondrial superoxide dismutase [6]. Similarly to
Mn2+, Zn2+ accumulates in mitochondria [7,8], intracellular vesicles [9], the endoplasmic
reticulum and the Golgi [10,11]. Accordingly, exposure to high concentrations of Zn2+ over-
loads its intracellular depo and induces mitochondrial dysfunction and apoptosis [12–14].
In contrast, the exposure of normal cells to low levels of Zn2+ may have anti-oxidant and
anti-apoptotic effects [15–18].

Low concentrations of Mn and Zn are necessary for normal cellular functions and
are needed for proliferation [15], the inhibition [17] or induction of cell death [13], tran-
scriptional regulation [19], ROS homeostasis [6,20,21] and keratinocyte differentiation [22],
among others. To maintain and regulate Mn and Zn concentrations, multiple mechanisms
are in place, including ion exchangers [23,24]; metallothioneins and glutathione buffering
systems [25]; and the concentration of ions into vesicles, which can be transported out of
cells [9,26,27].

Alterations in Mn and Zn homeostasis are associated with pathological conditions,
such as cardiovascular diseases [28,29], neurodegenerative disorders [30] and autism spec-
trum disorders [31,32]. Recently, it became evident that alterations in Zn and Mn might be a
factor that impacts cancerogenesis, e.g., in prostate cancer [33,34], colorectal cancer [35,36],
lung cancers [37] and glioblastoma [38], among others [39]. Mutations and the altered
expression of ion carriers that regulate Zn and Mn homeostasis are hallmarks of many
cancers [40–42]. Intriguingly, cancers often exhibit coordinated changes in Zn2+ and Mn2+

ion carriers [40,43], although the way in which this modulates ion homeostasis or pro-
motes cancer growth is yet to be investigated. In addition, the modulations of Mn and Zn
influence the effectiveness of cancer therapeutics, and several clinical trials are currently
underway [13,44–46] (clinical trial.gov NCT03991559, NCT04488783). Here, we discuss the
mechanisms of the Zn- and Mn-mediated interactions that influence cancer metabolism
related to new diagnostics and therapeutic applications [47–49].

2. Regulation of Zn/Mn Homeostasis

As discussed in the Introduction, alterations in Mn and Zn concentrations influence
cell viability. Now, we want to discuss in more detail how Mn- and Zn-based regulation
is built. To address this question, we need to analyze a few effects related to Mn and
Zn homeostasis. First—what is the intracellular distribution of Mn and Zn, what is the
range of the free and protein-bound concentrations of these ions in cells, and how are these
concentrations regulated? Second—what is known about the biophysical mechanisms of
Mn- and Zn-regulated biological activities inside cells, such as the affinities of proteins to
Mn or Zn and reaction constants. Finally, what is known about the influences of Mn and
Zn on the biological processes related to cancerogenesis?

2.1. Zn, Mn and ROS Detoxification Reactions

Importantly, Zn2+ and Mn2+ can catalyze the reduction of superoxide to H2O2 by
superoxide dismutase, Cu/Zn-SOD1 in the cytoplasm and Mn-SOD2 in mitochondria [50],
representing a major route of detoxification in cells (Figure 1) [2,6,51].
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Figure 1. Superoxide dismutases (SODs) use ions of Cu2+ or Zn2+ and Fe3+ or Mn2+ to catalyze reduc-
tion of superoxide O2•− to hydrogen peroxide H2O2 [6,52]. In turn, Fenton reaction converts hydrogen 
peroxide to hydroxyl •OH radical and hydroxide OH− ions [53]. Moreover, hydrogen peroxide is 
converted into water by reduced glutathione (GSH), peroxiredoxins and catalase. 

One important difference between Mn2+ and Fe2+ is that Fe2+ catalyzes the Fenton re-
action, producing free radical HO• [54,55], whereas Mn2+ does not. Thus, Mn2+ competition 
with Fe2+ can provide protection, in part, from oxidation-induced degradation [56]. How-
ever, mitochondria contain about 16µm of free Fe2+, which can participate in the Fenton 
reaction, promoting the toxicity of Mn2+-driven H2O2 overproduction in mitochondria, alt-
hough this mechanism is debated [53] [6,57,58]. It was recently discovered that the con-
centration of low-molecular-weight complexes of Mn2+ with orthophosphates or peptides 
is a dominant factor that predicts survival and that double-strand breaks repair efficiency 
after gamma irradiation across bacteria, fungi, archaea and human cells [59]. 

2.2. Cellular Distribution of Mn and Toxicity 
A number of methods for the measurement of intracellular Mn concentrations have 

been reported in the literature. Interestingly, the addition of Mn to media leads to an in-
crease in Mn concentration in the cell, in some reports way above concentrations in the 
media, suggesting active transport inside cells [6,60–63]. Using inductively coupled 
plasma–mass spectrometry, it was shown that the intracellular total Mn concentration in 
unexposed prostate cancer cells is about 1 µM and increases upon incubation with 1 mM 
of Mn for 48 h in PC3 (38.2 ± 14.3 µM), LNCaP (34.6 ± 0.7 µM) and DU145 cells (12.2 ± 0.4 
µM) [60]. According to measurements using energy-dispersive X-ray fluorescence [61], 
the total Mn concentration in chick microglia was 45µM in the presence of 0.4 µM of Mn 
and increased up to 100 µM with the addition of 2µM of Mn. Measurements of Mn in 
blood cells using graphite-furnace atomic-absorption spectrophotometry with Zeeinan 
background correction revealed an Mn concentration equal to 0.3 µM in erythrocytes, 
0.006 µM in polymorphonuclear and mononuclear leukocytes, and 0.016 µM in plasma 
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It was shown that, upon exposure, Mn2+ accumulates mostly in mitochondria [3]; 
however, Mn2+ also binds DNA with Kd = 33µm [65], and there is also accumulation in 
the nuclei, mostly in the heterochromatin [66]. Consistent with the mitochondria accumu-
lation of Mn2+ upon exposure, isolated mitochondria are capable of sucking off the vast 
majority of exogenously added Mn2+ from media [3]. 

Currently, there are no indicators that would allow measurements of free Mn in liv-
ing cells beyond the targeted probe [67]. Several Mn-specific molecules have been identi-
fied based on their properties to transfer Mn in or out of cells, thereby allowing the meas-
urement of Mn release in media after the pre-loading of cells; however, it is difficult to 
interpret whether they are mitochondrial or nuclear Mn2+ or free cytoplasmic Mn2+ [68]. 

Figure 1. Superoxide dismutases (SODs) use ions of Cu2+ or Zn2+ and Fe3+ or Mn2+ to catalyze
reduction of superoxide O2

•− to hydrogen peroxide H2O2 [6,52]. In turn, Fenton reaction converts
hydrogen peroxide to hydroxyl •OH radical and hydroxide OH− ions [53]. Moreover, hydrogen
peroxide is converted into water by reduced glutathione (GSH), peroxiredoxins and catalase.

One important difference between Mn2+ and Fe2+ is that Fe2+ catalyzes the Fenton
reaction, producing free radical HO• [54,55], whereas Mn2+ does not. Thus, Mn2+ competi-
tion with Fe2+ can provide protection, in part, from oxidation-induced degradation [56].
However, mitochondria contain about 16µm of free Fe2+, which can participate in the
Fenton reaction, promoting the toxicity of Mn2+-driven H2O2 overproduction in mito-
chondria, although this mechanism is debated [6,53,57,58]. It was recently discovered that
the concentration of low-molecular-weight complexes of Mn2+ with orthophosphates or
peptides is a dominant factor that predicts survival and that double-strand breaks repair
efficiency after gamma irradiation across bacteria, fungi, archaea and human cells [59].

2.2. Cellular Distribution of Mn and Toxicity

A number of methods for the measurement of intracellular Mn concentrations have
been reported in the literature. Interestingly, the addition of Mn to media leads to an
increase in Mn concentration in the cell, in some reports way above concentrations in the
media, suggesting active transport inside cells [6,60–63]. Using inductively coupled plasma–
mass spectrometry, it was shown that the intracellular total Mn concentration in unexposed
prostate cancer cells is about 1 µM and increases upon incubation with 1 mM of Mn for
48 h in PC3 (38.2 ± 14.3 µM), LNCaP (34.6 ± 0.7 µM) and DU145 cells (12.2 ± 0.4 µM) [60].
According to measurements using energy-dispersive X-ray fluorescence [61], the total Mn
concentration in chick microglia was 45 µM in the presence of 0.4 µM of Mn and increased
up to 100 µM with the addition of 2 µM of Mn. Measurements of Mn in blood cells
using graphite-furnace atomic-absorption spectrophotometry with Zeeinan background
correction revealed an Mn concentration equal to 0.3 µM in erythrocytes, 0.006 µM in
polymorphonuclear and mononuclear leukocytes, and 0.016 µM in plasma [64].

It was shown that, upon exposure, Mn2+ accumulates mostly in mitochondria [3];
however, Mn2+ also binds DNA with Kd = 33 µm [65], and there is also accumulation in the
nuclei, mostly in the heterochromatin [66]. Consistent with the mitochondria accumulation
of Mn2+ upon exposure, isolated mitochondria are capable of sucking off the vast majority
of exogenously added Mn2+ from media [3].

Currently, there are no indicators that would allow measurements of free Mn in living
cells beyond the targeted probe [67]. Several Mn-specific molecules have been identified
based on their properties to transfer Mn in or out of cells, thereby allowing the measurement
of Mn release in media after the pre-loading of cells; however, it is difficult to interpret
whether they are mitochondrial or nuclear Mn2+ or free cytoplasmic Mn2+ [68]. Because
Mn2+ accumulates in mitochondria upon exposure [3], it is possible to speculate that the
free Mn2+ concentration in uninduced cells is very low. It is not clear if Mn2+ can be released
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from mitochondria or other Mn2+ depos as it happens with Zn2+ in response to oxidative
stress [9].

Cells typically tolerate up to 10 µm of Mn, and the addition of 50 µm or more for
24 h is toxic [6,60,62]. Notably, the addition of Mn to human neuroblastoma cells was
found to be a dominant factor driving H2O2 production by mitochondrial Mn-SOD2 in
the range of an extracellular MnCl2 concentration of 1–100 µM [6]. Upon the addition
of extracellular Mn, the fraction of cellular Mn in total protein mass increased over the
range of 6.4–50 × 10−6, which, according to the authors’ estimation, corresponds to normal
physiological (6.4–36 × 10−6) and pathological (50 × 10−6) ranges. The addition of as little
as 1 µM of Mn increased the mitochondrial oxygen consumption rate, H2O2 production
and SOD2 activity. It was shown that the overexpression of Mn-SOD2 suppresses breast
cancer growth in vitro and in xenograft models [69] and that the mimetics of Mn-SOD2
show anti-cancer activity [70], suggesting that Mn, in the contest of SOD activation, has
anti-cancer effects. In contrast, recent research has demonstrated an increase in Mn-SOD2
in triple-negative breast cancer, leading to increased stemness and invasiveness of breast
cancer cells and M2 macrophage invasion [71].

Apparently, a high concentration of Mn2+ (400 µM, 24 h) induces cytochrome C release
from mitochondria and caspase-8-mediated apoptosis in B cells [2,72]. It was demonstrated
that 10–50 µM of Zn prevents Mn-induced cell death, whereas a higher 100 µM concentra-
tion of Zn potentiates human Burkitt lymphoma B cell death (Figure 2) [73]. Similar data
were obtained in murine photoreceptor cells [74], and the effect of Zn on cell viability is
discussed in the following sections.
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Figure 2. Approximate Mn2 + and Zn2+ toxicity ranges (see text for details). Low concentra-
tions of Mn2 + and Zn2+ are not toxic. Notably, Zn2+ in concentrations lower than 50 µm inhibits
Mn2+-induced toxicity, and Zn2+ in concentrations higher than 100 µm potentiates Mn2+ toxicity [73].

2.3. Regulation of Zn Homeostasis and Toxicity

In contrast to Mn, it is possible to measure free Zn concentration in cellular organelles
using several indicators [11,75–78], and it is generally low, that is, in the order of 5–10 pM
in PC12 cells [75] and 400 pM in pancreatic beta cells [76]. Most of the Zn in cells is bound
by proteins, and it was estimated that approximately 3000 different proteins in cells bind
Zn [79–81]. Among these, metallothionein serves as a major Zn2+ buffer, and several other
proteins carry the same functions [25,82,83].

Gel filtration chromatography revealed three pools of Zn2+-bound molecules of
different molecular weights: metallothionein, other proteins and reduced glutathione
(GSH) [84,85]. A comparison of Zn2+ affinities for different pools of proteins revealed
that apo-metallothionein was able to compete for 13% of Zn2+ bound to proteins, GSH
competed for 10% of Zn2+ and synthetic chelators competed for 32–38% of Zn2+. Thus, the
affinity of metallothionein to Zn2+ is relatively low in comparison to other Zn proteins;
however, due to its abundance, it binds about one-third of cellular Zn2+. Thus, the Zn2+

available for protein binding in cells exists in the metallothionein-bound form. Accordingly,
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Zn depletion inhibits the activity of transcription factors, and supplementation with free
Zn2+ or Zn2+ in the complex with metallothionein restores it [86,87].

Another one-third of cellular Zn is bound by other non-metallothionein proteins, and
the rest of Zn is in the complex with glutathione [84,85,88,89]. It was also shown that the
addition of GSH increases the speed of Zn2+ binding to proteins other than metalloth-
ionein [85,88].

Zn indicators can measure the intracellular distribution of Zn2+ [10], and it was
revealed that, upon moderate exposure, Zn2+ is transferred by TRPM7 (transient receptor
potential cation channel subfamily M member 7) into specific vesicles that release Zn2+ in
response to oxidative stress [9] or in response to TRPM7 agonists, promoting melanoma
cell death by inhibiting autophagy [13,90].

Upon exposure to high Zn2+ concentrations, cells efflux Zn2+ by lysosomal exocyto-
sis [26] and accumulate Zn in mitochondria [7,8], where cell death is then induced [12,14].
The addition of Zn2+ to rat primary astrocytes and glioma cells induced GSH depletion,
ROS and lactate dehydrogenase induction, mitochondria membrane depolarization and
apoptosis [89]. The addition of Zn2+ or metallothionein as a Zn2+ or Cd2+ carrier inhibits
membrane potential, ATP production and oxygen consumption by mitochondria [14,91–94].

2.4. Zn and Mn Transport

The transport and distribution of zinc and manganese within cells are regulated by
specialized transport proteins (Table 1 and Figure 3). They are conditionally divided into
families of Zn importers ZIP/SLC39 and Zn exporters ZNT/SLC30 [11,43].

Table 1. Representative Mn2+ and Zn2+ ion carrier genes.

Gene Name Protein Name Specificity Type of Transport Reference

SLC30A10 ZNT10 Mn2+/Ca2+ exchange, Zn2+ vesicular
transport as SLC30A3 heterodimer

Exporter [95,96]

SLC30A3 ZNT3 Zn2+ Exporter [39,97–99]
SLC39A14 ZIP14 Divalent metal cations Mn2+, Zn2+, Fe2+ Importer (symport) [97,100–102]
SLC39A8 ZIP8 Mn, Zn, Fe Importer (symport) [97,100,103]

TP2C1 Ca or Mn Mitochondrial influx [104]

First of all, known Zn exporters use the proton gradient to transfer Zn2+ [105]; in
contrast, the active transport of Mn2+ mediated by SLC30A10 is powered by the import of
Ca2+ along the electrochemical gradient in exchange to Mn2+ across the electrochemical
gradient [96]. Moreover, SLC30A10 is capable of transferring Mn2+ but not Zn2+ [96,106].
In contrast, SLC30A10, as a SLC30A3-SLC30A10 heterodimer, can transport Zn2+ and
Mn2+ into endosomes and activate EGFR/MEK/ERK1,2 transduction, which were found
to be reduced by the Zn2+ chelator TPEN [107]. In contrast to data from Levi [96], Zhao
demonstrated that SLC30A10 overexpression influences Zn2+ transport [107].

After Mn2+ overexposure, WIF-B human/rat hybrid hepatocytes uptake Mn2+ from
the cytoplasm by SLC30A10 into vesicles that fuse with the apical cell membrane and
release their content in media [108]. Recent data suggest that, similarly to Zn2+ [26], Mn2+

is released from cancer cells by extracellular vesicles [27].
While SLC30A10 transports Ca2+ and Mn2+ in opposite directions, ATP2C1 transports

Ca2+ or Mn2+ in the Golgi, preventing Mn2+-induced neurotoxicity [104]. The way in which
Ca2+ entry in cells mediated by SLC30A10 influences Zn-regulated cellular physiology has
not been investigated to date. Noticeably, Ca2+ entry in monocytes generates free cytoplas-
mic Zn2+ originating in the nuclear and perinuclear endoplasmic reticulum regions [109]
or in the mitochondria in neurons [7].

The induction of Zn2+ release seems to be required for and precedes ROS generation
in mitochondria in response to hypoxia [21,110]. It was reported that Hif1a activation is
required for the induction of SLC30A10 expression upon Mn2+ exposure [111]. Hif1a is
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induced by hypoxia and ROS, and it would be interesting to investigate if SLC30A10 is
induced in cancers by similar mechanisms [40].
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Figure 3. Mn2+ and Zn2+ homeostasis. (A) Representative scheme of Mn2+ and Zn2+ transport
and cellular compartments. Blue arrows represent Zn2+-transporting carriers (SLC39A1, SLC30A3),
orange arrows represent Mn2+-transporting carriers (SLC39A14, SLC30A10). Double arrows represent
proteins that transfer both Mn2+ and Zn2+ (SLC39A8, SLC40A1). In the cell, Zn2+ is distributed
between metallothioneins, other proteins and GSH [84,85]. In the nuclei, Zn2+ binds MTF1 [25] and
serves as a coordination metal for the majority of histone-modifying enzymes [112,113] and zinc finger
transcription factors (ZFTFs) [114]. In turn, Mn2+ accumulates in heterochromatin [66]. Both Mn2+

and Zn2+ can accumulate in mitochondria [3,8], as well as in the Golgi apparatus and endoplasmic
reticulum [10,11,115,116] (not shown). Both Mn2+ and Zn2+ can be sequestered in specific vesicles
that can be released from the cell [9,26,27]. (B) Ion carriers transfer Mn2+ in mitochondria using
Mfrn1 [117] and DMT1 [118], and in cellular vesicles by SLC30A10 [108]. In turn, Zn2+ is accumulated
in mitochondria by SLC25A25 and exerted by SLC30A9 [8,23]. In vesicles, Zn2+ is accumulated by
SLC30A3-SLC30A10 heterodimer [107] and exerted by SLC39A13 [119].

2.5. Zn and Mn Transporters and Cancerogenesis

The major insights into the functions of zinc transporters in cancerogenesis come
from cancer genetics studies [39,120]. In short, the majority of these studies demonstrated
reduced Zn levels in different cancers, as well as the corresponding downregulation of
importers and the upregulation of exporters [120].

In prostate cancer, zinc deficiency occurs due to the downregulation of zinc trans-
porters [121], and the treatment of prostate cancer cells with physiological concentrations
of Zn induces apoptosis [122]. Specifically, the overexpression of Ras-responsive element-
binding protein 1 (RREB1) downstream of the Ras-Raf-MEK-ERK signaling pathway re-
presses SLC39A1 (ZIP1) expression leading to a reduced Zn level [123,124]. Preclinical mod-
els support the application of Zn2+ ionophore clioquinol in combination with a dopamine
agonist for prostate cancer treatment [41,125]. In contrast, RREB1/SLC39A3(ZIP3)/Zn
were all found to be downregulated in pancreatic adenocarcinoma [126], and a low Zn
level was associated with hyperproliferation in vitro. In ovarian cancer, SLC39A13 (ZIP13)
and ZIP5, ZIP10, ZIP12 and ZIP14 overexpression were found to be associated with poor
prognosis, and SLC39A13 knockout demonstrated suppression of the malignant phenotype
in vitro and in vivo and a higher vesicular zinc level in knockout cells [127]. The expression
of 10 members of the SLC30 family was measured in cervical carcinoma and revealed a
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gradual induction of the Mn2+ effluxer SLC30A10 with an increase in cancer stage; complete
depletion of the Zn2+ vesicular transporter SLC30A8; and the induction of Zn2+ exporters
SLC30A1, SLC30A6 and SLC30A7 [40].

In turn, due to the superoxide radical scavenger properties of Mn2+ [59], high levels of
Mn in cancers are associated with poor survival and low radiosensitivity of tumors, such
as for melanoma and glioblastoma, in comparison to classical seminoma, breast cancer
and prostate cancer [38]. Mn distribution across tissue sections was measured using mass
spectrometry. No such correlation was observed for Zn, Cu and Fe in that study. The
scanning of tissue sections from the Lewis lung carcinoma metastasis mice model using a
similar approach revealed Mn accumulation in a few foci in the primary tumor or in the
tissues of untreated animals, whereas the distribution of Zn was uniform [27]. Intriguingly,
a higher Mn concentration was detected in organs from the tumor-bearing mice. In addition,
sub-toxic 5 µM levels of Mn2+ promote cell migration, and exosomal Mn2+ exertion was
detected [27]. Whether these high Mn regions in the organs of tumor-bearing mice represent
metastasis sites or only Mn accumulation requires further investigation.

In this regard, it was demonstrated that Mn2+ is the main substrate for SLC39A14
in vivo using mice studies [128] and in humans [100,129], and it is associated with Mn
accumulation in blood and most other organs while depleting in the liver. Accordingly, the
decreased expression of SLC39A14 was associated with aggressiveness and the relapse of
prostate cancer [130], and alternative splicing of SLC39A14 was associated with colorectal
cancer [131,132]. However, some studies have found an increase in both Zn and Mn in
colorectal cancer tissue, while others observed only a slight difference in Zn levels in
males [133,134].

2.6. Transcriptional Regulation by Zn and Mn

Both Zn2+ and Mn2+ regulate transcription. In neuronal cells, Mn2+ induces apoptosis
in PC12 cells facilitated by caspase 3 transcriptional activation triggered by the phospho-
rylation of zinc finger transcription factor SP-1 [135]. In addition, in PC12 cells, Mn2+

potentiates histone deacetylase (HDAC) and represses histone acetyltransferase (HAT) ac-
tivities, leading to the inhibition of the acetylation of core histones [19], which is consistent
with the localization of Mn2+ in heterochromatin compartments [66]. The inhibition of
HDAC activity was found to attenuate cell death, and the inhibition of HAT was found
to potentiate Mn2+-induced cell death, suggesting the role of histone acetylation in Mn-
induced dopaminergic neurotoxicity [19].

Zinc can regulate transcription because it is a component of many if not all chro-
matin remodelers, including HDAC, HAT [112,113] and histone demethylases [136,137].
In contrast to Mn in PC12 cells, both Zn2+ and zinc transporter ZIP10 activate HAT in
keratinocytes, promoting differentiation and the expression of metallothionein genes [22].
Mechanistically, Zn directly regulates the metal-responsive transcription factor 1 (MTF1)-
mediated induction of metallothionein genes, thereby generating more Zn2+ storage in
response to the increase in Zn2+ in the environment [25].

A recent paper reports that HDAC8 activity can be regulated by competition between
different ions, specifically, Zn2+ and Fe2+ [113]. The HDAC8 active site has similar architec-
ture to the arginase Mn2+ site, in which a single catalytic Zn2+ ion is coordinated by two
aspartate residues and a histidine [113,138]. HDAC8 exhibits 106 higher affinity to Zn2+

than to Fe2+ (Zn2+ (Kd = 9 pM); Fe2+ (Kd = 1.1 µM)), compensating for the higher Fe2+

concentrations in cells and higher catalytic activity of HDAC8 in the presence of Fe2+. In
addition, HDAC8 can also bind Mn2+ and Cu2+, but a comparison of affinities or catalytic
activities was not performed [113,138].

Consistent with the roles of Zn [22] and DNA methylation in keratinocyte differ-
entiation [139,140], DNA methyltransferase 1 activity was found to be induced by the
depletion of dermis zinc transporter SLC39A13 (ZIP13), and the effect was reversed by Zn
supplementation [141].
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Consistent with the high affinity of most of the proteins to Zn, the affinity of the third
zinc finger of SP-1 to Zn was characterized by Kd = 6 × 10−10, much higher than that
for metallothionein [114]. The activity of the Zn-SP-1 transcription factor was evaluated
when cellular zinc was depleted using a series of ligands, including apo-metallothionein,
glutathione, EDTA, EGTA and TPEN [84]. Out of these, only cell-permeable TPEN at 30 µm
was able to inhibit SP-1 binding to DNA in nuclear extracts after 24 h of treatment and
completely inhibit DNA binding in vitro. In contrast, Zn inhibited NF-κB activity, which
could be attenuated by an increased metallothionein level [142]. At the same time, the
Zn2+-mediated inhibition of Nf-κB has a profound effect on cancer progression, inhibiting
proliferation and inflammation [143–145].

2.7. Mn- and Zn-Mediated Signal Transduction Pathways

In an attempt to reconstitute the Zn-mediated signaling network, the levels of gene
expression in response to Zn2+ were measured in human intestinal Caco-2 cells with
depleted MTF1 [25]. Interestingly, the majority of Zn2+-regulated genes augmented their
response, and only metallothioneins and zinc-effluxing Znt1 were less sensitive to Zn2+ in
the absence of MTF1. This suggests that effective Zn2+ levels in the cells became higher
due to the diminished buffering capacity of metallothioneins and the efficiency of Zn2+

transport out of the cells. This places MTF1 on the top of the Zn-mediated signaling
pathway followed by metallothioneins and other Zn-regulated genes. A mathematical
model that describes Zn2+ homeostasis in cells has been formulated [85].

Zn is known to regulate cancer-related signaling pathways. External Zn2+ activates
ERK signaling cascades and Ras [146]. Another investigation demonstrated that serum
Zn2+ represses proapoptotic p38 and JNK signaling, which are activated by the mutant
hRas G12V [147]. Nf1 is a classical Ras repressor [148,149], and Zn2+ coordination closes
Nf1 domains to repress wild-type Ras-GTPase activity in vitro [150].

There are few publications suggesting that Mn2+ induces apoptosis or senescence
by p53-dependent mechanisms [151–153]. Interestingly, in neuronal cells, Mn2+-induced
toxicity was accompanied by increased p53 and mitochondrial p53 localization, while an
increase in ROS and mitochondrial H2O2 production was attenuated by p53 inhibitors [151].
Similarly, in colorectal cancer cells, Mn-SOD2 overexpression induces p53-dependent
senescence [153]. In addition, Mn2+-induced apoptosis was repressed by the DNp73
isoform of the p53 family member p73 [152,154].

The way in which Mn2+ regulates p53 activity is not known. One candidate for such
regulation is the p53 activator protein phosphatase PP2Cα [155], which is characterized by
the apparent Mn2+ Michaelis constant, Kmetal = 3.3 mM, far above typical total concentra-
tions in cells, and the substitution of Mg2+ with Mn2+ was found to decrease the activity of
the enzyme by a factor of 30 [156]. In the contest of p53-dependent apoptosis, it would be
interesting to examine if p53 phosphorylation occurs downstream of PP2C activity and the
role of the Mg/Mn ratio in the cells.

Besides the p53 activation discussed above, Mn2+ induces apoptosis by caspase-8
activation downstream of p38-MSK1 signaling in human B cells [72]. To conclude, Mn2+

and Zn2+ affect several signaling pathways (p38 and the regulation of histone acetylation)
in opposite directions; however, others affect cells in a similar way, including the induction
of 53 by Mn2+, the inhibition of Nf-κB-induced proliferation [144,145,157] and the induction
of keratinocyte differentiation by Zn2+ ions (Figure 4).

2.8. Differential Effects of Mn and Zn in Normal and Cancer Cells

It was found that zinc sulfate was not toxic to normal cells at 100 µm or below after four
days of cultivation, but it significantly decreased the viability of myelogenous leukemia
K562 cancer cells at 40 µm and above [158]. It was demonstrated that zinc sulfate protects
normal lymphocytes from H2O2-induced DNA damage and augments H2O2-induced DNA
damage in K562 cancer cells [158]. The same effect was demonstrated in a recent study of
acute myeloid leukemia cells [159]. Similarly, the application of temozolomide and ZnCl2 at
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100 µm enhanced the treatment efficiency of cells and the xenograft model of glioblastoma
and did not affect normal human astrocytes [46]. Clinical trials of Zn supplementation in
glioblastoma in parallel to temozolomide treatment are currently ongoing (cliniclaltrilas.gov
NCT04488783). A manganese compound Adpa-Mn was found to preferentially induce
autophagy and the death of glioblastoma and other cancer cell lines but not astrocytes or
non-malignant cells [160,161].
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tion by augmenting HDAC and repressing HAT activity, leading to apoptosis presumably due to re-
pression of key pro-survival genes [19]. In addition, Mn2+ activates p53 [151–153] and p38/MSK1 sig-
naling [72], leading to apoptosis. (B) In wild-type Ras cells, Zn2+ activates ERK/AKT signaling [146].
In contrast, in mutant G12V RAS cells, Zn2+ inhibits p38 and JNK, repressing apoptosis [147]. Zn2+ in-
hibits Nf-kB, leading to lower proliferation of cancer cells and inhibiting inflammation [144,145,157].
In contrast to Mn2+, Zn2+ activates HAT, leading to metallothionein induction and keratinocyte
differentiation-specific gene expression [22]. Consistently, Zn2+ represses DNA methyltransferase
activity in immortalized mouse fibroblasts [141]. Zn directly regulates MTF1-mediated induction of
metallothionein genes [25], leading to expression of keratinocyte differentiation genes [22].

3. Effect of Zn and Mn on cGAS-STING Pathway, Immune Response
and Cancerogenesis

In addition to coordinately regulating ROS response, transcription and metabolism,
Zn2+ and Mn2+ together regulate a component of the innate immune system, namely,
the cGAS-STING (cyclic GMP-AMP synthase—Stimulator of Interferon Genes) pathway,
which is activated by cytoplasmic double-stranded DNA caused by viral infection [162]
(Figure 5). The cGAS-STING pathway is also involved in the p21-mediated DNA damage
response [163] and chromatin stabilization during mitosis upon genotoxic drug treat-
ment [164,165]. cGAS-STING activation requires Mn2+ release from intracellular organelles,
presumably mitochondria [63]. Mn2+ binds to cyclic GMP-AMP synthase (cGAS) and en-
hances its sensitivity to double-stranded DNA and the production of the secondary messen-
ger cyclic GMP-AMP (cGAMP), leading to NFkb activation and antiviral response [63,166–169].
It was recently shown that Mn2+ is involved in the anti-tumor immune response activated
by the cGAS-STING pathway [44]. Mn2+ activated both innate and adaptive arms of the
immune system, repressed metastasis and potentiated immune checkpoint therapy in mice.
A dose-escalating phase 1 clinical trial to estimate the safety and preliminary efficacy of
Mn2+-primed anti-PD-1 treatment and chemotherapy is currently ongoing (clinical trial.gov
NCT03991559) [44].

In addition, Mn2+ potentiates the effect of the TGF-β/PD-L1 bispecific antibody YM101
against several in vivo cancer models by activating the STING pathway and promoting
the maturation of mouse and human dendritic cells, shifting the tumor microenviron-
ment toward the inflamed phenotype. This enhances the antigen presentation, infiltration
and function of T-lymphocytes [170]. The therapeutic activity of YM101 and Mn2+ ad-
ministration was demonstrated using mice models of hepatocellular carcinoma (H22),
melanoma (B16), colon (CT26) cancer and breast (EMT-6) cancers [170]. The application
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of self-assembled cyclic dinucleotide STING agonists and Mn2+ nanoparticles induced
anti-tumor immunity and a remarkable therapeutic effect in multiple tumor models [171].
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Figure 5. cGAS-STING signaling pathway is activated by both Mn2+ and Zn2+. Mn2+ is required for
efficient DNA sensing, cGAMP synthesis and cGAMP-STING complex formation [63], whereas Zn2+

is required for cGAMP folding and liquid-phase separation of cGAMP-DNA complexes [172–174].
Mn2+ potentiates cGAS-STING anti-tumor response, stimulating dendritic cell and macrophage
maturation, NK cell activation, antigen presentation and CD8 cell differentiation [44]. As a result,
Mn2+ enhances efficiency of therapeutic antibodies [170].

In turn, Zn2+ is also involved in cGAS-STING regulation. Zn2+ coordinates the cGAS
ribbon, which is essential for the interferon response. Zn2+ coordination is also required for
cGAS–DNA liquid-phase condensation and cGAMP production [172–174], whereas cGAS
binding to DNA is augmented by the zinc finger protein ZCCHC3 [175].

To conclude, recent research supports an anti-cancer role of Zn and Mn via modulation
of the inflammatory pathways and immune reactions [44,49,176].

4. Conclusions and Future Perspectives

Transition metal ions Mn2+ and Zn2+ have profound anti-cancer effects (Table 2).
However, their biochemical properties and physiology are different, although with a certain
degree of similarity with respect to regulated proteins and metabolic pathways. Taking into
account that Mn2+ transport proteins also transport Zn2+ and other ions, and that a few
Mn2+- or Zn2+-specific transporters exist, it is possible to speculate that there are common
mechanisms that are regulated by and regulate these ions. Among the few mechanisms
commonly influenced by both Mn and Zn are effects on mitochondrial function, including
ROS detoxification and the induction of apoptosis, transcriptional regulation and chromatin
dynamics, cGAS-STING-mediated apoptosis and the immune response (Table 3).

Many intriguing questions remain to be addressed in future studies. First, conflicting
data regarding Zn and Mn concentrations in cancers prompt more detailed studies, in
which levels of Zn and Mn in different types of tumor cells should be examined, such as
cancer cells and different types of immune and stromal cells from the tumor microenvi-
ronment. To address the functions of Mn2+ in cell physiology, the field needs to develop
intracellular Mn2+ probes to be able to monitor the Mn level during investigations in
live cells, in a similar fashion to how it is performed for Zn+2. In future experiments, it
would be interesting to examine in more detail how Mn2+- and Zn2+-mediated effects are
interconnected. For example, cGAS-STING activation is affected by both Zn2+ and Mn2+

by different mechanisms, and an investigation of the relative impact of these on apoptosis
and cancer progression would be interesting.
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Table 2. Pivotal findings of Mn2+ and Zn2+ roles in cancer physiology in vivo.

Main Finding Reference

Certain cancers exhibit coordinated changes in Zn2+ and Mn2+ carriers [40,43]
High levels of Mn in cancers are associated with poor survival and low

radiosensitivity of tumors, such as for melanoma and glioblastoma [38]

Preclinical models support application of Zn2+ ionophore clioquinol in
combination with dopamine agonist for prostate cancer treatment

[41,125]

Mn2+ boosts innate and adaptive anti-cancer immune response and boosts
PD-1 immunotherapy

[44]

Therapeutic activity of YM101 and Mn2+ was demonstrated using mice models
of hepatocellular carcinoma, melanoma, colon cancer and breast cancers

[170]

Zn2+ enhances temozolomide efficiency in glioblastoma xenograft model [46]

Table 3. Pivotal findings of Mn2+ and Zn2+ roles in cancer physiology in vitro.

Main Finding References

Mn2+-SOD2 drives H2O2 production in mitochondria in a wide range of extracellular concentrations [6]
Mn2+ at high concentrations induces mitochondrial cell death [72,151]
Zn2+ at high concentrations induces mitochondrial cell death [13,74]

Zn2+ at low concentrations inhibits Mn-induced mitochondrial cell death [73]
Low-molecular-weight complexes of Mn2+ predict cell survival, and double-strand breaks repair efficiency

after gamma irradiation
[59]

Zn2+ release is required for and precedes ROS generation in mitochondria in response to hypoxia [21,110]
Mn2+ activates p38/MSK1-regulated apoptosis [72]

Zn2+ inhibits p38 and JNK and represses apoptosis in mutant G12V RAS cells [147]
Zn2+ activates RAS signaling cascade [146]

Mn2+ induces apoptosis or senescence by p53-dependent mechanisms [151–153]
Zn2+ represses NF-κB activity and sensitizes prostate cancer cells to cytotoxic agents [144,145,157]

Mn2+ represses histone acetylation by repressing HAT activity and augmenting HDAC, leading to apoptosis [19]
Zn2+ activates HAT and MTF1-mediated transcription, leading to metallothionein induction and

keratinocyte differentiation
[22]

Mn2+ is indispensable for cGAS-STNG activation and host defense against DNA viruses [63]
Zn2+ coordination is required for cGAS–DNA liquid-phase condensation and cGAMP production [172–174]

We suggest investigations of the combinatorial effects of Zn and Mn on cancers where
individual ions have some effect [13,44–46,171]. Recently developed Zn–Mn-composed
nanoparticles with potential anti-cancer effects might be useful for such studies [177–180].

Finally, details of such investigations will lead to pre-clinical research and, hopefully,
to clinical trials examining the effect of combined Mn and Zn supplementation on the
efficiency of anti-cancer drugs.
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