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Abstract

Background: It is well documented that positive rather than negative moods encourage integrative processing of conscious
information. However, the extent to which implicit or unconscious learning can be influenced by affective states remains
unclear.

Methodology/Principal Findings: A Serial Reaction Time (SRT) task with sequence structures requiring integration over past
trials was adopted to examine the effect of affective states on implicit learning. Music was used to induce and maintain
positive and negative affective states. The present study showed that participants in negative rather than positive states
learned less of the regularity. Moreover, the knowledge was shown by a Bayesian analysis to be largely unconscious as
participants were poor at recognizing the regularity.

Conclusions/Significance: The results demonstrated that negative rather than positive affect inhibited implicit learning of
complex structures. Our findings help to understand the effects of affective states on unconscious or implicit processing.
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Introduction

Mood in part consists of a systematic change in how we think,

colouring how the world appears. Mood itself also seems to

constitute information about how we should think. For example,

a transient positive mood may indicate our processing of the

environment is going well, our theories about the world are

adequate, and an emphasis on top down processing is appropriate

– and a transient negative mood may indicate the opposite.

Indeed, the affect-as-information hypothesis assumes that people

in negative moods tend to focus on bottom-up and item-specific

processing, whereas people in positive moods are likely to engage

in top down and relational processing [1–4]. Consistent with the

theory, research indicates that positive rather than negative affect

is linked to more relational processing. For example, people in

induced transient happy rather than sad moods are more likely to

use stereotypes in judging the personality of a story character [5],

to engage in more category-level processing in memorizing lists of

words [6], and to falsely recall non-presented words highly

associated with presented words [3]. Relatedly, affective states are

associated with changes in attention [7–9]. Normally, negative

affect narrows attention [10], all the better to process details, and

positive affect broadens the scope of attention [11], all the better to

see the bigger picture.

Although the effect of mood on conscious cognition is well

established [1–4], the effect of mood on unconscious processes,

especially on more complex forms of implicit learning, has not

been well addressed. Implicit learning is the acquisition of

unconscious knowledge about the structure of an environment

[12–14]. Implicit learning produces a tacit knowledge base, which

can be acquired independently of intentional efforts to learn and

can be used implicitly to make accurate decisions about novel

stimulus circumstances [15]. Given claims that explicit and

implicit (i.e. conscious and unconscious) learning rely on separate

cognitive systems ([15–17]; contrast [18]), the generality of the

effect of mood on cognition has not been established. Specifically,

the extent to which the acquisition of unconscious knowledge can

be influenced by affective states remains unclear.

The serial reaction time (SRT) task has been one of the most

widely used tasks in the study of implicit learning. In a typical SRT

task, a stimulus appears at one of several locations on a computer

screen and participants are told to press the corresponding key

according to the stimulus location shown on the screen, i.e.

a choice reaction task. Unbeknownst to them, the order of the

stimuli follows a repeating or structured sequence. People are

faster to respond when the sequence is structured similarly to the

training phase rather than when the sequence is switched from the

training phase, indicating learning of the sequential structure.

Moreover, such learning occurs even when people deny that there

was a sequence, cannot freely report it, or cannot control its

generation, indicating the knowledge is (largely) unconscious [19–
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26]. Given people acquire knowledge of relations between stimuli

in the SRT task, and given mood affects relational processing, we

assume that there should be an effect of mood on implicit learning.

To our knowledge, the first study using the SRT task that is

relevant to mood effects, examined the relationship between

implicit sequence learning and neuropsychological test perfor-

mance in depressive patients [27,28]. Patients, compared to

control subjects, showed diminished learning effects which were

associated with higher self-reported levels of mood disturbances

and higher trait anxiety. While the results are consistent with

negative mood reducing performance in implicit sequence

learning, depression is associated with various processing deficits.

Thus, the results do not directly indicate whether or not implicit

learning is influenced by transient mild negative mood states.

Recently, a study [29] found that a negative mood improved

implicit learning on the Artificial Grammar Learning (AGL) task,

but did not detectably influence the SRT task in healthy

participants. But it is not clear that just because negative mood

enhanced implicit learning on the AGL task that any clear

prediction can be made for the effect of mood on the SRT task

used, partly because these tasks involve learning different

structures. A key component of the knowledge acquired in the

AGL task is bigrams, i.e. a chunk of two consecutive letters, such

as ‘MT’ (e.g., [30]). A bigram is the simplest sequential relation

a person could learn - the relation of one item following another.

The SRT task used a more complex structure, a so-called second-

order conditional (SOC) sequence, such as 3-2-4-1-2-1-3-4-2-3-1-4

in which two previous elements need to be taken into account in

order to predict the next element. In the sequence, after a ‘2’, each

of ‘1’, ‘3’, and ‘4’ occurs equally often. But after ‘3–2’, the next

element must be ‘4’. A triplet (such as 3-2-4) is a more complex

relation than a bigram, requiring two rather than previous

sequence elements for accurate prediction.

The effect of mood on learning may well depend on the

relational complexity of a task, especially the amount of integrative

processing required. [29] did not obtain significant effects of mood

on the SRT task, which might be evidence against the theory that

mood affects complex learning in the SRT task or it might reflect

simple insensitivity of the data to pick up real effects [32]. As [29]

did not report raw learning scores, but a fairly complex derived

measure over the last three of six blocks, it is hard to assess the

sensitivity of its null result. In the absence of an assessment of its

sensitivity, nothing can be concluded about whether mood has an

effect on the complex implicit knowledge typically acquired in the

SRT task. Given the complexity of structures in the SRT task,

negative mood, in contrast to facilitating learning on the AGL

task, may even reduce implicit learning on the SRT task. The

relevance of relational complexity on mood effects in implicit

learning was shown by [31]. On an implicit probability learning

task (predicting whether a square will appear on either the left or

right of the screen), it was found that an induced positive rather

than negative mood increased integration over more trials into the

past for implicitly learnt responses [31].

The aim of the present study was to explore whether mood has

an effect on implicit learning of complex structures using the SRT

task. People acquire at least some explicit knowledge in the

standard SRT task that uses sequences of locations (e.g. [23]).

Combining probabilistic sequences with stimulus displays which

vary along several dimensions, i.e. location, shape and colour, in

a SRT task, discourages explicit learning [33–35]. We are

specifically interested in implicit rather than explicit learning.

Hence, to discourage explicit learning in the SRT task, we

adopted a probabilistic sequence with stimulus displays that varied

along shape and colour. The probabilistic sequence embedded two

regularities: a shape regularity and a colour-shape relation.

‘‘Standard’’ stimuli followed the (shape and colour-shape) regu-

larities with high probability while ‘‘deviant’’ stimuli deviated from

one of the regularities with low probability. If people acquired

a regularity, they would respond faster to standard rather than

deviant stimuli.

Shapes were the target feature. The sequence of shapes followed

the complex SOC sequence, i.e. prediction of the incoming shape

required integration over the shapes of the previous two trials.

Colours were an irrelevant feature. Thus, to increase the potential

of the colour-shape sequence to be learnt (despite colours being

task irrelevant), it followed a simple FOC sequence, in that only

the colour on the single preceding trial was relevant to predict the

shape on the next trial. The main aim of including the colour

dimension was to reduce the likelihood of explicit learning. As

colour was an irrelevant feature, and attention strongly modulates

implicit learning [36,37], we make no strong predictions about the

effect of mood on its learning. Thus, the major aim of the present

study focused on the effect of mood on learning the shape

sequence.

The shape and colour-shape sequences differed not only in

SOC vs. FOC but also in the nature of their elements, and in

containing only relevant or also irrelevant features, so they cannot

be compared straightforwardly. One might predict, based on the

arguments made so far about complexity, that any advantage of

positive versus negative mood on the SOC (shape) sequence would

be less for the FOC (colour-shape) sequence. Negative mood may

even improve implicit learning of FOC sequences, as negative

mood promoted learning on an AGL task [29]. However, because

of other differences between the sequences (especially the

irrelevancy of the colours) this prediction is compromised, an

issue we take up in the discussion.

Prior research on the effect of mood on implicit learning in the

SRT task [29] has not included measurement of conscious

awareness. Thus, it is unclear whether it was the acquisition of

conscious or unconscious knowledge that was being investigated in

prior studies. There is not yet common agreement on how the

conscious status of knowledge should be measured (e.g. [18,38]).

However, two approaches are common for establishing the

unconscious status of knowledge: First using ‘‘objective measures’’,

by showing that the knowledge expresses itself in a very selective

way, e.g. just in reaction times but not in judgments (like

recognition) (e.g. [39]); second, using ‘‘subjective measures’’, by

showing that when knowledge is expressed in judgments, the

participant is not aware of having the knowledge allowing the

judgments (i.e. there is a metacognitive deficit, e.g. [19,23,40,41]).

In the present study, to test whether or not participants were

conscious of the learned knowledge, recognition tests were used for

each of the shape and colour regularities. Specifically, on each

shape or colour test trial, participants were first asked to respond to

several targets as in the training phase and then instructed to

report whether the shape of the last target followed the shape or

colour regularity. Knowledge (shown to exist by RT data) would

be unconscious by objective measures if it could not be fully

expressed in recognition. A problem with such objective measures

is that poor recognition may be produced by poor test sensitivity

[13,18,42]; thus we will use Bayesian methods to distinguish

insensitive data from data providing support for the null

hypothesis [43,44]. If the knowledge is expressed in recognition,

subjective measures can be used. As unconscious knowledge may

contribute to recognition performance, participants were asked to

report the basis of their recognition on each test trial by ticking one

of three options: ‘guess or random’ or ‘intuition’, or ‘rules or

memory’. Following previous research [45,46], the responses for

Emotion and Implicit Sequence Learning
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‘‘guess’’ and ‘‘intuition’’ attributions were taken to indicate those

cases where structural knowledge was unconscious (as the

responses indicate a lack of awareness of structural knowledge),

while the responses for ‘‘rules’’ and ‘‘memory’’ attributions were

taken to indicate those cases where structural knowledge was

conscious (as the responses - on the face of it - indicate awareness

of the nature of the structural knowledge). Thus, only when

recognition performance with a ‘rules or memory’ attribution is

above chance is there evidence of the acquisition of conscious

knowledge (see [43], for a review of evidence that the attributions

distinguish knowledge types in ways theoretically expected for the

distinction between conscious and unconscious knowledge). In

sum, the unconscious status of knowledge will be assessed by a two

pronged approach of determining if recognition of sequence

structure was poor (objective measures) or, when recognition was

good, if meta-cognition about that recognition was poor (subjective

measures).

Experiment 1

In order to reduce the likelihood of explicit learning,

Experiment 1 used a probabilistic sequence including two

regularities with different levels of complexity: a shape regularity

following a SOC sequence and a colour-shape relation following

a FOC sequence. Colour was not relevant to the participant’s task.

While the SRT task typically, but not always, uses varying

locations of the stimuli as (one) key feature, with RT to location

acting as the main dependent variable, location differs from many

other features such as shape or colour by having a motor as well as

a perceptual component. That is, learning a location sequence is

partly learning an oculomotor sequence. This is not necessarily

a problem, but it is cleaner to use two features which are more

similar in being more clearly perceptual.

Negative and positive music pieces were used to induce different

affective states, which proved to be effective in previous research

[11]. The SRT task involves a long training phase. To maintain

the induced mood, a short version of the mood induction was

repeated after the first half of the training blocks. To check the

effect of the mood induction, participants were asked to rate the

valence of their moods and the valence of neutral pictures (as

suggested by [47]) before and after the music induction.

The major aim of Experiment 1 was to determine the effect of

mood on implicitly learning the shape sequence. A secondary aim

was to determine if the irrelevant colour-shape sequence was

learnt, and thus if there were any effects of mood on its learning.

Participants
Eighty undergraduate students (40 male, 40 female) took part in

the experiment. None of them had previously taken part in any

implicit learning experiment. They were randomly assigned to two

groups (positive, n=40; negative, n=40). To ensure that only data

from participants who performed the SRT task according to the

instruction were analyzed, participants were excluded if their error

proportions were greater than.15. Data from one participant in

the positive group (M= .31) and three participants in the negative

group (M= .24, SD= .12) were excluded. All participants were

tested between 9 and 11 a.m. or between 2 and 5 p.m., which was

counterbalanced between the two groups.

Ethics Statement
This experimental procedure was approved by the committee

for the protection of subjects at the Institute of Psychology,

Chinese Academy of Sciences. Written consent for the collection

of data and subsequent analysis was obtained from each

participant. This procedure was also followed in Experiment 2.

Apparatus and Materials
The experiment was programmed in E-prime 1.2 and ran on

Pentium-compatible PCs. For the positive mood induction,

participants were asked to listen to a jazzed-up version of Bach’s

Brandenberg Concerto No.3 (played by Hubert Laws). For the negative

mood, participants were instructed to listen to Prokofiev’s Alexander

Nevsky: Russia under the Mongolian Yoke played at half speed. Two

methods were used to check the effect of mood induction

throughout the training. First, participants were asked to directly

rate the valence of their moods before and after the music

induction by using a picture scale, i.e. the Self-Assessment Manikin

(SAM) [48]. The SAM is a picture scale which can be directly used

to measure the three basic dimensions of emotion: valence,

arousal, and dominance [50,51]. Each dimension is measured on

a continuous nine-point scale (ranging from 1 to 9). Only the

valence dimension was used in this study. As can be seen from

Figure 1, the SAM is a 1-trial procedure each time it is

administered and the valence is measured on a continuous nine-

point scale, ranging from 1 (very unpleasant) to 5 (neutral) to 9

(very pleasant). Second, 32 neutral pictures from the Chinese

Affective Picture System [49] were rated on a similar nine-point

scale before and after the music induction and after each training

block, in order to assess mood indirectly. According to a normative

study [49], the mean valence ratings, arousal ratings, and

dominance ratings of the pictures on a nine-point scale were

5.35 (SD= 0.07), 3.72 (SD= 0.40), and 5.94 (SD=0.72), respec-

tively, with higher rating indicating more positive or arousing or

dominant.

For implicit sequence learning, the display consisted of

a stimulus in a square in the center of the computer’s screen

against a gray background. The stimuli were squares, triangles,

circles, and hearts in different colors. Shapes were the target

feature while colors were the task-irrelevant feature. Each shape

could be in three of the four different colors including red, green,

yellow, and blue, according to our regularity. For example, if

green predicts triangle, triangle could be in red, yellow or blue, but

could not be in green because two continuous stimuli could not be

in the same colour. Thus, there were 12 color-shape combinations.

On each trial, a colored shape appeared in the square, which

covered a visual angle of approximately 1u.

Procedure
Mood induction and measurement. Participants were first

asked to rate the valence of four neutral pictures as practice and

rated the valence of two neutral pictures formally on a nine-point

scale. Next they rated the valence of their initial moods by using

the SAM [48]. Thereafter, they were instructed to listen to the

designated music and generate matching thoughts for 10 min.

When the music was finished, they were asked to rate the valence

of their moods and of two neutral pictures, successively. After each

block of the SRT task, participants were also asked to rate the

valence of two neutral pictures. A shorter 5-minute version of the

mood induction was repeated after the sixth block. Participants

were asked to rate the valence of their moods before and after the

repeated mood induction. Thus, participants were required to rate

the valence of their moods at four time points and the valence of

neutral pictures at 14 time points throughout the training phase.

Sixteen neutral pictures were randomly assigned to the first eight

time points separately for each participant; a different set of twelve

neutral pictures was used to randomly assign to the last six time

points separately for each participant.

Emotion and Implicit Sequence Learning
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The SRT task. Following the mood induction, participants

were exposed to the SRT task, which included 12 training blocks.

Each block consisted of 98 trials, for a total of 1176 trials. On each

trial, participants were instructed to identify the shape of the target

as quickly and as accurately as possible by pressing the

corresponding key. Keys D, F, J, and K corresponded to the

square, triangle, circle, and heart, and were required to be pressed

by participants’ left middle and index fingers and right index and

middle fingers, respectively. The target was presented on the

screen until the correct key was pressed, and the next target

appeared immediately (i.e. the response stimulus interval was zero)

to reduce the likelihood of explicit learning [21,22,33]. Response

latencies were measured from the onset of the target to the

completion of a correct response. The targets followed two

different sequence structures: the shape regularity and the colour

regularity. The shape regularity means that the shape of each

target was determined by the shapes of the previous two targets.

That is, the shape sequence of the targets followed one of the two

second-order conditional sequences (SOC1=heart-triangle-circle-

square-triangle-square-heart-circle-triangle-heart-square- circle;

SOC2=heart-triangle-square-circle-triangle-circle-heart-square-

triangle-heart-circle-square). The colour regularity means that the

shape of the target was determined by the colour of the previous

stimulus. That is, the colour-shape sequence of the targets followed

the first-order conditional sequences (green-triangle, yellow-circle,

blue-heart, and red-square). For example, on the basis of the

SOC1 sequence, after a heart and then a triangle, next should be

a circle; on the basis of the FOC sequence, after a green shape, the

next should be a triangle (see Figure 2a).

In each block, there were three types of targets: standard, shape-

deviant, and colour-deviant targets. Standard targets were targets

following both the shape and colour regularity, with a probability

of 0.75 (i.e., 72 trials in each block). Shape-deviant targets were

targets following the colour regularity but not the shape regularity,

with a probability of 0.125 (i.e., 12 trials in each block). Colour-

deviant targets were targets following the shape regularity but not

the colour regularity, with a probability of 0.125 (i.e., 12 trials in

each block). Each training block began at a random point in one of

the two SOC sequences. It was continued by a sequence of 12

targets of the same type (i.e., standard or deviant), and then

transferred to another sequence of 12 targets of the same type.

Standard targets could transfer to any type of target but deviant

stimuli could only transfer to standard ones. For half of

participants, standard targets followed both the SOC1 and FOC

regularity, while shape-deviant stimuli followed SOC2 and colour-

deviant stimuli changed with equal probability to one of the other

three colours; for the other half, standard targets followed the

SOC2 and FOC regularity, whereas shape-deviant stimuli

followed SOC1 and colour-deviant stimuli changed with equal

probability to one of the other three colours. The sequential

position of shape-deviant and color-deviant stimuli in each block

were counterbalanced during training. Each block of the SRT task

took about one and a half minutes. After each block, participants

were asked to rate the valence of two neutral pictures and then had

at least 20 seconds for a short rest. The training phase took about

30 minutes.

Recognition tests. After the SRT task, there were two

recognition tests: one for the colour regularity, the other for the

shape regularity. At the beginning of the test for colour regularity,

participants in each group were informed that the sequence of

targets followed a regularity, in which most of shapes were

determined by the colour of the previous target (see Figure 2b). On

each colour test trial, participants were required to first respond to

two targets using the same response keys as for the training phase.

Then, they were instructed to report whether the shape of the

second target followed the colour of the previous one often (with

a probability of about 90%) or rarely (with a probability of about

10%). At the beginning of the test for the shape regularity,

participants in each group were informed that the order of targets

followed a regularity, in which most of shapes were determined by

the shapes of the previous two targets. On each shape test trial,

participants were asked to first respond to three targets using the

same responses keys as for the training. They were then required

to report whether the shape of the third target followed the shapes

Figure 1. The Self-Assessment Manikin (SAM) Used to Measure the Valence.
doi:10.1371/journal.pone.0054693.g001
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Figure 2. Experimental setup and design in Experiment 1.
doi:10.1371/journal.pone.0054693.g002
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of the previous two often (with a probability of about 90%) or

rarely (with a probability of about 10%). After each test trial,

participants were required to report the basis of their judgment by

picking one of the following: guess or random, intuition, rules or

memory. Participants were provided with definitions taken from

[45]. There were 48 test trials for each test, in which half of them

followed the corresponding regularity and half of them did not.

The irregular color test trials were taken from the color-deviant

sequence and the irregular shape test trials were taken from the

shape-deviant sequence except that the third target was not

predicted by the color of the second one. Before each test, there

were four practice test trials. The order of color test and shape test

was counterbalanced between participants.

Results
We will consider the following questions in order: Was the

mood induction successful? Then, crucially, did mood influence

learning? Finally, were people consciously aware of each

regularity?

Was the mood induction successful? Figure 3 shows mood

ratings at four time points in Experiments 1 and 2. The first mood

test was before the music induction and the second one was

immediately after the music induction. For Experiment 1, to

examine whether the mood manipulation was successful, an

ANOVA on mood ratings with mood test (first vs. second) as

a within-subject variable and group (negative vs. positive) as

a between-subjects variable revealed a significant mood test effect,

F (1, 74) = 6.61, p,.05, gp
2 = .08, a significant group effect, F (1,

74) = 75.23, p,.001, gp
2 = .50, and a significant interaction, F (1,

74) = 29.52, p,.001, gp
2 = .29. Initially, there was no difference

between the negative and positive groups, t (74) =21.76, p= .083,

d= .40, but after the mood induction the ratings in the positive

group were much more positive than those in the negative group, t

(74) = 10.44, p,.001, d=2.39. Specifically, negative mood induc-

tions decreased valence ratings, t (33) = 5.51, p,.001, d= .96,

while positive inductions increased valence ratings, t (37) =22.11,

p,.05, d= .35, indicating that the mood induction was effective.

One-sample t tests were used to compare ratings to the neutral

mood point for each condition after the mood induction.

Participants in the negative group had a valence significantly

below neutral, t (36) = 25.92, p,.001, d=2.99, but participants

in the positive group had a valence significantly above neutral, t

(38) = 8.85, p,.001, d=1.44.

The second, third, and fourth mood tests were all after the

initial mood induction. To test whether the mood difference

persisted through training, an ANOVA with the ratings at the last

three mood tests as a within-subject variable and group as

a between-subjects variable revealed a significant group effect, F

(1, 74) = 79.73, p,.001, gp
2 = .52, and a significant interaction of

mood tests by group, F (1, 74) = 29.55, p,.001, gp
2 = .29. The

ratings at the third mood test, i.e. before the repetition of the mood

induction, increased in the negative group, t (36) = 24.98,

p,.001, d=2.83, but decreased in the positive group, t

(38) = 4.26, p,.001, d= .69, compared with the ratings at the

second mood test. However, the ratings at the fourth mood test

after the repetition of mood induction decreased in the negative

group, t (36) = 4.14, p,.001, d= .69, and increased in the positive

group, t (38) = 23.21, p,.01, d=2.52, compared with the ratings

at the third one, indicating the usefulness of the repetition of the

mood induction. Importantly, participants in the positive group

reported higher valence ratings than those in the negative group in

all the last three tests, t (74) = 10.44, p,.001, d=2.43, t (74) = 2.30,

p,.05, d= .53, t (74) = 8.41, p,.001, d=1.96, confirming that

there was a mood difference between the two groups throughout

the training phase.

Figure 4 shows ratings of pictures in Experiments 1 and 2. The

pattern of ratings of pictures was similar to that of mood ratings.

The first picture rating was before the music induction and the

second one was after the music induction. For Experiment 1, to

examine whether the mood induction changed the ratings of

pictures, an ANOVA with picture tests (first vs. second) as a within-

subject variable and group (negative vs. positive) as a between-

subjects variable revealed a significant picture test effect, F (1,

74) = 15.69, p,.001, gp
2 = .18, a significant group effect, F (1,

74) = 6.11, p,.05, gp
2 = .08, and a significant interaction, F (1,

74) = 9.75, p,.01, gp
2 = .12. The mood induction increased

valence ratings in the positive group, t (38) = 26.21, p,.001,

d=21.28, but did not significantly decrease valence ratings in the

negative group, t (36) = .50, p= .62. Importantly, at the initial test,

there was no difference between the negative and positive groups, t

(74) = .30, p= .77, but higher positive ratings in the positive group

than in the negative group after the mood induction, t (74) = 3.74,

p,.001, d= .87, revealing that the mood induction successfully

changed the ratings of the pictures.

The ratings at the last 13 time points were all after the initial

mood induction. To test whether there was a rating difference

between negative and positive groups throughout training, an

ANOVA with ratings on the picture tests after mood induction (13

levels) as a within-subject variable and group as a between-subjects

variable revealed a picture test effect, F (12, 888) = 3.74, p,.001,

gp
2 = .05, indicating higher positive ratings later on than earlier.

Importantly, the main effect of group reached significance, F (1,

74) = 4.85, p,.05, gp
2 = .06, but the interaction of group by

picture test was not significant, F (12, 888) = 1.56, p= .10,

confirming overall higher positive affect in the positive group

than in the negative group. However, as can be seen from

Figure 4a, although overall, there were higher positive ratings in

the positive group than in the negative group, the rating

differences may not be stable over time (despite the non-

significance of the interaction). Independent samples t tests

revealed that there were nonetheless significant rating differences

at time points 2, 4, 7, 8 and 10 (ps ,.05, one-tailed).

Did mood influence learning? The mean RTs for all

shape-deviant, standard, and colour-deviant trials with correct

responses were 772.32 (SD=120.45), 725.92 (SD=114.70), 724.91

(SD=119.02), respectively, for all participants. Trials with RTs

greater than 2,000 milliseconds were excluded from analysis

because they could have resulted from irrelevant activities such as

adjusting glasses etc. There were 1.25% and 1.36% of the trials in

the negative and positive groups being removed, respectively.

If participants learned the shape regularity, they would respond

to the standard targets faster than the shape-deviant targets;

similarly, if participants learned the colour regularity, they would

respond to the standard targets faster than the colour-deviant

targets. Figure 5 shows the mean RTs obtained over the training

phase for each group in Experiments 1 and 2. As can be seen from

Figures 5a, there was a sudden drop in RTs from Block 7 after the

second mood induction. Participants in each group listened to the

designated music for five minutes in the second mood induction in

Experiment 1. As the speed up occurred for both standard and

deviant stimuli it is unlikely to be consolidation (cf. [52]); but the

effect is precisely as predicted by [53] release from reactive

inhibition, i.e., a speeding up on a task after a rest. For simplicity,

the data were re-expressed as a learning score separately for the

shape and colour regularities. Specifically, the learning score for

shape was the RTs (reaction time) to shape deviants minus the RT

to standards. Similarly, the learning score for colour was the RTs
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to colour-deviants minus the RTs to standards. The learning score

was averaged over the first 6 blocks to obtain a learning score for

the first half of training and over the last 6 blocks to obtain

a learning score for the second half in Experiment 1. Figure 6

shows these summarized data. If there was no learning, the

learning score would be zero.

For Experiment 1, one-sample t tests were used to compare

learning scores with chance (i.e. zero) for each combination of

regularity, experimental half and group. This revealed that there

was significant learning of the shape regularity (t (36) = 3.93,

p,.001, d= .66, t (38) = 5.65, p,.001, d= .91), but no learning of

the colour regularity (t (36) =23.18, p,.01, d=2.53, t

(38) =23.26, p,.01, d=2.53) in negative and positive groups in

the first half of the experiment. However, importantly, both

regularities were learnt significantly in both groups (all ps ,.01) in

the last half of the experiment.

To test whether there was an effect of mood on learning the

shape regularity, we performed an ANOVA on learning scores for

the shape regularity, with group (positive vs. negative) as

a between-subject variable, and training half (first vs. second) as

a within-subject variable. This revealed only a significant in-

teraction between group and training half, F (1, 74) = 5.73, p,.05,

gp
2 = .07. The positive group showed similar learning to the

negative group in the first half, t (74) = .22, p= .83, but more

learning in the second half, t (74) = 1.82, p,.05 (one-tailed),

d= .42. The results suggested that negative rather than positive

affect impaired the learning of the complex regularity.

To test whether there was an effect of mood on learning of

colour regularity, a similar ANOVA on colour learning scores was

used. It revealed only an effect of training half, F (1, 74) = 48.40,

p,.001, gp
2 = .40, indicating learning. Note that in the first half of

training the learning scores were significantly below chance. This

arises because colour-shape pairings were not counterbalanced

and pre-existing biases determined learning scores in the first half

of training, providing a baseline against which to measure

learning. For example, in the first block, all participants expressed

Figure 3. Mood ratings at four time points in Experiments 1 and 2. For Experiment 1, the first time was before mood induction, the second
one was immediately after the mood induction, the third one was after six blocks and before the repetition of the short version of mood induction,
and the fourth one was immediately after the second mood induction. For Experiment 2, the first time was before mood induction, the second one
was immediately after the mood induction, and the third and fourth one was after second and third mood induction. Error bars depict standard
errors.
doi:10.1371/journal.pone.0054693.g003

Figure 4. Rating of pictures at fourteen time points in Experiments 1 and 2. The first time was before mood induction and the second one
was after the mood induction. Each of the last 12 tests was before each of the 12 training blocks. Error bars depict standard errors.
doi:10.1371/journal.pone.0054693.g004
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a significant tendency to respond to standard stimuli slower than

irrelevant-deviant stimuli overall (M=221.77, SE=8.26), t

(75) =22.64, p= .01. However, the direction of the response bias

for each of the four colour rules was different. Specifically, people

responded to standard stimuli after red and blue significantly faster

than the corresponding irrelevant-deviant stimuli (M=72.16,

SE=21.26, M=72.00, SE=20.41), t (75) = 3.40, p= .001, t

(75) = 3.53, p= .001, respectively. Meanwhile, people responded

to standard stimuli after green and yellow significantly slower than

the corresponding irrelevant-deviant stimuli (M=2129.31,

SE=17.49, M=2101.95, SE=22.02), t (75) =27.40, p,.001, t

(75) =24.63, p,.001, respectively. That is, half of the biases were

positive and half of them were negative in direction, just as would

be expected, though to get exactly half could not have been

guaranteed. It so happens the biases were bigger in some cases

than others, and such natural viability is also just as expected.

Hence we see an overall initial bias. Indeed, by the end of training,

these biases had been over-ridden by learning [54]. Importantly,

we did not detect a difference between the two groups in either the

first or second half of the training (both ps ..66).

We found a difference between positive and negative groups in

the second half of training for the shape regularity, but did not for

the colour regularity. The latter null result may simply reflect

insensitivity rather than the absence of an effect. How big a mood

effect might we expect? For the shape regularity, the learning score

for the positive group (58 ms) was about twice that as for the

negative group (33 ms). Relatedly, normal people performed

about twice as well as depressed people on the SRT task [27]. The

learning effect for colours was about 20 ms (on average and for

negative group), so something like a 20 ms mood effect could be

expected, if it existed. We used Baysian analysis to model the

predictions of the alternative with a half-normal with a standard

deviation of 20 ms, based on the considerations in the text and

following recommendations in [32] (Appendix). The Bayes Factor

comparing the hypothesis of a mood effect to the null hypothesis of

no mood effect was.47. Bayes Factors vary between 0 and infinity

with values of less than.33 indicating support for the null

hypothesis and values greater than 3 indicating support for the

alternative. Values in between indicate data insensitivity (see

[32,55], for explanation of Bayes Factors and free online software).

Thus, the results indicated the data were insensitive and no strong

conclusions should be drawn from the null result.

Were people consciously aware of the colour regular-
ity? If participants consciously learned the colour regularity, they

would perform better than chance (i.e. 0.5) in the recognition for

colour regularity, especially when the recognition was based on

rules or memory. Table 1 shows accuracy rates in the recognition

test of colour regularity in Experiments 1 and 2. Overall,

participants in both positive and negative groups performed at

chance in the recognition test of the colour regularity, t (38) =

2.05, p= .96, t (36) =21.08, p= .30, respectively. Due to the

overall chance-level performance, we did not further analyze the

proportions (see Table 2) or accuracy rates for each attribution in

the color test (i.e. guess or random, intuition, rules or memory).

To interpret this null result, the expected recognition perfor-

mance that would obtain if the knowledge were all conscious needs

Figure 5. Mean reaction times for shape-deviant, standard, and color-deviant stimuli across training blocks in Experiments 1 and 2.
Error bars depict standard errors.
doi:10.1371/journal.pone.0054693.g005
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to be estimated. The colour regularity consisted of four rules:

green-triangle, yellow-circle, blue-heart, and red-square. We

calculated and compared the RTs for standard and color-deviant

targets corresponding for each of them in the second half of the

training. On the basis of the comparison results, two rules were

learned significantly (t (36) = 4.17, p,.001, d= .70, t (36) = 1.77,

p,.05 (one tailed), d= .30, for negative group; t (38) = 2.31, p,.05,

d= .37, t (38) = 2.25, p,.05, d= .37, for positive groups) while one

was not learned (ps ..13 for both groups) and one was learned the

wrong way (t (36) =22.05, p,.05, d= .34, t (38) =22.14, p,.05,

d= .35, respectively) by participants in both groups. If this

knowledge were completely conscious, people would recognize

correctly the two rules and recognize incorrectly one and guess the

other one, producing an expected recognition performance of

(2*1+1*.5+1*0)/4= 62.5%. The upper limit of the confidence

interval on recognition performance was 52% and 51%, for

positive and negative groups respectively, substantially different

from 62.5%, suggesting that neither group could apply the

knowledge they acquired in the training phase to the recognition

test. That is, their knowledge about the color regularity was

unconscious or implicit.

Given we have identified all the learned triplets, 62.5% defines

strictly just an upper limit expected on the theory that all

knowledge is conscious because there could be random noise in

any given recognition judgment, for example as postulated by

[56]. Given this noise could be any amount from 0% to 100% of

Figure 6. Learning effects for shape regularity and color regularity in Experiments 1 and 2. Error bars depict standard errors.
doi:10.1371/journal.pone.0054693.g006

Table 1. Accuracy Rates in the Recognition Test of Color
Regularity in Experiments 1 and 2.

Guess or
random Intuition

Rules or
memory Total

Experiment 1 Negative .50 (.05) .49 (.02) .53 (.03) .50 (.01)

Positive .50 (.03) .51 (.03) .49 (.02) .49 (.01)

Experiment 2 Negative .49 (.05) .56 (.03) .46 (.03) .49 (.01)

Neutral .46 (.04) .44 (.02) .48 (.04) .48 (.01)

Positive .45 (.05) .55 (.03) .48 (.02) .50 (.01)

Notes:Standard Errors in Brackets.
doi:10.1371/journal.pone.0054693.t001

Table 2. Proportions of Each Attribution in the Recognition
Test of Color Regularity in Experiments 1 and 2.

Guess or random Intuition Rules or memory

Experiment 1 Negative .22 (.04) .46 (.04) .32 (.05)

Positive .23 (.04) .30 (.04) .47 (.05)

Experiment 2 Negative .21 (.04) .39 (.05) .40 (.06)

Neutral .24 (.04) .45 (.05) .31 (.04)

Positive .19 (.04) .40 (.04) .40 (.05)

Notes: Standard Errors in Brackets.
doi:10.1371/journal.pone.0054693.t002
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the recognition signal, the expected recognition performance

could be any value from 50% to 62.5% with equal probability

assuming that all knowledge was conscious. The null hypothesis

cannot be supported over the theory that recognition could be

uniformly any value from 50% to 62.5% using conventional

statistics (p_values, power). But Bayesian statistics are capable of

evaluating the support for such theories [55]. A Bayes Factor

testing this alternative theory that all knowledge was conscious

against the null hypothesis that no knowledge was conscious

was.10 for the negative group and.05 for the positive group,

constituting very strong evidence against the theory and in favor of

the null hypothesis. See [32,55] for further discussion of the use of

Bayes Factors.

Were people consciously aware of the shape regular-
ity? If participants consciously learned the shape regularity, they

would perform better than chance level (i.e.,.50) in the recognition

test for the shape regularity, especially when the recognition was

based on rules or memory. Table 3 shows accuracy rates in the

recognition test of shape regularity in Experiments 1 and 2. For

Experiment 1, participants in both positive and negative groups

performed significantly above chance in the recognition test of the

shape regularity, t (38) = 2.58, p,.05, d= .35, t (36) = 2.15, p,.05,

d= .41, respectively.

Table 4 shows proportions of each attribution in the recognition

test of shape regularity in Experiments 1 and 2. As can be seen

from Table 4, participants based their judgment on both conscious

and unconscious knowledge. For Experiment 1, an ANOVA on

proportions with attribution (guess or random vs. intuition vs. rules

or memory) as a within-subject variable and group (negative vs.

positive) as a between-subjects variable revealed only a significant

attribution effect, F (2, 148) = 18.67, p,.001, gp
2 = .20. All

participants attributed to rules and memory more than intuition,

t (75) = 2.19, p,.05, d= .25, and attributed more to intuition than

guess and random, t (75) = 4.27, p,.001, d= .49. Recognition

accuracy was compared with chance for each combination of

mood condition and attribution type (see Table 3). Participants in

the positive group performed significantly above chance when they

gave rules and memory attributions, t (37) = 3.00, p,.01, d= .49,

but not for the other two attributions (both ps ..47), suggesting

participants in the positive group acquired some conscious

knowledge. Participants in the negative group did not perform

significantly different from chance in any of the three attributions

(all ps ..11), revealing no evidence for conscious knowledge in the

negative group. The significant result for the positive group was for

rules or memory, with a recognition of.56 (SE= .02). Thus, if there

was above-chance recognition performance for the negative

group, a reasonable expectation might be represented by a half

normal with a standard deviation of.05, i.e., recognition memory is

very likely to be in the interval.50–.60, if it exists. The Bayes

Factor was 1.63 for guess or random,.17 for intuition, and 1.98 for

rules or memory, suggesting insensitive evidence that knowledge

was conscious in the negative group.

Again to provide a scale of how much recognition would be

expected if the knowledge were fully conscious, the twelve different

triplets in the training sequence were analyzed for learning (as

measured by RT differences between deviant and standard

versions of the triplet). For the positive group, eight triplets were

significantly above chance (all ts .2.70) while four triplets were at

chance (all ps ..20). Thus, if this knowledge were fully conscious,

people should recognize these eight triplets correctly, and guess

correctly half of the remaining four triplets. Thus, people’s

expected performance on the recognition test would be

(8*1+4*.5)/12 = 83%. In fact the upper limit of the confidence

interval on people’s recognition performance is 56%, substantially

below the 83% expected on the hypothesis of completely accessible

conscious knowledge.

As before, 83% defines an upper limit in recognition

performance expected on the theory that all knowledge is

conscious because there could be random noise in any given

recognition judgment [56]. A Bayes Factor pitting the theory that

recognition performance could be any value from 50% to 83%

with equal probability against the null that recognition is 50%, was

2.46, indicating no sensitivity [56]. However, this Bayes Factor

assumes that after 15 blocks of training there could still be close to

100% noise in recognition even though the knowledge was all

conscious. In fact, the noise in recognition is small compared to

priming effects [56] (the authors in [56] took recognition to be

conscious). If we assume that the maximum of the noise can be as

high as 85% to allow recognition performance as low as 0.5+
(0.83–0.5) * (1–.85) = 55% (but no lower) when knowledge is

conscious, we can represent the theory of complete conscious

knowledge as a uniform between 55% and 83%. The Bayes Factor

is.28 indicating evidence against the theory of complete conscious

knowledge as compared to the null hypothesis of no conscious

knowledge. While we reject the null hypothesis in this case for

Table 3. Accuracy Rates in the Recognition Test of Shape Regularity in Experiments 1 and 2.

Guess or random Intuition Rules or memory Total

Experiment 1 Negative .56 (.05) .48 (.02) .54 (.02) .52 (.01)*

Positive .53 (.05) .50 (.03) .56 (.02)* .53 (.01)*

Experiment 2 Negative .49 (.04) .51 (.03) .52 (.03) .51 (.01)

Neutral .51 (.04) .49 (.02) .61 (.03)* .52 (.01)

Positive .43 (.05) .53 (.03) .56 (.03)* .53 (.01)*

Notes: *p,.05. Standard Errors in Brackets.
doi:10.1371/journal.pone.0054693.t003

Table 4. Proportions of Each Attribution in the Recognition
Test of Shape Regularity in Experiments 1 and 2.

Guess or random Intuition Rules or memory

Experiment 1 Negative .18 (.03) .38 (.04) .44 (.04)

Positive .20 (.03) .32 (.03) .48 (.04)

Experiment 2 Negative .16 (.03) .42 (.05) .43 (.06)

Neutral .19 (.03) .48 (.05) .33 (.05)

Positive .18 (.03) .42 (.04) .40 (.04)

Notes: Standard Errors in Brackets.
doi:10.1371/journal.pone.0054693.t004
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other reasons (because of finding conscious knowledge with the

more focused structural knowledge attributions), if the overall

recognition data more closely fit the null hypothesis rather than

the theory of complete conscious structural knowledge, it is

reasonable to assume partial rather than full conscious knowledge.

Whether or not we reject the hypothesis of complete conscious

knowledge thus depends on whether we think the noise could be as

high as 85% or 100% if knowledge were fully conscious. Thus,

unlike the case of learning the colour regularity, whether the

evidence is consistent with the theory of complete conscious

knowledge depends on just how bad one estimates conscious

recognition of eight triplets might be, after extended learning. In

this case, Bayes helps us appreciate why the data are not quite

conclusive, but what reasonable assumptions based on prior

literature would enable firmer decisions. See [32,55] for further

discussion of the use of Bayes Factors.

For the negative group, seven triplets were significantly above

chance (all ts .2.00). Thus, if this knowledge were fully conscious,

people should recognize these seven correctly, and guess the

others. Thus, people’s expected performance on the recognition

test would be (7*1+5*.5)/12= 79%. In fact the upper limit of the

confidence interval on people’s recognition performance is 55%,

substantially below the 79% expected on the hypothesis of

completely conscious knowledge.

As before, 79% defines an upper limit expected on the theory

that all knowledge is conscious because of possible random noise in

recognition. Pitting the theory that recognition might be equally

likely any value between 50% and 79% against the null that it is

50% produces a Bayes Factor of.83, so neither of these theories is

strongly distinguished. However, as before, representing the theory

that all knowledge is conscious as a uniform between 55% and

79% (i.e., the noise up to 85%) recognition performance against

the null gives a Bayes Factor of.01, very strong evidence against

the theory that all knowledge is conscious.

In sum, the Bayesian analysis suggested that conscious

knowledge in the positive group was very limited and the

knowledge in both groups was largely unconscious. Consistently,

neither overall recognition performance nor recognition perfor-

mance based on rules or memory attributions differed significantly

between the two groups, t (74) = .60, p= .55, t (71) = .75, p= .46,

respectively.

Discussion
In Experiment 1, both mood and picture ratings showed that

there was a mood difference between the negative and positive

groups after mood induction, suggesting that the music successfully

induced positive and negative affective states. Participants in both

affective groups responded to the standard stimuli faster than the

shape-deviant and color-deviant ones, revealing that participants

acquired both regularities, at least by the end of training.

Consistent with the notion that relational processing is impaired

by negative rather than positive moods [1–3], the negative group

learned the shape regularity worse than the positive group, at least

by the end of training. This finding provides evidence of the

relevance of the affect-as-information hypothesis to sequence

learning.

There was not clear evidence to assess the effect of mood on

learning the colour regularity. Opposing predictions could be

made about any possible effect of mood on learning the colour

regularity. The colour regularity involved minimal integration

over different time steps, as colour predicted the shape on the

immediately following trial. Thus, it could be argued that people

in the negative group should learn better than those in the positive

group [31]. Conversely, the broaden-and-build theory [57,58],

which claims that positive emotions broaden the scope of

attention, would imply that the positive group would pay more

attention than the negative group to the task-irrelevant colour

information and thus learn this information better than the

negative group. As shown by the Bayesian analysis, the current

data did not decisively determine the balance of these two possible

processes.

Participants were at chance in recognizing the colour regularity,

indicating that the colour regularity was unconsciously acquired.

Only participants in the positive group performed above chance in

the recognition test for the shape regularity when their recognition

was based on rules or memory, suggesting they acquired some

conscious knowledge. However, the recognition performance in

both groups was considerably lower than that expected if their

knowledge had been fully conscious, the Bayesian analysis was

thereby able to show that the knowledge about shape regularity

was largely unconscious or implicit.

A difference in learning the shape regularity between positive

and negative groups was observed in the last six blocks but not the

first six blocks of training. We have no special explanation for this,

other than modulations of learning might be greater with greater

amounts of learning. Still, we would like the support for the affect-

as-information theory to be unambiguous. Experiment 2 aimed to

strengthen the mood manipulation so as to produce the mood

effect in only six blocks of training.

Experiment 2

In Experiment 2, the training phase was shortened from 12 to

six blocks and the mood induction was repeated after the second

and fourth block to produce a more sustained mood difference.

Further, one ambiguity in interpreting the results of Experiment 1

is whether the negative mood hindered learning or a positive

mood helped. Thus, a neutral condition was added to explore

whether implicit learning was influenced by negative or positive

affects, or both. Finally, the stimuli were also changed from

coloured shapes to grey shapes against different colour back-

grounds to possibly highlight the colour feature and increase

learning of the colour regularity. In sum, the main aim of

Experiment 2 was to obtain a mood effect on learning the shape

regularity, after only six blocks of training, to provide further

support for the affect-as-information hypothesis [59] as applied to

learning.

Participants
One hundred and fifteen undergraduate students (56 male, 59

female) took part in the experiment. None of them had previously

taken part in any implicit learning experiment. They were

assigned to three groups (positive, n=37; negative, n=37; neutral,

n=41). As in Experiment 1, participants were excluded if their

error proportions were greater than.15. Data from one participant

in the positive group (M= .28), one participant in the negative

group (M= .20), and four participants in the neutral group

(M= .20, SD= .04) were excluded. All participants were tested

between 9 and 11 a.m. or between 2 and 5 p.m., which was

counterbalanced between the three groups.

Materials and Procedure
For the neutral mood induction, participants were asked to read

English-Chinese bilingual material about Canada, validated as

neutral by previous research [11]. The materials in the SRT task

were similar to those in Experiment 1 except that the stimuli were

different grey shapes against different color backgrounds. The
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shape sequence followed the shape regularity while the color

background sequence followed the color regularity.

The procedure was identical to Experiment 1 except that there

were six blocks in the training phase and the shorter 5-minute

mood induction was repeated after the second and fourth blocks,

respectively. The repetition was about five minutes after the

preceding mood induction. Previous research [60] has found that

similar mood inductions could give equivalent mood effects for

periods as long as five minutes. We did not ask participants to rate

their mood before the repetition of the mood induction. The third

and fourth mood ratings were reported after the two shorter mood

inductions separately. As in Experiment 1, after each SRT block,

participants were asked to rate the valence of two neutral pictures.

Sixteen neutral pictures were randomly assigned to the eight

different time points separately for each participant.

Results
Was the mood induction successful? The first mood test

was before the initial mood induction and the second one was

immediately after the mood induction. To explore whether the

mood manipulation was successful, an ANOVA on valence ratings

with mood test (first vs. second) as a within-subject variable and

group (positive vs. neutral vs. negative) as a between-subjects

variable was conducted. It revealed a significant group effect, F (2,

106) = 12.67, p,.001, gp
2 = .19, a significant mood test effect, F (1,

106) = 4.02, p,.05, gp
2 = .04, and a significant interaction, F (2,

106) = 23.99, p,.001, gp
2 = .31. At the onset, there was no

difference among the three groups (all ps ..25). Thereafter,

negative mood inductions decreased ratings, t (35) = 6.18, p,.001,

d=1.04, while positive inductions increased positive ratings, t

(35) =23.91, p,.001, d= .66, but neutral inductions did not

influence ratings, t (36) =2.96, p= .34, suggesting that the music

changed people’s mood successfully. Importantly, after the mood

inductions participants in the negative group had a valence

significantly below neutral, t (35) =23.87, p,.001, d= .65, and

participants in the positive and neutral group had a valence

significantly above neutral, t (35) = 7.76, p,.001, d=1.31, t

(36) = 3.60, p,.001, d= .60.

The mood ratings at the last three time points were given after

the initial mood induction. To test whether there was a mood

difference throughout training, an ANOVA with the last three

mood tests as a within-subject variable and group (positive vs.

neutral vs. negative) as a between-subjects variable was conducted.

It revealed only a significant group effect, F (2, 106) = 30.41,

p,.001, gp
2 = .37. The positive group reported higher positive

ratings than the neutral group, t (71) = 2.76, p,.01, d= .64, while

the neutral group reported higher positive ratings than the

negative group, t (70) = 8.40, p,.001, d=1.97, suggesting that the

mood difference among the three groups existed throughout the

training phase.

Similarly, the first picture rating was before the initial music

induction and the second one was after the music induction. To

further check the effect of the mood manipulation, an ANOVA on

ratings with picture test (first vs. second) as a within-subject

variable and group (positive vs. neutral vs. negative) as a between-

subjects variable revealed a significant picture test effect, F (1,

106) = 17.11, p,.001, gp
2 = .14, which was qualified by the

interaction of picture test by group, F (2, 106) = 6.47, p,.01,

gp
2 = .11. Initially, there was no difference on the valence ratings

of pictures among the three groups (all ps ..13). After the mood

induction, the valence ratings of pictures were higher in the

positive and neutral groups than in the negative group, t

(70) = 2.95, p,.01, d= .70, t (71) = 2.65, p= .01, d= .62, re-

spectively, while there were no difference between the positive

and neutral groups, t (71) = .38, p= .71. The significant difference

between negative and positive groups was consistent with the

results of SAM test, but the results for the neutral group were not.

It is surprising that there was a significant increase on ratings at

time 2 for the neutral group, perhaps a mere exposure effect,

suggesting that the picture rating task may have limitations for

measuring mood compared with the more direct SAM test.

Picture ratings at the last seven time points were all after the

initial mood induction and the ratings at time 4 and 6 were before

the second and third shorter 5-minute mood inductions separately.

To test whether the mood manipulation was effective, we first

compared the ratings at time 1 to the ratings at time 4 and at time

6, separately for each group. The former was significantly lower

than the later two for the positive group, t (35) =22.58, p,.05,

d =2.44, t (35) =22.69, p,.05, d =2.45, respectively, but there

were no significant differences between the former and later two

for the neutral and negative groups (all ps ..05). To further test

the effect of induced mood throughout training, an ANOVA on

ratings of picture tests after the mood induction (last seven) as

a within-subject variable and group (positive vs. neutral vs.

negative) as a between-subjects variable revealed a significant

group effect, F (2, 106) = 6.23, p,.01, gp
2 = .11. Consistently, the

positive and neutral groups reported higher ratings than the

negative group, t (70) = 3.20, p,.01, d= .75, t (71) = 2.89, p,.01,

d= .68, respectively, but there was no difference between the

positive and neutral groups, t (71) = .17, p= .86. The main effect of

picture test also reached significance, F (6, 636) = 4.19, p,.05,

gp
2 = .04. However, the interaction of picture test by group was

not significant, F (6, 636) = .84, p= .61, consistent with the effect of

the induced mood difference among the three groups not varying

with training.

Did mood influence learning? The mean RTs for all

shape-deviant, standard, and colour-deviant trials with correct

responses were 795.95 (SD=143.00), 748.62 (SD=130.47), 716.77

(SD=122.29), respectively, for all participants. As in Experiment

1, trials with RTs greater than 2,000 milliseconds were excluded,

which lead to 2.04%, 0.32% and 2.26% of the trials being

removed in the negative, neutral and positive groups, respectively.

For the shape regularity, negative, neutral and positive groups

all had a learning effect significantly above zero, t (35) = 3.95,

p,.001, d= .67, t (36) = 8.20, p,.001, d=1.37, t (35) = 5.67,

p,.001, d= .96, respectively. Importantly, one-way ANOVA on

learning scores with group (positive vs. neutral vs. negative) as

a between-subjects revealed a significant group effect, F (2,

106) = 3.14, p,.05. The learning effect for the positive and neutral

group was significantly greater than for the negative group, t

(70) = 2.07, p,.05, d= .49, t (71) = 2.40, p,.05, d= .56, respec-

tively.

For the colour regularity, negative, neutral and positive groups

all had a learning effect significantly below zero, t (35) =23.36,

p,.01, d=2.57, t (36) =25.58, p,.001, d=2.93, t (35) =24.91,

p,.001, d=2.83, respectively, which is consistent with the results

in the first half in Experiment 1. That is the pre-existing biases as

shown in Experiment 1 were not over-ridden by training in six

blocks in either Experiment 1 or 2. Importantly, one-way ANOVA

on learning scores with group (positive vs. neutral vs. negative) as

a between-subjects revealed no significant effect, F (2, 106) = .43,

p= .65. That is, no learning differences were observed for the

colour regularity among the three groups. Since no knowledge

about the colour regularity was acquired by either group in

Experiment 2, we did not further address whether people were

consciously aware of the colour regularity.

Were people consciously aware of the shape regular-
ity? If participants consciously learned the shape regularity, they
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would perform better than chance in the recognition for the shape

regularity, especially when the recognition was based on rules or

memory. For recognizing the shape regularity, participants in the

positive and neutral groups performed significantly or marginally

significantly above chance level, t (35) = 4.12, p,.001, d= .70, t

(36) = 2.01, p= .053, d= .33, respectively, but participants in the

negative group performed at chance, t (35) = .75, p= .46.

As can be seen from Table 4, participants based their judgment

on both conscious and unconscious knowledge. An ANOVA on

proportions with attribution (guess or random vs. intuition vs. rules

or memory) as a within-subject variable and group (negative vs.

neutral vs. positive) as a between-subjects revealed only a signifi-

cant attribution effect, F (2, 212) = 21.18, p,.001, gp
2 = .17.

Participants attributed to rules or memory and intuition similarly, t

(108) = 1.04, p= .30, but both were greater than proportions for

guess or random, t (108) = 7.64, p,.05, d= .74, t (108) = 5.38,

p,.001, d= .52. Recognition was compared to chance for each

combination of mood condition and attribution type. Participants

in the positive and neutral groups performed above chance when

they gave rules or memory attributions, t (34) = 2.21, p,.05,

d= .38, t (31) = 3.85, p= .001, d= .69, respectively, but performed

at chance when they gave other attributions (all ps ..18).

Participants in the negative group performed at chance for each

attribution (all ps ..53). The results were partially consistent with

the results of Experiment 1 and indicated that positive and neutral

participants were aware of some learned knowledge.

However, when expected recognition performance was estimat-

ed in the same way as for Experiment 1, the estimate given the

acquired knowledge was completely conscious was 79% for the

positive group, 87.5% for the neutral group and 58% for the

negative group. Note in all cases, the upper limits of the confidence

intervals of recognition performance (55%, 55% and 53%,

respectively) are substantially below these expectations, indicating

that the knowledge was largely unconscious.

Further, for the positive group, the Bayes Factor comparing the

theory represented by a uniform expectation between 55% and

79% (i.e., the noise up to 85%) was.21, evidence against the theory

that all knowledge was conscious. The corresponding Bayes

Factors for the neutral and negative groups were.00 and.17,

respectively, the latter also providing evidence against the theory

that all knowledge was conscious These Bayes Factors indicate that

evidence strongly supports the null over the hypothesis of fully

conscious knowledge. This is consistent with there being some

conscious knowledge, i.e. with the null being only approximately

true (cf [61], p 233); that is, we cannot conclude from the Bayesian

analysis that all knowledge was unconscious. Support for the

theory that all knowledge is conscious is nonetheless low because

the theory allows any amount of knowledge to be expressed over

a large range, and the theory is punished for this vagueness.

Therefore, as in Experiment 1, the Bayesian analysis suggested

that the knowledge acquired in all the groups was largely

unconscious. Consistently, one way ANOVA on either overall

recognition performance or recognition performance for only rules

or memory attribution with group (negative vs. neutral vs. positive)

as between-subjects revealed no significant group effect among the

three groups (both ps ..11).

Discussion
After the mood induction, mood ratings of the positive group

were higher than the neutral group, while mood ratings of the

neutral group were higher than the negative group, suggesting the

mood inductions were effective. However, unlike the mood

ratings, picture ratings of both positive and neutral groups were

higher than negative group, but there was no difference between

the positive and neutral groups. People may have a baseline

positive mood. Indeed, initially, mood ratings in the three groups

were slightly positive compared with the neutral point, i.e. a rating

of 5 (t (35) = 4.35, p,.001, d= .74, t (36) = 3.86, p,.001, d= .64, t

(35) = 2.40, p,.05, d= .41, respectively). After the mood induction,

both mood ratings and picture ratings in the neutral group were

also more positive than the neutral point (t (36) = 3.60, p= .001,

d= .60, t (36) = 6.22, p,.001, d=1.04, respectively). This is

consistent with previous research, suggesting that neutrally treated

participants are in fact slightly positive [62,63]. Thus, future

research might use a neutral induction that actually leaves people

feeling neutral in order to more sensitively explore the effect of

positive mood on implicit learning.

Participants in the three groups responded to the standard

stimuli faster than the shape-deviant stimuli indicating that all

participants acquired the shape regularity within six blocks.

Importantly, the mood induction was repeated after every two

blocks throughout training in this experiment. Unlike in Exper-

iment 1, now the mood effect emerged within six blocks of

training: The positive and neutral group learned more than the

negative group of the shape regularity. Thus we can conclude that

negative mood can impair implicit learning. Given the difference

between the positive and neutral group was non-significant, we

cannot yet conclude that a positive mood facilitates implicit

learning.

As in Experiment 1, recognition of the shape regularity was

above chance only when participants in the positive and neutral

group gave rules or memory attributions, indicating the acquisition

of some conscious knowledge. However, the performance was

considerably below the performance which would be expected if

all acquired knowledge could be intentionally consciously re-

trieved. Thus, while there was some detectable conscious

recognition in the two groups, learning appeared to be largely

implicit or unconscious in all groups.

General Discussion

In two experiments, we explored the effect of negative and

positive affects on implicit learning of complex sequences with the

SRT task. The results of both experiments showed that negative

affect reduced the acquisition of a second-order regularity, i.e.

a regularity that required integrating over past trials, providing

evidence for the affect-as-information hypothesis [59]. The affect-

as-information hypothesis suggests that a positive mood is

associated with reliance on relational, integrative information,

while a negative mood leads to detailed processing of only recent

information [1–3]. Our finding is in principle consistent with

previous research [11,64] in which negative affect focuses

attention on recent events.

One prior study did not find an effect of induced mood on

a second-order conditional sequence [29]. They do not report raw

learning scores, but a fairly complex derived measure, so it is hard

to assess the sensitivity of [29]; in the absence of an assessment of

its sensitivity, nothing follows from their non-significant result.

Further, the mood manipulation was very different between the

two studies: [29] used 50 affective photos displayed for six and half

minutes to induce the different moods before the SRT task and

they did not strengthen it during the training phase; we used music

pieces of ten minutes to induce the different moods before the

SRT task and repeated a short mood induction of five minutes one

and two times in Experiments 1 and 2, respectively.
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Previous research showed superior performance for induced

negative rather than positive moods on an artificial grammar

learning task [29]. A key structure learned in artificial grammar

learning is bigrams, i.e. the extent to which one letter directly

predicts the immediately following letter. However, we failed to

find an effect of negative mood on the learning of the first-order

sequence in our SRT experiment. This may be because the first

order conditional sequence was predicted by the task-irrelevant

rather than target feature and the colour-deviant stimuli were not

fully counterbalanced so longer training was required to achieve

positive learning scores in the present study. In addition, the

broaden-and-build theory [57,58] suggests that the positive group

would pay more attention than the negative group to the task-

irrelevant colour information. Thus, the two contradictory

tendencies may have cancelled the effect of mood on a first order

conditional sequence (the colour regularity). Future research

should investigate whether more global structures in artificial

grammar learning are in fact learned better when positive rather

than negative moods are induced, and more local structures in the

SRT task are learned better when negative rather than positive

moods are induced. Future research could also explore the cross

cultural sensitivity of mood effects on implicit learning of SOC

sequences. [65] found East Asians acquired more accurate

unconscious knowledge of more global rather than local structures

relative to Westerners; thus, how mood affects the implicit learning

of SOC sequences in people of different cultures remains an open

question.

An important question is the extent to which our conclusions

apply to distinctively implicit learning. Interestingly, participants

in the positive or neutral group showed detectable conscious

knowledge in both experiments, while participants in the negative

group did not. Recent data show that positive affect can both

enhance visual awareness in patients suffering from visual neglect

[66], and reduce attentional blink in healthy individuals [67],

indicating that positive affect can enhance awareness. Future

research, with a more sensitive design, could explore if positive

affect enhances the transition from unconscious to conscious

knowledge. Importantly, while there was detectable conscious

knowledge of the shape regularity in the positive or neutral group,

it fell short of that expected if all the knowledge was conscious.

Further, even allowing for the fact that the SRT and recognition

tests may simply differ in test sensitivity to a common conscious

knowledge base [34,39], a Bayesian analysis showed that the null

hypothesis had more support than the theory that all knowledge

was conscious, especially in Experiment 2. Thus, in our data, there

is an effect of mood on implicit learning rather than explicit learning

(contrast [68], for the argument that all knowledge is conscious).

Momentary mood may modulate not necessarily the total amount

of unconscious knowledge but what it consists of – over what time

scale it integrates. Future research should test this possibility.

We should also note some limitations of the present study. First,

although we include a neutral mood condition in Experiment 2, it

turned out neutral participants performed very similarly to positive

people on both picture ratings and learning scores. Future

research, however, should test whether there is a difference

between positive and neutral states. Second, the arousal dimension

of affect has been found to facilitate a tendency for positive mood

to increase relational processing [69]. Further studies should

compare influence of moods that varied independently in valence

and arousal on implicit learning (see [60], for a possible method).

Third, the mood inductions were fairly clearly mood inductions,

and according to e.g. [5], when people know why their mood has

changed, mood has less impact on cognition. Despite this, we did

achieve an effect of mood on learning, though future research may

wish to change mood more subtly.

In summary, we have shown that even the information we

acquire without awareness, and thus our resultant capacities and

abilities, are modulated by momentary feeling states. The

interaction between cognition and emotion runs deeper than

previously shown.
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