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A B S T R A C T

Background: Genetic factors that influence kidney traits have been understudied for low frequency and
ancestry-specific variants.
Methods: We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI
Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for esti-
mated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic
ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS
data and adjusted for age, sex, study, and ethnicity.
Findings: When testing single variants, we identified three novel loci driven by low frequency variants more
commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%,
P = 6.1 £ 10�11; METTL8, rs116951054, MAF 0.09%, P = 4.5 £ 10�9; and MATK, rs539182790, MAF 0.05%,
P = 3.4 £ 10�9). We also replicated two known loci for common variants (rs2461702, MAF=0.49,
P = 1.2 £ 10�9, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 £ 10�9, CDK12). Testing aggregated
variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to iden-
tify replication samples for ancestry-specific variants.
Interpretation: This study highlights challenges in studying variants influencing kidney traits that are low fre-
quency in populations and more common in non-European ancestry.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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RESEARCH IN CONTEXT

Evidence before this study

Several loci have been identified for estimated glomerular fil-
tration rate (eGFR) in genome-wide association studies. Genetic
factors that influence kidney traits have been understudied for
low frequency and ancestry-specific variants.

Added value of this study

The main findings of this study are the identification of ances-
try-specific rare variants associated with eGFR either individu-
ally or in aggregate units within a gene. We also showed the
utility of estimating ancestry-specific allele frequencies for rare
sequencing variants using local ancestry to identify ancestry-
related replication samples when using multi-ethnic studies.
This study also highlights challenges for the study of rare/low
frequency variants in multi-ethnic studies, including finding
suitable samples for replication of ancestry-specific variants.

Implications of all the available evidence

Rare and low frequency variants are more likely to be popula-
tion-specific and their genetic contribution to eGFR variation is
mostly unknown. Our study provides important information
for future WGS studies of rare SNVs for kidney traits, with
implications for study design of variant discovery and replica-
tion, particularly when studying diverse ancestry populations.
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1. Introduction

Reduced kidney function, assessed with the estimate glomerular
filtration rate (eGFR), defines chronic kidney disease (CKD). Low
eGFR is associated with cardiovascular disease morbidity [1], mortal-
ity [2,3], poor quality of life and high health care costs for its treat-
ment [4]. CKD has a high burden among non-European ethnic groups
[5]. In the U.S., the burden of CKD in African American is attributed in
part to the presence of ancestry-specific genetic variants, i.e., APOL1
high-risk genotypes [6]. Genetic factors and underlying pathways
influencing eGFR in populations can provide insights into CKD occur-
rence, mechanistic pathways, and downstream complications.

Genetic studies that included ethnically diverse populations have
yielded important gains in gene discovery and have advanced fine
mapping by leveraging differences in allele frequencies and in coin-
heritance of genetic variants across ancestral groups [7,8]. In addi-
tion, substantial evidence indicates that ancestry-specific genetic
variants contribute to CKD [6,9]. The current study expands on prior
genetic studies of kidney loci through interrogation of rare and low
frequency variants from whole genome sequencing (WGS) in the
National Heart Lung and Blood Institute’s Trans-Omics for Precision
Medicine (TOPMed) program. We aimed to understand a role of rare
and low frequency variants that individually or in aggregate influence
eGFR, and to identify ancestry-specific genomic regions associated
with eGFR in African Americans and Hispanics/Latinos through
admixture mapping. Using a newly described statistical approach
based on local ancestry, we estimated ancestry-specific allele fre-
quencies for rare sequencing variants and showed their utility for
identifying ancestry-related replication samples.
2. Methods

2.1. Ethics statement

All human research was approved by the relevant institutional
review boards and conducted according to the Declaration of Hel-
sinki. All participants provided written informed consent.

2.2. Study design and participants

The study included 23,732 participants from ten studies with phe-
notype data and WGS from the TOPMed Freeze 5b, for five racial/eth-
nic groups: European Americans, African Americans, East Asians,
Hispanic/Latinos, and Native Americans. We followed TOPMed guide-
lines when reporting race/ethnicity and ancestry (WEB Resources).
Admixture mapping analyses included a subset of 9,479 admixed
African Americans and Hispanics/Latinos. The following studies con-
tributed data: Old Order Amish, Atherosclerosis Risk in Communities
(ARIC), Framingham Heart Study (FHS), Genetic Epidemiology Net-
work of Arteriopathy (GENOA), Genetic Epidemiology Network of
Salt Sensitivity (GenSalt), Genetic Study of Atherosclerosis Risk (Gen-
eSTAR), Hypertension Genetic Epidemiology Network (HyperGEN),
Jackson Heart Study (JHS), Multi-Ethnic Study of Atherosclerosis
(MESA) and Women’s Health Initiative (WHI). Demographic, clinical
data and kidney phenotypes were obtained from study clinical visits.

2.3. Phenotyping procedures

We performed centralised harmonization of the phenotype and
eGFR was calculate using the serum creatinine-based Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation [10]. For
studies with serum creatinine assayed before 2009 using a Jaffe assay,
we multiplied the serum creatinine value to 0.95. The CKD-EPI eGFR
estimation uses a race term for black race to account for biological
variations in non-GFR determinants. This equation has been widely
used in both research and clinical care, although some concerns have
been raised related to race component of the equation [11]. To
account for differences in trait distribution by study and among eth-
nic groups, eGFR was inverse normalised within study and racial/eth-
nic groups and then rescaled to recover original trait variance [12].
Therefore, results are reported using units of ml/min/1.73 m2.

2.4. Whole genome sequencing data generation and quality control

Contributing studies had WGS from TOPMed Freeze 5b. WGS was
performed at an average depth of 38x using DNA from blood as previ-
ously reported4. Processing of whole genome sequences was
harmonised across genomic centres using a standard pipeline (see
URL in the Web Resources section). Briefly, participants were
sequenced at the Broad Institute, the Northwest Genomic Center at
the University of Washington, and the New York Genome Center.
GeneSTAR samples were sequenced at Macrogen and Illumina. Cen-
tral quality control and variant calling was performed jointly at the
University of Michigan Informatics Resource Center. Further quality
control that focused on sample identity was performed at the Univer-
sity of Washington Data Coordinating Center. All methods are
described on the dbGaP website at: https://goo.gl/ntuJbR. After site
level filtering, TOPMed freeze 5b consisted of ~438 million single
nucleotide variants (SNVs) and ~33 million short insertion-deletion
(indel) variants. Most indels were singleton or rare, with only 1�2%
with allele frequency > 1%. Read mapping was done using the 1000
Genomes Project reference sequence versions for human genome
build GRCh38. Functional annotations were performed using the
WGSA Annotator [13], and WGSAParsr was used to generate simpli-
fied WGSA annotation files and variant grouping files for gene-based
aggregate tests (see URL in the Web Resources section). Principal

https://goo.gl/ntuJbR
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components (PC) of ancestry were estimated among all samples
using PC-Relate and PC-AiR [14, 15]. We used the Omics Analysis,
Search and Information System (OASIS) based on TOPMed data for
the included individuals to calculate linkage disequilibrium among
SNVs and to plot genomic regions (see URL in the Web Resources sec-
tion).

2.5. Statistical methods

2.5.1. Single variants association analysis and gene-based collapsing
analysis

Association analyses were performed in a cloud computing envi-
ronment under DNAnexus [16] (see URL in the Web Resources sec-
tion).

Single variant association test. We fitted a linear mixed model
using covariates of age, sex, and categories of study, race/ethnicity,
and case-control status as needed. To account for genetic similarity
among subjects, we used the genetic relationship matrix estimated
from the WGS data from PC-Relate to specify the random effects
covariance structure. We allowed for heterogeneous residual vari-
ance components, and grouped subjects by study, race/ethnicity, and
case-control status. We used the Wald test for single variant associa-
tion analyses of 43,622,178 autosomal variants filtered for a minor
allele count > 10. The significance threshold was p < 5.0 £ 10�9,
which has been determined to be the appropriate genome-wide
threshold for sequencing studies [17, 18]. We estimated the pheno-
typic variance explained (PVE) by each variant and their joint PVE
using methods described in Supplemental material. Although this
study is focused on rare and low frequency variants, we also exam-
ined the association of previously reported common variants at eGFR
loci (Genome Catalogue, see URL in the Web Resources section) and
the presence of secondary associations at the loci that were genome-
wide significant in our single variant analyses using conditional anal-
yses. The conditional analyses used the most significant SNV in our
data as a covariate and examined if there were additional SNVs with
a p-value lower than the index SNV within a window of 1 Mbase of
the index SNV.

Gene-based association tests. For gene-based tests, variants were
aggregated by GENCODE genes (v24). Variants within a gene were fil-
tered to retain a set of rare variants (minor allele frequency [MAF] <
1%) that were predicted as loss-of-function variants (LoF), protein
altering small deletions/insertions (indels) or synonymous SNVs
which have a deleterious functional annotation (FATMM-MKL
score>0.5 or MetaSVM score > 0 for missense SNVs). Variants in a
5 kb window promoter region (upstream of transcription start site
[19] and in a FANTOM5 [Functional ANalyses Through Hidden Mar-
kov models] peak) [18] and variants at the first intron of genes were
also included. Genes with at least 10 individuals with at least one
copy of any alternative allele were included. We performed both bur-
den and SKAT tests and used a conservative significance threshold of
p < 1.6 £ 10�6 based on Bonferroni correction for two tests on each
of 16,054 genes included in analyses. To identify the contribution of
one or more variants within genes with a gene-based significant
association, we tested the association of each single variant within
the aggregate gene unit. We performed leave-one-variant-out analy-
ses with variants aggregated within a gene for gene-based tests.

2.5.2. Admixture mapping
These analyses included only self-identified African American,

African Caribbean, or Hispanic/Latino TOPMed participants
(n = 20,048) of which 9,479 had eGFR data. The reference panel for
local ancestry inference included 37 African, 35 European, and 20
Native American individuals with phased sequence data available
from the Simons Genome Diversity Project (SGDP) [20]. After remov-
ing very low frequency variants (minor allele count < 2 in SGDP or <
5 in TOPMed), 9,137,968 autosomal SNVs remained for analysis. We
used the HapMap genetic map [21], lifted over to build 38, to esti-
mate genetic positions for each variant, which was needed for infer-
ring local ancestry and to estimate the significance threshold using
Significance Threshold Estimation for Admixture Mapping (STEAM).
The various maps are highly correlated at the scale that is relevant
for admixture mapping (Mbase) [22] and our prior studies have
shown no differences when comparing two different choices of
genetic maps for inferring local ancestry [23]. We inferred the num-
ber of alleles inherited from African, European, and Native American
ancestral populations for each admixed individual using RFMix (ver-
sion 1.5.4) with a window size of 0.1 cM. Generations since admix-
ture (6 for African American samples and 10 for Hispanic/Latino
samples) were chosen to reflect estimates from previous studies [24,
25]. To estimate admixture proportions for each individual, we calcu-
lated the genome-wide average local ancestry. We used an iterative
procedure to estimate kinship coefficients adjusted for population
structure and admixture, which were used in our linear mixed model
to adjust for relatedness in admixture mapping. In the final step of
this iterative procedure, we used our estimated admixture propor-
tions in place of principal components.

We performed admixture mapping using a linear mixed model
(GENESIS) on each ancestral group (African, European, and Native
American) separately [26]. eGFR was the outcome variable. Models
were adjusted for sex, age, study and race/ethnic group (African
American or Hispanic/Latino) and admixture proportions as fixed
effects, and ancestry-adjusted kinship as a random effect. We allowed
for heterogeneous variance within groups defined by study and race.
To account for multiple testing, we used the genome-wide threshold
of p < 5.4 £ 10�6, estimated using STEAM [23]. As secondary analy-
ses, admixture mapping was conducted separately in the African
American and Hispanic/Latino subjects; significance thresholds were
p < 1.6 £ 10�5 (testing just the African ancestral component) and p <

3.5 £ 10�6 in the African American and Hispanic/Latino subsets,
respectively.

2.5.3. Estimating ancestry-specific allele frequencies
We used our local ancestry calls to estimate ancestry-specific

allele frequencies for loci of interest using the recently developed
method Ancestry-Specific Allele Frequencies Estimation (ASAFE).
RFMix only infers local ancestry at loci that are present in both the
admixed sequence data and the reference panel, so inferred local
ancestry will not be available at any loci that are not present in SGDP.
However, because local ancestry segments extended over multiple
loci, we can fill in the missing local ancestry calls at a locus of interest
with reasonable confidence by looking at the inferred local ancestry
at neighbouring loci. We can then use the local ancestry calls to esti-
mate the ancestry-specific allele frequency for each ancestral popula-
tion at a locus by calculating the frequency of the allele across
haplotypes in our sample with local ancestry assigned to each ances-
tral population (African, European, and Native American). To account
for uncertainty in the phase of genotypes relative to the local ances-
try calls (particularly at loci where local ancestry was not inferred
directly by RFMix), we used the EM algorithm approach implemented
in the ASAFE program [27]. We ran ASAFE using local ancestry calls
for the 9,479 subjects included in our admixture mapping analysis.

2.5.4. Replication
Replication was performed using ancestry-specific allele fre-

quency information. For East Asian SNVs, we used data from the Rare
Variants for Hypertension in Taiwan Chinese (THRV) study, which
was sequenced in the TOPMed freeze 8 using methods described
above. Additional replication for East Asians were obtained from a
WGS of 1,524 participants (32%, women, mean age 49.5 years, mean
eGFR 102.5 ml/min/1.73 m2) from the BioBank Japan Project (BBJ).
BBJ is a multi-institutional hospital-based study that collaboratively
collected DNA and serum samples from the participants, mainly of
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Japanese ancestry, with a diagnosis of any of 47 diseases [28, 29]. Par-
ticipants on dialysis, and those with serum creatinine level outside of
three times of interquartile range of upper/lower quartile were
excluded. WGS had an average depth of 25.9x as described elsewhere
[30]. Rank-based inverse transformation of the eGFR residuals after
an adjustment for age, sex, and 47 disease affection status was used
as phenotype in single variant and gene-based analyses with an
adjustment for 20 top principal components as covariates. For the
gene-based analysis for MAF gene in the BBJ, 34 variants comprising
4 nonsynonymous SNVs with FATHMM-MKL score>0.5 or MetaSVM
score>0, and 30 variants within the first intron were tested. Burden
test was conducted using rvtest software and SKAT and SKAT-O using
EPACTS software.

For replication of the Amerindian ancestry variant at chromosome
19, we used data from the Hispanic Community Health Study/Study
of Latinos (HCHS/SOL), which was genotyped using a custom Illumina
array and imputed to the TOPMed Freeze 5b multi-ethnic reference
panel. HCHS/SOL analyses were performed among individuals with
higher Amerindian ancestry proportion (Mainland sample, n = 6,767
individuals) [9]. In addition, we attempted to replicate our findings in
two cohorts of southwest American Indians collected by the Intramu-
ral National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK) program; namely, participants in a community-based longi-
tudinal study who are predominately of Pima Indian heritage, and
participants from the Family Investigation of Nephropathy and Dia-
betes (FIND), a study of diabetes and diabetic nephropathy in adults.
The SNV rs539182790 was direct genotyped using Taqman on
Demand in these southwestern American Indian studies and statisti-
cal analyses followed the same protocols from TOPMed.
2.5.5. Bioinformatics
We performed a look-up of genomic coordinate overlap (hg38)

in the Roadmap Epigenomics and the Encyclopedia of DNA Elements
(ENCODE) consortium data [31, 32] across different tissues and sam-
ples. All datasets included had been released and passed quality con-
trol by respective consortia.
Fig. 1. Study design and approaches for disco
2.6. Role of funders

The funders had no role on the study design, execution or inter-
pretation of findings.
3. Results

Study design is shown in Fig. 1 and the characteristics of partici-
pants in Supp Table 1. The study comprised up to 23,732 TOPMed
participants from 10 multi-ethnic studies and five racial/ethnic
groups (36% African Americans, 50% European Americans, 9% East
Asians, 5% Hispanics/Latinos and 0.2% American Indians).

3.1. Single variant association results

Single variant analyses included the 23,732 participants, which
were analysed together using a genetic relationship matrix to
account for genetic similarities among subjects. Statistical analyses
accounted for differences in the eGFR distribution observed in these
groups. The quantile-quantile (Q-Q) plot for the WGS analysis is
shown in Supp Fig 1a (genomic control lambda 1.005). Genome-
wide significant associations were identified on chromosomes 1, 2,
15, 17, and 19 (Figure 2 Figure 3) and. The variants most significantly
associated with eGFR were located on chromosomes 1 (rs180996919,
MAF=0.04%, P = 6.1 £ 10�11, PVE 0.2%, intronic to PRKAA2), chromo-
some 2 (rs116951054, MAF=0.09%, P = 4.5 £ 10�9, PVE 0.1%, intronic
to METTL8) and chromosome 19 (rs539182790, MAF= 0.06%,
P = 3.4 £ 10�9, PVE 0.1%, intronic to MATK), were all rare and com-
bined explained 0.5% of the trait variance (Table 1). Two variants
overlap epigenomic annotations in tissues from the Roadmap Epige-
nomics Consortium: rs116951054 (DNAse I hypersensitive sites
[DHS], H3K4me1 kidney) and rs180996919 (DHS, H3K4me1 muscle).
The variants significantly associated with eGFR on chromosomes 15
(rs2461702, MAF=0.49, P = 1.2 £ 10�9, nearest gene GATM) and 17
(rs71147340, MAF=0.34, P = 3.3 £ 10�9, intronic indel to CDK12)
were previously reported [33]. Conditional analyses on identified var-
iants did not reveal additional independent associations at the GATM
or CDK12 loci (Supp Fig 2).
very, replication and follow-up studies.



Fig. 2. Manhattan plot for (a) WGS single-variant test, (b) SKAT test, and (c) Burden test. The horizontal line represents the significance threshold.
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Fig. 3. Regional plots for significant associated loci in single variant analyses. (a) Chromosome 1 locus; (b) Chromosome 2 locus; (c) Chromosome 15 locus; (d) Chromosome 17
locus; (e) Chromosome 19 locus. Each point represents a SNV, plotted with their p-value (on a -log10 scale) as a function of genomic position (NCBI build 38). The index variant is
represented by the purple symbol. The color coding of all other SNPs indicates LD with the index variant in haplotypes inferred from the TOPMed data: red r2�0.8; gold
0.6 � r2<0.8; green 0.4 � r2<0.6; cyan 0.2 � r2<0.4; blue r2<0.2; gray r2 unknown. The horizontal line represents the significance threshold.
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Fig. 3 Continued.
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3.2. Gene-based test results

We next tested variants aggregated within genes (n = 16,054
genes) using a burden test that combined all variants in a score test,
and the SKAT test, which allows for differences in the direction of
effects for rare variants. Q-Q plots are shown in Supp Fig 1b-c,
respectively. Although the burden tests were not significant, the
SKAT analyses identified a significant association for the MAF gene,
Table 1
Significant findings for single trait genome-wide association of eGFR.

Chr:position (hg38) SNV/indel Coded allele/Other Minor all
Freq Coun

1:56,690,933 rs180996919 C/G 0.0004
2:171,363,037 rs116951054 A/C 0.0009
15:45,355,229* rs2461702 G/A 0.49
17:39,466,919* rs71147340 C/CT 0.34
19:3,799,817 rs539182790 G/GGT 0.0005

SNV, single nucleotide variant. Significance threshold 5.0 £ 10�9; betas are
allele. Freq, frequency of coded allele.
* Previously reported loci. Regulatory annotation for rs180996919 (DHS,
reflecting differences in these approaches for testing rare variants
(Supp Table 2). Sixty-one variants including 32 singletons contrib-
uted to the MAF gene-based association in SKAT analysis. To investi-
gate the contribution of single variants to the association at this gene,
we performed single variant association analyses for each variant in
the gene and identified a missense variant (rs1230233783, p.His191-
Tyr, AA 191, MAF=0.008) contributing to most of the association with
eGFR (P = 1.27 £ 10�6). The SKAT analyses using a leave-one-variant-
ele Beta (SE)
(Coded allele)

p Gene Function
t

19 �14.56 (2.2) 6.1 £ 10�11 PRKAA2 Intronic
41 9.10 (1.55) 4.5 £ 10�9 METTL8 Intronic
23,170 �0.63 (0.10) 1.2 £ 10�10 GATM Intergenic
16,247 �0.57 (0.10) 3.3 £ 10�9 CDK12 Intronic
26 �9.69 (1.64) 3.4 £ 10�9 MATK Intronic

eGFR change in ml/min/1.73 m2 for each additional copy of the coded

H3K4me1 muscle) and rs116951054 (DHS, H3K4me1 kidney).



Fig. 4. Results from single variant analyses for ENSG00000178573 (MAF). (a) Effect
estimates by minor allele count (MAC). (b) Test statistic by MAC. (c) Results from the
leave-one-variant-out analyses at this gene. Note that rs1230233783 is the influential
SNV in the SKAT gene-based analyses.
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out strategy supported the strong contribution of rs1230233783 to
the gene-based association (Figure 4, a-c). This variant also overlaps
epigenomic annotations (H3K27ac ENCODE data). Additional genes
identified in gene-based analyses are shown in Supp Table 2.
3.3. Admixture mapping and estimating ancestry-specific allele
frequencies

Local ancestry determination and complete phenotype informa-
tion were available for 9,479 admixed individuals (8,303 African
Americans and 1,176 Hispanic/Latinos of 23,732 TOPMed participants
with eGFR (Supp Table 1). The inferred global ancestry proportions
for each African American and Hispanic/Latino individual and the
averages (and ranges) of African, Native American and European
ancestries are shown in Supp Fig 3. These results showed a large vari-
ation in ancestry proportions in Hispanics/Latinos in our data. There
were no genome-wide significant associations identified using over-
all sample (Supp Fig 4) or separately by African American (Supp Fig
5) or Hispanic/Latino ancestry (Supp Fig 6).

Local ancestry calls were used to estimate ancestry-specific allele
frequencies and rs539182790 allele at MATK was exclusively present
in the Native American ancestral population (MAF = 0.02) and not in
African (MAF = 3.1 £ 10�10) or European (MAF = 7.9 £ 10�4) ancestral
populations (Table 2).

3.4. Replication

Chromosome 1 and 2 variants had higher allele frequencies in
East Asians in the 1000 Genomes Project, so we attempted replication
in two East Asian studies, the THRV study, a cohort of participants
from Taiwan (n = 1,132) and the BBJ, a hospital-based study of 1,524
Japanese (Table 3). Although the p-values were not significant, there
was consistent direction of effects between our data and the BBJ
results for rs180996919 and rs116951054. We additionally
attempted replication of the gene-based MAF findings in BBJ, which
included 34 SNVs but the most influential missense SNV
rs1230233783 was not avaialble. The gene-based associations were
not significant for the burden test (P = 0.99) or SKAT test (P = 0.66).

We also attempted to replicate the Amerindian indel variant on
chromosome 19 (rs539182790) in HCHS/SOL Hispanics/Latinos for
individuals selected for high Amerindian ancestry (Mexican, Central
American, and South American) (n = 6,578, MAF=0.01, P = 0.30), and
among American Indians using several samples: participants of a
community-based study, who are full heritage Pima Indians
(n = 1,438, MAF=0.02, P = 0.86), non-full Pima Indians (n = 757,
MAF=0.01, P = 0.30) and American Indian participants of the FIND
study (about 1/3 Pima Indians and 2/3 other tribes, n = 836,
MAF=0.03, P = 0.74). Although the p-values were not significant, the
direction of effects was consistent with TOPMed for full heritage
Pima Indians and HCHS/SOL Hispanic participants (Table 3).

3.5. Trans-ethnic eGFR loci reported in the genome catalog

Among 91 trans-ethnic identified variants present in our study, 53
were nominally associated with eGFR in our WGS data (including
those reported on chromosomes 15 and 17). The most significant
associations of known eGFR loci were for GCKR (P = 2.7 £ 10�8),
UNCX (P = 3.5 £ 10�8), VEGFA (P = 1.2 £ 10�7), PRKAG2
(P = 2.8 £ 10�7), SHROOM3 (P = 2.6 £ 10�7), NFATC1 (P = 8.4 £ 10�7),
MPPED2 (P = 8.9 £ 10�7), UMOD (P = 1.3 £ 10�6), CPS1
(P = 4.4 £ 10�6), LRP2 (P = 3.0 £ 10�5), RGS14-SLC34A1
(P = 8.6 £ 10�5) and WDR37 (P = 8.7 £ 10�5) (Supp Table 3). There
was no evidence of secondary signals at these loci for further fine-
mapping. We note that there is some overlap of our samples with
published studies.

At the UMOD locus, the most significant associated SNV was
rs77924615, an intronic variant of PDILT that has been identified in
prior trans-ethnic GWAS meta-analyses of eGFR [7] (Supp Fig 7a).
Additional SNVs at the promoter of UMOD have been identified in
GWAS meta-analyses of eGFR in European ancestry (e.g.
rs12917707). To investigate why SNVs did not achieve genome-wide



Table 2
Estimated ancestry-specific allele frequencies for SNVs identified in single variant test and SKATWGS analyses using ASAFE.

Chr:position (hg38) SNV/indel (Gene) Test Estimated ancestry-specific allele frequencies

African European Native American

19:3,799,817 rs539182790 (MATK) Single variant test 3.1 £ 10�10 7.9 £ 10�4 2.2 £ 10�2

16:79,599,332 rs1230233783 (MAF) SKAT 1.4 £ 10�8 4.2 £ 10�8 2.0 £ 10�7

11:102,593,550 rs149589493 (MMP20) SKAT 7.4 £ 10�3 2.4 £ 10�8 8.9 £ 10�11

6:44,376,382 rs190658489 (SPATS1) SKAT 6.6 £ 10�4 3.2 £ 10�8 2.3 £ 10�7

17:82,054,634 rs78902137 (GPS1) SKAT 2.6 £ 10�2 2.0 £ 10�8 7.2 £ 10�16

SNV, single nucleotide variant. MMP20, SPATS1, GSP1 genes had suggestive association in gene-based SKAT analyses.
rs1230233783 alternative allele is more common in East Asians (see text).
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significance at this widely replicated locus, we compared association
estimates and p-values among European and non-European ancestry
samples, noting that rs12917707 was not in linkage disequilibrium
with rs77924615 in our data (Supp Fig 7b). These SNVs showed
larger variance in estimates in non-European compared to European
ancestry samples and had lower MAF in non-European compared to
European ancestry data (Supp Table 4).
4. Discussion

This is the largest genetic study addressing a role of low frequency
and rare variants on eGFR. Our study used deep coverage WGS (~38x)
from five ancestral groups for a comprehensive assessment of SNVs
across diverse populations. It also employed approaches suitable for
analyses of rare variants among populations with ancestral admix-
ture. By combining multi-ethnic groups, we optimised the power to
detect low frequency alleles shared among ethnic groups with
admixture, who may carry ancestry-specific rare variants. We
accounted for recent and ancestral relatedness in these analyses, and
genetic effects that are heterogeneous across ancestral groups, which
are usually not addressed in GWAS. Lastly, we allowed for heteroge-
neity in eGFR distribution observed among ethnic groups, as African
Americans showed larger eGFR trait variance than other groups.
Using this strategy, we identified ancestry-specific low frequency
variants influencing eGFR. We also confirmed associations for com-
mon variants at known loci, although this was not a main goal of this
study. Importantly, our study uncovered several challenges for the
study of rare ancestry-specific variants including finding suitable rep-
lication samples for validation of associations.

The main findings are related to 3 rare variants identified in single
variant analyses, which showed a large effect on decreasing eGFR
(chromosome 1) or increasing eGFR (chromosomes 2 and 19) and
estimates ranging from 10 to 14 ml/min/1.73 m2. However, the PVE
was small for each variant and their joined effects. Two identified
Table 3
Replication findings for single variant test.

SNV, coded allele (gene)/
Replication study

Number Minor Allele Count

rs180996919, C (PRKAA2)
THRV 1,113 4
BBJ 1,524 6
rs116951054, A (METTL8)
THRV 1,113 7
BBJ 1,524 4
rs539182790, G (MATK)
HCHS/SOL Hispanics* 6,767 201
Full Pima Indians 1,438 60
Non-Full Pima Indians 757 17
FIND American Indians 836 56

BBJ, BioBank Japan; FIND, Family Investigation of Nephropathy a
Study of Latinos; NA, not available.
* TOPMed freeze 5b imputed data.
SNVs more commonly observed in East Asians were located at
PRKAA2 (chromosome 1, rs180996919) and METTL8 (chromosome 2,
rs116951054, intronic). The PRKAA2 SNV in intron 2 of the canonical
mapped transcript (RefSeq NM_006252) is <500 bp 50 to exon 3 of
the gene. PRKAA2 codes for the alpha2 isoform of the AMP-activated
protein kinase (AMPK) subunit and knockdown of AMPKa2 has been
shown to enhance the epithelial-mesenchymal transition, secretion
of inflammatory factors, and concomitant fibrosis in proximal tubule
cells in a mouse unilateral ureteral obstruction model, through up-
regulation of beta-catenin and Smad3 [34]. Based on this empirical
evidence, we hypothesize that the rare allele is leading to down-reg-
ulation of the total expression of the gene, or a differential regulation
of a splice form involving the proximal exon. This SNV overlaps DHS
sites in muscle, and it may affect creatinine production instead of kid-
ney function. Little is known about METTL8 but very recent work sug-
gests that this gene is involved in mRNA editing through m3C
epitranscriptomic processes, a potentially new mechanism of renal
gene regulation [35]. Indeed, our functional annotation of the SNV
supported a regulatory function in kidney (H3K4me1 broadPeak, an
enhancer-associated mark in the Roadmap Epigenomics Consortium
data). We were unable to replicate these associations given the pau-
city of ancestry-specific WGS samples for East Asians and the low fre-
quency of these variants, with the variants not present in publicly
available GWAS studies.

The chromosome 19 indel rs539182790 is a rare intronic SNV of
the MATK gene. The MATK gene encodes for the megakaryocyte-
�associated tyrosine kinase, which plays a role in the signal trans-
duction of hematopoietic cells. Our SNV was identified as an
Amerindian variant based on ancestry-specific allele frequency anal-
yses. This SNV showed consistent direction of effect in replication
samples of additional Hispanic individuals, and in one of two samples
of southwest American Indians (Full Pima Indians) , although the rep-
lication p-values were not significant. Given the less known genetic
architecture of American Indians and little relevant reference data for
Beta (SE) p Direction of effect consistency

1.317 (2.853) 0.64 No
�0.114 (0.305) 0.71 Yes

�0.876 (2.039) 0.67 No
0.274 (0.365) 0.45 Yes

�0.963 (1.059) 0.36 Yes
�0.013 (0.053) 0.81 Yes
0.080 (0.077) 0.30 No
0.026 (0.076) 0.73 No

nd Diabetes; HCHS/SOL, Hispanic Community Health Study/
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this population, we cannot rule out that the lack of replication of the
Amerindian SNV is due to differences in ancestral backgrounds of
Hispanic/Latino participants and the southwest American Indians
who were used as replication.

Our findings also underscore the challenges to study low fre-
quency variants in multi-ethnic studies and admixed populations
when identified variants are specific to an ancestral group. Our gene-
based analyses identified associations with eGFR at the MAF gene.
MAF encodes a leucine zipper transcription factor, which has a role in
embryological development of kidney cells [36]. The gene is highly
expressed in adult kidney, with transcripts mapping to proximal
tubule cells in healthy human kidney cells [37]. A common variant
near MAF was associated with uric acid levels in East Asians [33] and
it was associated with accelerated eGFR decline among East Asian
diabetic subjects [38]. The most influential SNV at MAF gene-based
analysis, rs1230233783, is a missense variant with predicted deleteri-
ous effects based on multiple annotation algorithms including a Com-
bined Annotation Dependent Depletion (CADD) score of 13.4. This
SNV has both regulatory and coding-effect annotations (H3K27ac
peak in the ENCODE data), and further functional studies are needed
to assess its relevance in the context of human disease genomics.
However, additional studies are needed to confirm our findings as we
were not able to identify a suitable large sample for replication of the
SNV.

We also identified differences in allele frequency and a larger vari-
ance in effect estimates for two well-replicated UMOD common var-
iants when comparing non-European to European ancestry samples,
which may explain the lack of genome-wide association significance
at this locus in our multi-ethnic sample. Allele heterogeneity across
ancestries may also contribute to these findings.

To our knowledge, this is the first multi-ethnic WGS of eGFR. A
prior study from Iceland performed WGS in 2,230 individuals and
imputed sequenced variants into 81,656 chip genotyped individuals
[19]. This study identified low frequency missense and LoF variants
associated with serum creatinine at the SLC6A19, SLC25A45, SLC47A1,
RNF186 and RNF128 genes. The study was restricted to individuals of
European ancestry. A gene-based analyses of eGFR of variants in the
exome array identified associations at the SOS2 gene in individuals
mostly of European ancestry [39]. These genes were not significant in
our gene-based analyses.

Rare and low frequency variants are more likely to be population-
specific and their genetic contribution to eGFR variation is mostly
unknown. Our study provides important information for future WGS
studies of rare SNVs for kidney traits, with implications for study
design of SNV discovery and replication, particularly when studying
diverse populations. An important contribution of this study is the
application of a recently developed method to identify suitable repli-
cation populations for ancestry-specific variants identified in WGS,
for SNVs that may not be available in public repositories and/or have
unknown frequency in populations. Using ASAFE, we used local
ancestry to estimate the allele frequency of our significant variants
across populations and determined that the chromosome 19 variant
is Amerindian, while the most common variant at the MAF gene is
more common in East Asians. We expect that this approach will help
to guide replication efforts for WGS studies of complex traits in
multi-ethnic studies or admixed populations. Local ancestry in
admixture mapping approaches could provide additional discovery
when large WGS samples are available in multi-ethnic populations.

In summary, we performed a comprehensive genome-wide dis-
covery study of eGFR in multi-ethnic studies using WGS of over
23,000 individuals that included association and admixture mapping
approaches. We identified ancestry-specific low frequency variants
associated with eGFR in both single variant test and gene-based anal-
yses and used estimated local ancestry to guide replication of find-
ings. Our study exemplifies the challenges of studying diverse
populations including finding suitable replication samples for
ancestry-specific low frequency variants identified in multi-ethnic
studies and admixed populations. In addition, resources for func-
tional characterization of these identified WGS rare variants are cur-
rently not available.
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