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Abstract: In this paper, we designed an ultra-wideband solar energy absorber and approved it
numerically by the finite-difference time-domain simulation. The designed solar energy absorber can
achieve a high absorption of more than 90% of light in a continuous 3.506 µm (0.596 µm–4.102 µm)
wavelength range. The basic structure of the absorber is based on silicon dioxide colloidal crystal
and Ti. Since the materials have a high melting point, the designed solar energy absorber can work
normally under high temperature, and the structure of this solar energy absorber is simpler than most
solar energy absorbers fabricated with traditional metal. In the entire wavelength band researched,
the average absorption of the colloidal crystal-based solar energy absorber is as high as 94.3%,
demonstrating an excellent performance under the incidence light of AM 1.5 solar spectrum. In the
meantime, the absorption spectrum of the solar energy absorber is insensitive to the polarization
of light. In comparison to other similar structures, our designed solar energy absorber has various
advantages, such as its high absorption in a wide spectrum range and that it is low cost and easy
to make.

Keywords: solar energy absorber; ultra-broadband perfect absorption; silica colloidal nanoarrays;
refractory metal; surface plasmon resonance

1. Introduction

The energy crisis is an important factor that restricts social development. Developing
a collection and utilization approach of renewable energy is a major method to solve the
problem. Solar energy, as one of the most important clean and renewable energies, could
become an inexhaustible resource of energy that could further reduce the use of traditional
fossil fuel to keep our environment clean. As a result, efficient solar energy absorbers that
can capture and convert light into electricity are in high demand. In recent years, many
meta-materials have been made to absorb solar energy, and various perfect solar energy
absorbers that can match solar radiation in broadband have been reported [1–4]. However,
noble metals are generally employed in these solar energy absorbers, which will result in
high cost. Solar energy absorbers, which can simultaneously satisfy the demand of utilizing
solar as much as possible and are at a low cost, still need to be developed [5–8]. Therefore,
we have tried to design a solar energy absorber that can satisfy all these requirements.

Since Landy et al.’s important report on the electromagnetic wave solar energy ab-
sorber in 2008, the electromagnetic wave solar energy absorber started to develop quickly.
Many theories and experiments have shown that light-excited metal surface plasmon reso-
nance can be achieved based on the metal–insulator–metal (MIM) structure, so it is possible
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to develop a perfect solar absorber [9–14]. However, because of the inherent single reso-
nance of plasmonic nanostructure and meta-materials, most solar energy absorbers based
on MIM structure only realize high absorption in a narrow spectrum band, not satisfying
the requirement of the solar energy absorber [15–17]. Even if some solar energy absorbers
can achieve broad-band absorption, their structures are usually very complex [15,18,19]. In
addition, there is another colloidal crystal based on metamaterials. Studies have shown
that by coupling solar radiation to the whispering gallery mode in the microspheres, the
absorption efficiency of solar cells can be significantly improved [20,21]. Under the action
of colloidal cavity and metal photon mode and surface plasmon, several narrow absorption
peaks can usually be obtained in the absorption spectrum of the absorber [22]. Therefore,
we can try to form a new resonance mode from the spherical nanostructure to capture light
in the broadband range [23–25]. The dielectric microsphere-based solar energy absorber
developed by Amir Ghobadi et al. can realize an ultra-wideband absorption in the wave-
length range of 400–1000 nm [26]. Different from metal nanostructure, the photon dielectric
cavity of the new mode significantly contributed to optics resonance and light absorption.

Titanium (Ti) is one of the metal materials commonly used in solar energy absorbers [27].
Thanks to the dielectric property, Ti possesses a strong plasmon resonance performance
and has broad-spectrum absorption characteristics [28–30]. Additionally, the reserve of
Ti is more abundant than traditional noble metals such as gold and silver in the natural
world, meaning a low cost. Ti has good performance even under alkaline and acidic
conditions. Additionally, as one of the refractory metals, Ti can work normally at high
temperatures. At present, most of the light absorption of silicon dioxide is concentrated as
a substrate material, ignoring many significant advantages of silicon dioxide as a surface
structure. Studies have shown that semiconductors, such as silicon dioxide, can be used
for plasmon coupling and absorption, and semiconductor resonators with strong optical
coupling have been developed [31,32]. Meanwhile, the silicon dioxide structure can be
made by the self-assembly method and does not need high technology processes such as
electron beam lithography [33]. In this way, the colloidal crystal is manufactured extensively
under a lower budget and time. In short, compared to the other materials commonly used
in solar absorbers, titanium and silicon dioxide have obvious advantages as materials for
solar absorbers.

Here, we propose a broad-spectrum solar absorber based on colloidal silica crystal
array and titanium, which can achieve high absorption of solar energy over the longest
possible wavelength band. As incident light can well resonate with a solar energy absorber,
the designed solar energy absorber can achieve ultra-broadband perfect absorption in near-
infrared to near-ultraviolet region. The designed solar energy absorber has an ultra-high
absorption of more than 90% in the wavelength range of 0.596–4.102 µm, achieving high
absorption that is higher than 80% in the wavelength range from 0.2 µm to 4.171 µm. In
the entire region (0.2–4.2 µm), the average absorption is as high as 94.3%. The designed
absorber is insensitive to the polarization of light and has good performance under a certain
incident angle. It can also work for long-life time because the solar energy absorber is
composed of refractory materials.

2. Structural Design of Broadband Perfect Solar Energy Absorber

The designed ultra-broadband solar energy absorber is shown in Figure 1a. Its sub-
strate is composed of Ti and silicon dioxide. The surface microstructure consists of silicon
dioxide colloidal crystal array and Ti. The thickness of SiO2 and Ti at the bottom is
H1 = 0.145 µm and H2 = 0.450 µm, respectively. The radius of the surface silicon dioxide
sphere is R = 0.25 µm, and the sphere is tangent to the SiO2 layer. The filling material
between the sphere and SiO2 layer is Ti, whose height and radius are identical to the radius
of the sphere. The front view is illustrated in Figure 1b, each cell of the microstructure
includes a SiO2 sphere and filled metal. The unit cycle of the solar energy absorber is
T = 0.6 µm.
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Figure 1. (a) Schematic diagram showing the ultra-broadband solar energy absorber. (b) The front
view of the absorber.

The designed absorber was analyzed by using finite-difference time-domain (FDTD)
simulation [34]. We use the commercial software FDTD solutions to simulate the model.
A plane wave with a wavelength from 0.2 µm to 4.2 µm was used to illuminate from
above in the Z-axis direction, and the boundary conditions in the Z-axis direction outside
the structure area were set to a perfectly matched layer (PML) boundary condition. The
periodic boundary conditions were employed in X-axis and Y-axis directions to reduce the
time and resource during calculation. The override X mesh and Y mesh are set to 0.01 µm,
and the override Z mesh is set to 0.005 µm, which is high precision. The refractive index
data of SiO2 and Ti that are employed by the model are from Palik [35]. The transmitted
light spectrum is detected at the bottom of the absorber in the Z direction, and a detector is
set above the light source in the Z direction to detect the reflection spectrum.

3. Results and Discussion

Figure 2 is the optical spectra of colloidal crystal-array-based solar energy absorber.
A, R, and T represent the absorption, reflection, and transmission, respectively. Since the
substrate used is thick enough to prevent the transmission of incident light, the T is closed
to 0. Therefore, A is calculated through the formula A = 1 − R. In Figure 2, we can clearly
observe that an absorption rate of > 90% spans 3.506 µm, and the absorption band reaches
3.971 µm (80% absorption rate). There are several distinct absorption peaks in the entire
absorption band, such as λ1 = 0.2699 µm with an absorption rate of 97.55%, λ2 = 0.6094 µm
(96.55%), λ3 = 2.2241 µm (99.12%), and λ4 = 4.0345 µm (99.74%). According to Figure 2, it
is easy to obtain that the colloidal crystal-array-based solar energy absorber has excellent
performance in the absorption of light, and the absorption band is wider than previous
meta-material-based absorbers (Table 1) [36–40].
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Table 1. Absorption range of different structures with an absorption rate of more than 90%.

Reference Structure Absorption Range
Wavelength Range

With Absorption Rate
More than 90%

Maximal/Average
Absorption Rate

[36] TiN and TiO2 disc 0.316–1.426 µm 1.11 µm 99.8%/93%

[37] SiO2 and TiN disc 0.516–2.696 µm 2.18 µm 99%/~

[38] SiO2 sphere and Ge 1.283–2.830 µm 1.547 µm 98%/88%

[39] Metal–dielectric–metal 0.3–1.1 µm 0.8 µm 99.5%/91.6%

[40] SiO2 and TiO2 cubes 0.405–1.505 µm 1.1 µm 99.9%/95.1%

This work SiO2 sphere and Ti 0.596–4.102 µm 3.506 µm 99.74%/94.3%

The designed colloidal crystal-array-based solar energy absorber is applied to the
broadband absorption of solar energy. The solar energy absorber was set under the ideal
spectrum of AM 1.5. Figure 3a shows the absorption spectrum of the colloidal crystal-
array-based solar energy absorber under an AM 1.5 light source. The solar energy absorber
achieves a high absorption in almost the whole spectral regime. According to Formula (1),
the solar absorption rate was calculated to be 90.9%.

α =

∫ λmax
λmin (1 − R(ω))·AM1.5(ω)dω∫ λmax

λmin AM1.5(ω)dω
(1)

Figure 3b shows the absorbed and missed solar energy for the solar energy absorber
under the ideal spectrum. According to Formula (2), the solar energy loss rate was calcu-
lated to be 9.1%. Although the colloidal crystal-array-based solar energy absorber misses
some solar energy, it will not affect the advantages of the solar energy absorber in the
near-infrared and near-ultraviolet region. On the basis of Kirchhoff’s Law, the absorption
rate for the object lacks an equal numerical value. In other words, the higher the absorption
capacity of the object is, the greater the radiation capability of the object is. As a result, it is
inferred that the designed solar energy absorber is qualified for the job of absorbing solar
energy and exhibits potential to be utilized in more related devices such as a solar thermal
generator and a heat transfer system [41,42].

β =

∫ λmax
λmin R(ω)·AM1.5(ω)dω∫ λmax

λmin AM1.5(ω)dω
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Figure 4 shows the electric field intensity distribution profiles of the colloidal crystal-
array-based solar energy absorber at the four absorption peaks. In Figure 4a, field distribu-
tion is restricted to the region between spherical cavity and substrate, indicating that the
spherical cavity can be resonantly coupled with the substrate. Meanwhile, there is strong
field distribution in the substrate of Ti, showing that the substrate Ti not only impedes the
transmission of light but also resonates with incident light. As shown in Figure 4b, the
electric field is distributed in the spherical cavity and its surface, demonstrating that the
solar energy absorber is resonantly coupled with the photon-guided mode of the spherical
cavity. The field distribution also exists in silicon dioxide, which further explains that
the substrate contributes to the improved absorption performance of the solar energy
absorber [43,44]. The field distributions in Figure 4c,d are similar. The field is distributed
between adjacent cells and exists between the filled Ti and silicon dioxide layer [39,45]. This
is because the strong near-field coupling effect usually occurs between adjacent resonators
or other plasmon resonances [46,47]. The difference is that there is also a strong plasmon
coupling between the substrate and surface structure in Figure 4c [48,49]. Through these
electric field intensity distribution profiles at absorption peaks, we have a good knowledge
of the resonance coupling modes of colloidal crystal-array-based solar energy absorber.
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To explore the effect of surface structure on the absorption spectrum of the solar
energy absorber and the role of surface silicon dioxide spheres, solar energy absorbers
with different structures were designed and simulated. Figure 5 shows the absorption
spectra of original solar energy absorber, Case 1, Case 2, and Case 3, respectively. In Case
1, only the Ti cylinder is reserved in microstructure, and its thickness, period, and radius
are not changed. In this case, the absorption spectrum of solar energy absorber possesses
several discrete absorption peaks. The absorption spectrum is divided into two distinct
regions by the lowest point of absorption at a wavelength of 1.68 µm. Over the entire
wavelength range, the average absorption of Case 1 is only 80.78%. Most solar energy
absorbers with MIM structure are simple, and are similar to Case 1, only achieving several
narrow high absorption peaks on the absorption spectrum. Although Case 3 is also a MIM
structure, the performance of Case 3 is better than Case 1—i.e., the average absorption of
Case 3 is 87.48%. Compared to the original structure, the absorption of Case 1 and Case 3 is
much lower, especially around the mid-wavelength band. It demonstrates that the silicon
dioxide sphere has a huge influence on the absorption of the colloidal crystal-array-based
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solar energy absorber around the mid-wavelength band. In Case 2, the colloidal crystal
array on the surface is in contact with each other. Under this condition, absorption of the
solar energy absorber drops significantly in the long-wavelength band, and the average
absorption of the solar energy absorber is 90.48% in the whole band, indicating that the
space in between the colloidal crystal arrays is very important for plasmon coupling.
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Figure 5. Absorption spectra of the original solar energy absorber, Case 1, Case 2, and Case 3,
respectively.

To further illustrate the advantages of the colloidal crystal-array-based solar energy
absorber, the absorption spectra, i.e., the solar energy absorbed and missed in Case 1, Case
2, and Case 3 under AM 1.5 light source, were calculated and compared. Figure 6a–b,
Figure 6c–d, and Figure 6e–f are the absorption spectra, the absorbed energy and missed
energy diagram for Case 1, Case 2, and Case 3 under the AM 1.5 solar spectrum, respectively.
The solar energy loss rates in these three cases are calculated by Formula (2) to be 19.54%,
16.56% and 10.01%, respectively. We can see that the strongest part of the AM 1.5 solar
spectrum is concentrated on the visible to near-infrared light. Therefore, solar energy
absorbers should possess a high absorption rate to visible and near-infrared light. However,
when the solar energy absorber of Case 1 and Case 2 is put under the AM 1.5 solar spectrum,
they lose much energy of the visible and near-infrared light. This will affect the absorption
capacity of the solar energy absorber, especially when the solar energy absorber is applied
in devices [50–52]. Although the average absorption of Case 3 is close to that of the
original solar energy absorber, the average absorption is not the only standard to assess
the performance of solar energy absorber. The wasted energy of Case 3 is much higher
than the original solar energy absorber’s in the visible and near-infrared region. These
demonstrate that the designed solar energy absorber has higher application potential than
solar energy absorbers of similar structure.



Nanomaterials 2021, 11, 2040 7 of 13

Nanomaterials 2021, 11, 2040 7 of 14 
 

 

to assess the performance of solar energy absorber. The wasted energy of Case 3 is much 
higher than the original solar energy absorber’s in the visible and near-infrared region. 
These demonstrate that the designed solar energy absorber has higher application po-
tential than solar energy absorbers of similar structure. 

 

 

 
Figure 6. (a,c,e) Absorption spectrum of Case 1, Case 2 and Case 3 under AM 1.5 light source, re-
spectively. (b,d,f) Corresponding solar energy absorbed and missed in Case 1, Case 2 and Case 3. 

As the absorption property of solar energy absorber is often highly dependent on its 
structural parameters, various parameters of the colloidal crystal-array-based solar en-
ergy absorber were varied so as to investigate the effect on the absorption spectrum. 
Figure 7a shows the absorption spectra of solar energy absorber with different H1. As the 
thickness of H1 is increased, the absorption is gradually decreased near λ2 and gradually 
increased near λ4. This is because the silicon dioxide layer resonates with exciting light, 
and the resonance intensity in certain bands is changed with the variation of SiO2 thick-
ness. As a result, the absorption spectrum is altered. In Figure 7b, the radius of the SiO2 
sphere was changed. The change in the absorption spectrum in Figure 7b is not identical 
to that as shown in Figure 7a, because the surface structure involves more than one res-
onance mode. According to the results obtained in Figure 4, there is a strong near-field 
coupling effect and strong resonance coupling between surface structure and substrate 
near mid-wavelength band. When the radius of the SiO2 sphere is changed, two reso-
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As the absorption property of solar energy absorber is often highly dependent on its
structural parameters, various parameters of the colloidal crystal-array-based solar energy
absorber were varied so as to investigate the effect on the absorption spectrum. Figure 7a
shows the absorption spectra of solar energy absorber with different H1. As the thickness
of H1 is increased, the absorption is gradually decreased near λ2 and gradually increased
near λ4. This is because the silicon dioxide layer resonates with exciting light, and the
resonance intensity in certain bands is changed with the variation of SiO2 thickness. As
a result, the absorption spectrum is altered. In Figure 7b, the radius of the SiO2 sphere
was changed. The change in the absorption spectrum in Figure 7b is not identical to that
as shown in Figure 7a, because the surface structure involves more than one resonance
mode. According to the results obtained in Figure 4, there is a strong near-field coupling
effect and strong resonance coupling between surface structure and substrate near mid-
wavelength band. When the radius of the SiO2 sphere is changed, two resonance modes are
varied simultaneously, making the absorption spectrum change significantly. Additionally,
we can clearly see that the parameter of the designed colloidal crystal-array-based solar
energy absorber is very appropriate. In Figure 7c, we change the period of the solar energy
absorber, namely, we change the distance of the adjacent surface microstructure. As T
becomes larger, the absorption in the medium- and short-wavelength bands in between λ2
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and λ3 is enhanced, but the absorption in the long-wavelength bands near λ4 is decreased.
When the period T was varied from 5 µm to 5.5 µm, a large increase in the absorption is
observed, meaning a critical point of coupling exists between T = 5 µm and T = 5.5 µm.
Although the solar energy absorber with T = 5.5 µm has a high absorption in the long-
wavelength band, it loses much energy in the mid-wavelength band where the solar energy
is concentrated. Therefore, we comprehensively believe that the solar energy absorber
with a period T of 6.0 µm is more suitable for a solar energy absorber. In Figure 4d, we
attempt to explore the effect of distance B between SiO2 sphere and substrate. As the B is
increased, the absorption with a wavelength larger than λ2 decreases gradually, and the
absorption between λ2 and λ3 is lower than the absorption of the original solar energy
absorber. According to Figure 7a–d, we reveal that the change of parameters of solar
energy absorber has less effect on the short-wavelength band of the absorption spectrum.
The reason is probably ascribed to the fact that the field distribution around λ1 is mainly
restricted between the spherical cavity and substrate, and this resonance mode is less
affected by structural parameters. In summary, the selected parameters of the colloidal
crystal-array-based solar energy absorber are highly suitable.
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To investigate the influence of different metallic materials on the absorption spectrum
of the colloidal crystal-array-based solar energy absorber, the materials of the solar energy
absorber were changed. In Figure 8a, the Ti substrate is replaced with W, V, TiN, and Au
substrate, respectively. The absorption spectrum almost exhibits a similar trend. The solar
energy absorber with W, V, TiN and Au substrate has an absorption rate of 87.38%, 87.78%,
90.18%, 84.88%, respectively. Refractory metals have different imaginary parts, but their
imaginary parts are generally higher, so the loss of light is higher. The difference between
the absorption of the absorber using the Ti substrate and using other materials is mainly
concentrated in medium- and long-wavelength bands, and the absorption of the solar
energy absorber by using Au as the substrate is much lower than others obviously. This is
because refractory metals, such as W, V, or TiN, as a substrate will resonate with incident
light, which has been demonstrated in Figure 4. Au is a noble metal with high reflectivity,
only hindering the transmission of light in the solar energy absorber. In Figure 8b, the filling
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materials in between the sphere and substrate are varied to Au, TiN, and W. The evolution
of absorption in Figure 8b is similar to that shown in Figure 8a. The high reflectivity of Au
gives rise to a significant decrease in the absorption of solar energy, and the solar energy
absorber using Ti as filling materials has optimal performance. Overall, titanium is the
most suitable material in this structure.
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Moreover, the material nanosphere was varied to study its effect. ZnO and TiO2 are
also commonly used nanosphere materials in solar energy absorbers [53,54]. In Figure 9,
the material of the nanosphere is replaced with ZnO, TiO2, or Au, and their average
absorption is 92.94%, 89.71% and 59.13%, respectively. We can see that both ZnO and TiO2
can realize good absorption. Therefore, it is believed that colloidal crystal-array-based
solar energy absorbers have the potential to be extended for use in other materials and can
maintain their performance in different optoelectronic devices [55], whereas high-reflective
materials, such as Au, are not suitable as sphere materials.
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Normally, the direction of the incident light is not fixed in nature [56–58]. The ab-
sorption capacity under incident light with different angles is also an important factor for
the assessment of the performance of the solar energy absorber. In Figure 10a, we put the
colloidal crystal-array-based solar energy absorber under the TE and TE polarization light.
In the entire researched band, the absorption of the designed solar energy absorber is not
sensitive to incident light by changing the polarization from TE to TM. This is because the
designed solar energy absorber adopts a highly symmetrical structure [59]. Figure 10b is
the result of the solar energy absorber under incident light with different angles. We can
clearly observe that when the incident light angle is smaller than 40◦, the absorption of the
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solar energy absorber is slightly affected. A high absorption is present in the whole spectral
region. When the incidence angle is larger than 40◦, the change of the incident angle has a
greater influence on the absorption of the solar energy absorber. In general, we believe that
colloidal crystal-array-based solar energy absorbers can satisfy the requirements for solar
energy absorbers in practical applications.
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At the end, we analyzed the heat radiation of the designed absorber. As shown
in Figure 11a–c, we have selected three representative heat radiation effect diagrams
at different temperatures. The heat radiation efficiency (ηE) is an important parameter
for evaluating the thermal emission performance of solar absorbers, which is defined
as follows [60]:

ηE =

∫ λmax
λmin

ε(ω)·IBE(ω, T)dω∫ λmax
λmin

IBE(ω, T)dω
(3)

where, IBE(ω, T) is the spectral intensity of an ideal black body at a certain frequency ω
and temperature T. It can be obtained that the ηE of the designed absorber at T = 300 K,
500 K and 1000 K are 91.12%, 92.58% and 95.12%, respectively. The heat radiation efficiency
increases as the temperature of the absorber increases. At the same time, since the material
used in the designed absorber has a higher melting point, it can meet the requirements of
practical applications.
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4. Conclusions

In this work, we have designed an ultra-wideband solar energy absorber and per-
formed simulations on it. The surface structure is made of silica colloidal crystals and
filling titanium, and the substrate is composed of titanium and silicon dioxide, which act as
electromagnetic wave coupling and trap resonators. This structure has the characteristics of
ultra-high absorption of light in the visible to near-infrared range (0.596 µm–4.102 µm). We
compared the influence of different metal materials and structural geometric parameters
on the absorption performance and revealed the absorption physical mechanism of the
absorber through the electric field diagram and the magnetic field diagram. The absorption
capacity under the real solar spectrum was also simulated to evaluate the application po-
tential of the solar energy absorber. The proposed absorber has the advantage of a simple
structure, as well as ultra-wideband absorption that is insensitive to polarization. At the
end, we also evaluated the heat radiation capacity of the absorber through its heat radiation
efficiency. To conclude, the absorber proposed in this paper has broad prospects as regards
light-to-heat conversion equipment, solar power generation and has perfect stealth.
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