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Introduction

The second most diagnosed cancer in the world is lung 
cancer, which is a major contributor to death among cancer 
patients (1). The most common type of lung cancer is lung 
adenocarcinoma (LUAD), which accounts for almost 40% 
of all lung cancers (2). Although advances in diagnosis and 
treatment have been made in the past decade, the total 

survival rate of LUAD patients is still unsatisfactory, and 
the average five-year survival rate is no more than 20% (3). 
Consequently, it is important to find more new biomarkers 
to help in the prediction of prognosis in early-stage LUAD 
patients to enable clinicians to provide timely treatment to 
their patients.

Anoikis is a mode of programmed cell death (PCD) 
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that occurs due to loss of attachment or inappropriate 
attachment of tumor cells onto the extracellular matrix 
(ECM) and neighboring cells (4). Cancer cell resistance to 
anoikis is essential for cancer cell metastasis, which allows 
cancer cells to survive in the systemic circulation, thereby 
leading to the formation of secondary tumors in distant 
organs (5). Anoikis resistance is a key process in cancer cell 
metastasis in LUAD (6,7).

In our study, we explored the role and effects of anoikis-
related genes (ARGs) on the prognosis of LUAD and 
developed an ARG-based prognostic scoring model. We 
also validated the associated prognostic genes using reverse 
transcription quantitative polymerase chain reaction (RT-
qPCR). We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2185/rc).

Methods

Sources of clinical and transcriptome data

Transcriptome and clinical data of 226 LUAD tissues, 539 
LUAD tissues and 59 normal tissues were downloaded from 
the Gene Expression Omnibus (GSE31210) data portal 
(https://www.ncbi.nlm.nih.gov/geo/) and The Cancer 
Genome Atlas (TCGA)-LUAD database (https://portal.gdc.
cancer.gov), respectively.

Anoikis gene acquisition

We downloaded 469 ARGs from the Harmonizome  
portals (8) and GeneCards databases (9) (https://www.
genecards.org). Furthermore, we identified 129 differentially 
expressed genes (DEGs) in the TCGA-LUAD cohort by 
the “limma” R package.

Consensus clustering

We applied the k-means method and consensus clustering 
to identify the different anoikis-related modes associated 
with the expressed anoikis regulators. Then, we verified the 
reliability of the clustering by unified modal approximation 
and projection (UMAP) using the “ggplot2” R package.

Gene functional enrichment analysis

“c2.cp.kegg.v2022.1.Hs.symbols.gmt” was downloaded 
from the Molecular Signatures Database (MsigDB) for use 
in the gene set variation analysis  (GSVA). We used the 
“GSVA” R package to carry out GSVA analysis (10).

Prognostic model of ARGs

Genes relevant to survival were selected by univariate Cox 
regression analysis; thereafter, least absolute shrinkage 
and selection operator (LASSO) regression analysis was 
performed by the “glmnet” R package, with a penalization 
regularization parameter λ being identified via 10-fold 
cross-validation. Thereafter, identification of core genes and 
calculation of the respective coefficients were performed 
by multivariate Cox regression models. According to the 
optimal λ values and the respective coefficients, six ARGs 
were selected to develop risk signatures. For each patient, 
the following is the risk score calculation for the new ARG 
signature. Risk score = e^ (...... corresponding coefficients 
+...... + CDX2 expression), where Coe and Exp correspond 
to the coefficient of risk and expression level per gene. 
Time-dependent receiver operating characteristic (ROC) 
curves and Kaplan-Meier (KM) survival curve analyses 
were conducted to assess the predictive power of the model. 
Overall, LASSO analysis and univariate Cox regression 
identified six anoikis-related DEGs that showed a significant 
correlation with overall survival (OS) in the GSE31210 
cohort, which we verified in the TCGA-LUAD cohort.

Highlight box

Key findings
•	 In this study, anoikis-related genes (ARGs) were used to construct 

a risk model to predict the survival and prognosis of lung 
adenocarcinoma (LUAD) patients, and it was found that this model 
could sufficiently predict the survival and prognosis of LUAD 
patients, and reverse transcription quantitative polymerase chain 
reaction was used for verification.

What is known and what is new?
•	 Anoikis is a programmed cell death mode, and ARGs have 

been found to have a catalytic effect in lung adenocarcinoma, 
gastrointestinal and other tumors.

•	 Our study established a model that can sufficiently predict the 
prognosis of LUAD patients.

What is the implication, and what should change now?
•	 Our study provides potential therapeutic targets for early treatment 

of LUAD patients and improves early prognosis of LUAD patients.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2185/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2185/rc
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.genecards.org/
https://www.genecards.org/
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Association of risk score with immune cell infiltration

For the quantification of the relative proportions of 
infiltrating immune cells, we employed single sample gene 
set enrichment analysis (ssGSEA) and CIBERSORT R 
scripts (11). CIBERSORT was employed to estimate the 
percentages of all immune cell types between the low- and 
high-risk cohorts. For each sample, all assessed immune cell 
type scores were summed to be 1. Additionally, the relation 
of risk score values to immune infiltrating cells was explored 
using Spearman rank association analysis.

Construction and assessment of the predictive nomogram

Risk scores and clinicopathological features were applied 
to construct the nomogram. The calibration charts were 
internally validated to certify their accuracies. The time-C 
indices were employed to verify the predictive properties of 
this nomogram. Evaluation of the net clinical benefit was 
performed by decision curve analysis (DCA) (12).

Acquisition of tumor immune single-cell information

We obtained the immune single-cell dataset NSCLC_
GSE127465 from the Tumor Immunization Single Cell 
Hub (TISCH; http://tisch.comp-genomics.org).

Analysis of the expression of prognostic genes

To confirm the expression of prognostic genes in LUAD, 
we implemented RT-qPCR. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). Five carcinoma side normal tissue and five tumor 
samples were obtained from patients with individual 
consent waived from The First Hospital of Lanzhou 
University, and this study was approved by the ethics 
committee of The First Hospital of Lanzhou University 
(No.: LDYYLL2023-263). Total RNA was extracted from 
ten samples using TRIzol (Ambion, Austin, USA) following 
the manufacturer’s guidelines. Subsequently, the RNA 
underwent reverse transcription to cDNA using the First-
strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) 
as per the provided instructions. RT-qPCR was then 
conducted using the 2xUniversal Blue SYBR Green qPCR 
Master Mix (Servicebio) according to the manufacturer’s 
specifications. The sequences of the PCR primers can be 
found in Table S1. GAPDH served as an internal reference 
gene, and expression levels were determined employing the 

2−ΔΔCt method (13). 

Statistical analysis

We used R software v4.2.1 for statistical analysis and data 
visualization, and P values <0.05 were deemed statistically 
significant.

Results

Analysis of ARGs associated with prognosis

We downloaded a total of 640 ARGs from the GeneCards 
and Harmonizome portals. Then, we compared normal 
tissues with TCGA-LUAD and identified 129 DEGs (Figure 
1A). Next, the “LUAD-GSE31210” cohort with a total 
of 17,662 retained genes was obtained by combining the 
TCGA-LUAD cohort with the GSE31210 cohort after 
removing the batch effect. Subsequently, we found that 64 
of the 129 ARGs were related to survival by univariate Cox 
regression analysis and with statistical significance (P<0.05). 
The forest chart shows the first 32 ARGs (P<0.01) (Figure 
1B). Except for DAPK2, KL, and CEACAM8, the remaining 
29 genes were related to poor prognosis. Additionally, the 
network diagram revealed the relationships among the 
first 32 genes in terms of gene expression levels (Figure 
1C). Moreover, copy number variants (CNVs) data were 
obtained from the TCGA database to determine the 
chromosomal alterations of these ARGs and the location 
of each gene on the chromosome (Figure 1D,1E). We can 
see that the most significant “gain” of the S100A7 change is 
located on chromosome 1, while the main “loss” of CDKX2 
and KL is located on chromosome 13 (Figure 1E).

Consistent clustering of molecular subgroups of LUAD 
using ARGs

We conducted consensus  c luster ing of  64 DEGs 
associated with prognosis (P<0.05) using the R package 
“ConsensusClusterPlus”. Then, we observed that the cohort 
could be divided into two subtypes when k=2 (Figure 2A), 
and prognosis was significantly different (P<0.01) between 
the 2 subtypes as revealed by OS analysis (Figure 2B). The 
result plots of UMAP and t-distributed Stochastic Neighbor 
Embedding (tSNE) showed that at k=2, the two clustering 
subtypes were clearly distinguished (Figure 2C,2D). The 
heat map depicted in Figure 2E illustrates a low expression 
of S100A7 in the majority of the two subtypes, suggesting 

http://tisch.comp-genomics.org
https://cdn.amegroups.cn/static/public/TCR-23-2185-Supplementary.pdf
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Figure 1 Anoikis-related differential genes and associated regulatory factors in LUAD. (A) A total of 129 ARGs identified from TCGA-
LUAD cohort. (B) Forest plot of the first 32 ARGs by univariate Cox regression analysis (P<0.01). (C) Correlation network diagram between 
the first 32 ARGs. (D) CNVs of 32 ARGs in TCGA-LUAD. (E) Changes in chromosomal region of ARGs. LUAD, lung adenocarcinoma; 
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that S100A7 may be a good prognostic factor. Finally, we 
used the R package “GSVA” to analyze the differences in 
the enrichment levels of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways between two subtypes 
(Figure 2F).

Gene-expression pattern and immune-cell infiltration in 
two subtypes

We can see from Figure 3A that NTRK2, DAPK2, BDNF, 
ZEB2, ITGA8, KL, GDF2, CEACAM8, CLDN18 and 
IRX1 expression were higher in Cluster B than in Cluster 
A; high expression patterns were also shown for other 
ARGs. Moreover, ssGSEA results showed a significantly 
lower proportion of activated CD4 and regulatory T cells in 
population B than in population A (Figure 3B); other immune 
cell infiltration levels were also significantly different.

Construction and validation of anoikis-related prognostic 
signatures

In the univariate Cox regression analysis, we identified 
seven ARGs associated with the OS rate using the LASSO 
analysis (Figure 4A,4B). In the ensuing multivariate Cox 
regression analysis, six ARGs were independently selected 
as predictors for the prognosis of LUAD, establishing the 
risk model. In Table S2, the correlation coefficients based 
on the six ARGs characteristic are listed. The risk score is 
calculated as follows: Risk score = (0.300 × level of PDGFB 
expression) + (0.160 × level of HMOX1 expression) + (0.521 
× level of GDF2 expression) + (0.582 × level of LDHA 
expression + (0.068 × level of S100A7 expression) + (0.232 
× level of CDX2 expression). The data were divided into 
train and test groups and the samples from each group were 
divided into high and low-risk groups according to the 
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Figure 4 Identification of anoikis-related prognostic signature. (A) LASSO analysis with cross-validation to identify six prognostic ARGs. 
(B) Coefficient plot of six prognostic ARGs. (C,D) KM curves for two subtype risk groups. (E,F) Time-dependent ROC curves for 1-, 3- 
and 5-year OS. (G) Risk score in two ARGclusters. (H) Alluvial diagram of two subtypes and living status. (I) Heat map of the expression 
patterns of the six ARGs. LASSO, least absolute shrinkage and selection operator; ARGs, anoikis-related genes; KM, Kaplan-Meier; ROC, 
receiver operating characteristic; OS, overall survival; AUC, area under curve.
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median value of the risk scores. The K-M curves revealed 
a worse prognosis for patients in high-risk group in both the 
train and test groups (Figure 4C,4D). This model showed 
good predictive performance for the time-dependent ROC 
curves for OS at 1, 3, and 5 years in both the train and test 
groups (Figure 4E,4F). As seen in Figure 4G, the risk scores 
are clearly different in the two subtypes, and Figure 4H shows 
the differences in ARGs clusters, risk scores and life status. 
We visualized the expression of the six prognostic ARGs in 
high-risk and low-risk groups by heatmap and could see that 
GDF2, CDX2, PDGFB, HMOX1, LDHA, and S100A7 had 
higher expression in the high-risk group (Figure 4I).

Analysis of immune activity in LUAD

Tumor cells may have inherent resistance to cancer therapy, 
often conferred by nonmalignant cells that constitute 
the tumor microenvironment (TME) (14). Therefore, 
we further investigated the TME in both high and low-
risk groups, and the “CIBERSORT” R script was used to 
measure the relative proportion of immune cell infiltrations. 
Figure 5A shows the relative percentage of each immune 
cell that corresponds with their risk score. As seen in Figure 
5B, the macrophage M0 ratio became gradually larger with 
higher score (R=0.24). In addition, macrophages represent 
a large proportion of immune cells in LUAD patients 
(Figure 5C). This finding suggests that targeted therapy 
against macrophages could be a therapeutic approach 
for LUAD (14). We can use the correlation plot among 
immune cells from LUAD patients to better understand the 
TME composition (Figure 5D). In addition, six genes for 
model construction were associated with several immune 
cell infiltrations (Figure 5E). Moreover, in examining the 
stromal cell component of the TME, assessing immune 
cell infiltration levels, and estimating tumor purity, we 
computed immune scores, stromal scores, and estimation 
scores for the high-risk and low-risk groups based on the 
estimation of expression profiling scores (Figure 5F). Finally, 
the potential sensitivity to clinical agents was increased for 
both the high and low-risk groups (Figure S1).

Prognostic nomogram for patients with LUAD

Based on the clinicopathological characteristics and risk 
scores of the ARGs, we developed a nomogram model that 
could complete the prediction of the survival probability 
at 1, 3 and 5 years for LUAD patients (Figure 6A). The 
nomogram construction relies on regression coefficients’ 

magnitudes for all predictors, establishing a scale that 
assigns scores based on each predictor’s value. In instances 
with multiple predictors, a cumulative score is calculated, 
facilitating the subsequent computation of the probability 
of correlation with the occurrence of a clinical outcome 
for each patient, determined by their total score. We used 
calibration plot to verify the accuracy of this nomogram 
(Figure 6B) and decision curve analysis (DCA) to evaluate 
whether this strategy would benefit patients. DCA showed 
that this nomogram was a good predictor for predicting 
both short-term and long-term survival of LUAD patients 
(Figure 6C-6E). We can see in the nomogram that the 
cumulative risk curves show a gradual increase in OS 
risk among the LUAD patients in the high-risk and low-
risk groups (Figure 6F). Figure 6G shows that the main 
influencing factors in the nomogram. In conclusion, the 
nomogram based on risk score can be a valid method for 
clinical prediction of prognosis in LUAD patients.

Analysis of tumor immune microenvironment

As shown in Figure 7A, 25 cell populations with 12 cell types 
are included in the NSCLC_GSE127465 dataset. HMOX1 
is found mainly in malignant cells and immune cells, but is 
rarely expressed in fibroblasts. PDGFB is mainly expressed 
in endothelial cells, but is barely expressed in immune cells. 
GDF2 and CDX2 are barely detected in TME, LDHA 
is mainly expressed in immune cells and malignant cells. 
S100A7 is barely detected in TME (Figure 7B,7C).

Expression validation of the prognostic genes

The expression of prognostic genes was analyzed in 
the training set (TCGA-LUAD). We observed higher 
expression of PDGFB, HMOX1 and GDF2 in the normal 
group than in the tumor group (Figure 8A). We further 
verified the expression trend by RT-qPCR experiments 
(Figure 8B).

Discussion

Since patients with metastatic LUAD have a poor 
prognosis and a low five-year survival rate, early diagnosis 
is essential for improving survival time for patients with 
LUAD. However, although the novel prognostic model we 
developed with six ARGs had good predictive performance, 
the number of markers used is insufficient. Consequently, 
more screening biomarkers are urgently needed to help 

https://cdn.amegroups.cn/static/public/TCR-23-2185-Supplementary.pdf
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diagnose early LUAD and improve the survival rate of 
LUAD patients.

PDGFB is involved in the process of recruiting PDGF 
receptor β-positive pericytes to the vasculature (15-17). 

PDGFB has been reported to stimulate cell proliferation, 
survival and migration in a variety of tumor cells, including 
LUAD (18). The oncoprotein PDGFB has been reported 
to be essential for cancer proliferation and migration (19). 
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Figure 8 Expression validation of the prognostic genes. (A) Expression of prognostic genes in training set (TCGA-LUAD). (B) Comparison 
of expression differences of six genes in RT-qPCR experiment. *, P<0.05; ns, P≥0.05. LUAD, lung adenocarcinoma; TCGA, The Cancer 
Genome Atlas; RT-qPCR, reverse transcription quantitative polymerase chain reaction. 

These results suggest that PDGFB contributes to lung 
adenocarcinogenesis, which was consistent with our data 
indicating that PDGFB is highly expressed in high-risk 
groups. Given the significant role of the oncoprotein 
encoded by this gene in cancer cell proliferation and 
metastasis, further studies on PDGFB have the potential for 
clinical application.

HMOX1 could help promote tumor progression and 
metastasis in several cancers, including LUAD, and is 
expressed in malignant tumor cells and tumor associated 

macrophages (TAM) (20). HMOX1 is an anti-apoptotic, 
antioxidant and anti-inflammatory protein that promotes 
not only metabolic reprogramming but also antioxidant 
defense (21). Moreover, it is possible that HMOX1 can 
promote LUAD metastasis by affecting macrophages and 
mitochondrial complexes (22). In our data, HMOX1 was 
overexpressed in the high-risk group and the proportion of 
macrophages M0 increased progressively with increasing 
risk score, and we searched for new therapeutic approaches 
by investigating the effect of HMOX1 on TAM.
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GDF2, also known as BMP9, belongs to the transforming 
growth factor (TGF)-β superfamily, mainly generated by 
the liver, and induces osteo/odontogenic differentiation 
of mesenchymal stem cells (MSCs) (23,24). Alk1 is a BMP 
receptor expressed on endothelial cells (25). It has been 
reported that GDF2 overexpression in LUAD tumors 
delays tumor growth and promotes vascular normalization 
in LUAD tumors, resulting in significant alterations in 
the TME characterized by reduced hypoxia and increased 
immune infiltration (26). In addition, GDF2 has been 
reported to increase anoikis sensitivity in epithelial cells (27). 
However, studies on the role of GDF2 in LUAD are scarce, 
and large-scale studies with more LUAD patients are still 
needed to confirm the relationship between GDF2 and 
LUAD.

LDHA is an essential member involved in glycolysis, 
catalyzing the conversion of pyruvate and NADH to lactate 
and NAD+ (28). LDHA tyrosine phosphorylation promotes 
cancer cell metabolism and tumor cell proliferation through 
the modulation of dysregulated NADH/NAD+ redox 
homeostasis of fibroblast growth factor receptor 1 (FGFR1) 
in LUAD cells (29). The phosphorylation of LDHA at 
Y10 has been proven to enhance the invasiveness and anti-
inflammatory properties of cancer cells (30). LDHA is an 
emerging anticancer target that has an important role in 
regulating cancer metabolism and anoikis resistance. In 
our data, LDHA was overexpressed in the high-risk group, 
and inhibitors targeting LDHA have potential for clinical 
application in the treatment of LUAD.

Increased S100A7 protein expression has been described 
in lung cancer and correlates with poor prognosis (31), 
and its overexpression is significantly associated with 
the early stages of many cancers (32,33). However, the 
function of S100A7 expression in lung cancer tissues is not 
clear, S100A7 protein may act as a chemokine and serum 
marker for lung cancer (34). S100A7 has also been shown 
to promote the transdifferentiation of adenocarcinoma to 
squamous carcinoma in lung cancer cells (35). In addition, 
S100A7 enhances macrophage infiltration (36).

CDX2 is a transcriptional regulator of several genes 
responsible for cell proliferation, differentiation and 
migration (37). CDX2 expression reduction can lead to tumor 
metastasis (38). It has been reported that the synergistic effect 
of simultaneous deletion of CDX2 and NKX2-1 activates 
the metastatic program of LUAD (39). Moreover, CDX2 
expression was found to be a reliable marker for determining 
the colorectal origin of pulmonary metastases (40). Recent 
reports suggest that CDX2 expression can be detected by RT-

PCR and immunohistochemistry in primary LUAD (41).
For these six bases, we conducted RT-qPCR validation, 

and the PCR results were consistent with those analyzed in 
our experiment, which further confirmed the therapeutic 
potential of these six genes in LUAD.

TME research is meaningful in that it can help 
physicians develop new targeted therapeutic agents and 
observe tumor metastasis progression. Our analysis of 
the immune cell composition shows a significantly higher 
proportion of macrophages among the high-risk group, 
suggesting that macrophages have a critical effect in LUAD 
development. In addition, both S100A7 and HMOX1 were 
associated with macrophages, and in particular, HMOX1 
showed the highest related coefficient to macrophage 
M0. Thus, the HMOX1/macrophage M0 axis may be an 
interesting pathway.

However, there are many limitations in this study. Due to 
the limited amount of data and cell-to-cell heterogeneity, we 
had problems calibrating predictive models and reflecting 
the accuracy of ARGs on the prognostic impact of LUAD 
patients. Moreover, the results of TME were obtained from 
data analysis. The role of anoikis in targeted therapy and 
immune microenvironment needs to be confirmed with 
further study.

Conclusions

Our novel 6-ARG nomogram model can sufficiently predict 
the survival of patients with early-stage LUAD, while the 
nomogram may help to develop personalized treatment 
plans for patients. We are confident that this nomogram 
model will serves as a good predictor of the survival of 
patients with LUAD, and the validated gene will provide an 
effective therapeutic target for the treatment of LUAD. 
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