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Patients with diabetes are over-represented among the total cases reported with
“idiopathic” pulmonary fibrosis (IPF). This raises the question, whether this is an
association only or whether diabetes itself can cause pulmonary fibrosis. Recent
studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes
causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with
increased DNA damage, an impaired DNA repair, and leading to persistent DNA
damage signaling. This response, in turn, induces senescence, a senescence-
associated-secretory phenotype (SASP), marked by the release of pro-inflammatory
cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives
fibrosis into remission, thus proving causality. These data can be translated clinically to
patients with type 2 diabetes, characterized by long-term diabetes and albuminuria.
Hence there are several arguments, to substitute the term “idiopathic” pulmonary fibrosis
(IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term
“diabetes-induced pulmonary fibrosis” (DiPF). However, future studies are required to
establish this term and to study whether patients with diabetes respond to the established
therapies similar to non-diabetic patients.
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INTRODUCTION

Current Stage of the “Pneumopathy” as a
Potential Diabetic Complication
In 1976, Schuyler et al. published the first paper suggesting that
the lung might be a target organ for diabetic complications (1).
Since then, many publications have reported the association of
type 1 or type 2 diabetes in several pulmonary diseases (2–9). Not
surprisingly, there were many conflicting results, potentially
explained by the heterogeneous nature of diabetes and its
metabolic comorbidities, but also by the different techniques
used for characterizing the lung physiology and the basal
characteristics of the patient cohort analyzed. Nevertheless, the
field has significantly developed overtime. Until now, there is
almost no pulmonary disease that has not been brought into the
context of diabetes, most recently a more severe course of a
SARS-CoV-2 infection (Box 1) (34). More importantly, despite
reduced alveolar gas exchange in patients with type 2 diabetes
(35, 36), a clinically proven accelerated decline in lung function
in diabetic patients (37–42), the pathologically proven
abnormalities of alveolar capillaries and the role of pulmonary
autonomic dysfunction (35, 43, 44), the issue of diabetes-induced
pulmonary dysfunction has not gained the attention it deserves.
Since most studies describe an association only, the lack of
proven causality thus far precluded the acceptance of the lung
as a bonafide target of diabetic complications.

Similarly, the association with insulin resistance (making a
causal relationship even more likely) could not change the
oversight of this research area in diabetes, nor did the finding
of reduced pulmonary function as a function of increased HbA1c
convince the mainstream diabetologists (38, 45). This also holds
for the well-known changes in cellular properties, potentially
contributing to lung disease in patients with diabetes. Among
these, oxidative stress (37, 43), formation of the inflammasome
(46), WISP mediated IL-6 dependent proliferation of human
lung fibroblasts (47), activation of metalloproteinases (48) and
others have been suggested to contribute to lung disease. In this
context, accumulation or co-localization of advanced glycation
end-products with cell surface RAGE has been described (49).
Altogether these might play a role in the accelerated aging of
human collagen in diabetes (50). Inflammation, the AGE-RAGE
interaction, diabetes-induced platelet-endothelial cell
interaction, changes in NOS activation, reduced NO
bioavailability, activation of the JAK/STAT pathway, and
release of growth factors have been described to occur in
diabetes (36). But many of these studies lack a clear
demonstration of the cause-effect relationship. Thus, despite a
high degree of plausibility, the definite proof of diabetes-related
activation of a mechanism causing a specific lung disease is still
limited. Therefore, it is not surprising that a recent comment
Abbreviations: DSB, double-strand-break; ICAM, intercellular adhesion
molecule; IL-1b, interleukin-1 beta; IL-8, interleukin-8; NAD+/NADH,
nicotinamide adenine dinucleotide; ROS, reactive-oxygen-species; SASP,
senescence-associated-secretory phenotype; TGF-b, Transforming growth factor
beta; TNF-a, tumor necrosis factor alpha.
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pointed to look deeply into diabetic pneumopathy as a diabetic
complication (9).

Reviewing the field of diabetes and lung disease, it becomes
evident that there is a large number of exciting data and many
clinical observations supporting an important role of the lung as
a diabetic target. This is contrasted by the general neglectance of
“diabetic pneumopathy” as an important topic in the field: It is
hardly presented at diabetes meetings, very rarely in educational
sessions on diabetic complications (30, 51). Thus, it is not a
generally accepted exciting topic in diabetes research and clinical
practice. This might, in part, be due to a large number of
observational studies compared to the lower number of studies
proving a cause-effect relationship.

Most importantly, from our point of view, the lack of
combinatorial studies which involves in vitro, animal-based in
vivo models and clinical cohorts, not just limits the
understanding but also blocks the deep insights this area,
which diabetologists require. However, in one study (5, 52)
there is now evidence that hyperglycemia is causatively linked
to the onset and progression of pulmonary fibrosis in patients
with diabetes, suggesting that these patients should be classified
as patients with diabetes-induced pulmonary fibrosis (DiPF).
REQUIREMENTS FOR RECOGNITION AS
A DIABETIC COMPLICATION

As stated above, the simple association of an increased risk of
lung disease in patients with diabetes does not necessarily mean
that the lung disease is caused by diabetes. It is well possible that
prenatal or early in life injuries prime an individual to develop
diabetes and a pulmonary disorder. Similarly, there are various
socio-economic factors that directly play an important role in the
progression of diabetic complications, which also need to be
considered. Thus, neither the sequelae of events nor its
correlation can prove causality. Ideally, a study in which
patients are divided into two groups, one with good and one
with poor glucose control, would give insight into a causal
relationship. However, if an agent such as insulin, known to
potentially affect lung function (3, 53–55), is used for treatment,
the endogenous effects of insulin might outweigh the impact of
better glucose control. Given this difficulty and the lack of an
intervention study with the prime goal of studying the effect of
glucose control by insulin or oral glucose-lowering drugs, other
criteria are needed to establish a certain disease as a complication
caused by diabetes.

The criteria used in this review include: (i) The clinical
association shown in more than one study, (ii) the similarity in
type 1 and type 2 diabetes, (iii) the proof of a cause-effect
relationship in animal models of type 1 and type 2 diabetes,
which includes its reversibility by interference with an assumed
pathogenic mechanism and if possible, and (iv) the translation of
the in vitro data and experimental diabetes findings into the
human situation. The following part of this review will determine
whether this holds in the case of pulmonary fibrosis in patients
with type 1 and type 2 diabetes. The reader might decide,
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whether there are sufficient data to state that there is diabetes-
induced pulmonary fibrosis (DiPF).
CLINICAL ASPECTS, DIABETES
TREATMENT AND THEIR CROSS
IMPLICATIONS ON LUNG

Several of the drugs used in the treatment of diabetic complications
havebeendescribed toaffect lung function. Forexample,metformin
has been associated with increased survival rates in patients with
lung cancer and pulmonary inflammation, including radiation
pneumonitis (56, 57), and reduced exacerbations of asthma (58,
59). In contrast, some studies point to an association of insulin use
with lung cancer (53, 54), an increased risk of asthma (60), and
alveolar microangiopathy (61). One study showed a protective role
of glibenclamide in asthma development (62), GLP-1 agonists a
decreased COPD exacerbation and reduced mortality (63), and
SGLT-2 inhibitors may induce pulmonary artery smooth muscle
cell relaxation (64).Therefore, substantial open questions remain
concerning the beneficial or detrimental effects of the drugs used to
treat diabetes on lung function.
DIAGNOSIS AND IDIOPATHIC
PULMONARY FIBROSIS

Idiopathic pulmonary fibrosis (IPF) is a term used for patients in
whom pulmonary fibrosis is diagnosed. However, none of the
well-known etiologies explaining the development of fibrosis can
be found (61). The problem starts with the difficulties in
diagnosis, since different diagnostic criteria have been
suggested by other investigators and organizations (65, 66).
The main point of discussion was whether subt le
histopathological differences between usual or nonspecific
interstitial pneumonia should be used for the differentiation of
distinct disease entities, since different diseases with defined
etiologies may result in the same histological picture.
Therefore, others state that IPF is a chronic, progressive and
irreversible lung disease of unknown origin (51, 67). IPF is now
accepted to be caused by genetic and environmental risk factors
with repetitive local micro-injuries to the alveolar epithelium
(61), leading to aberrant epithelial-fibroblast communications
and a myofibroblast-dependent thickening of matrix and
remodeling of lung interstitium (68, 69).
Frontiers in Endocrinology | www.frontiersin.org 3
Based on radiological andhistological criteria, IPF is diagnosed by
the identification of a pattern of interstitial pneumonia in patients
without evidence of an alternative cause (51, 66, 68–70). Thus, the
exclusion of other diseases is a challenge for the clinician.
Furthermore, several other illnesses linked to IPF have similar
appearances in x-ray and CT scans. This includes asbestosis,
chronic hypersensitivity pneumonitis, connective tissue diseases,
drug toxicity and others. A careful patient history covering its
exposition to environmental challenges, medications, socio-
economic factors, and symptoms for cardiac disease could play an
important role in diagnosis. In addition to clinical symptoms, such as
breathlessness, a reduced six-minute-walking test, lung function tests
including bodyplethysmography, diffusion capacity measurements
combined with amulti-detector CT scan andmaybe spiroergometry
or bronchoalveolar lavage and lung biopsy, might help to make the
correct diagnosis (51, 66, 70–74). The clinical course of patients with
IPF is heterogeneous, with a median survival of 2.5-3.5 years post-
diagnosis (68, 69). Many differentmechanisms potentially leading to
IPFhavebeendescribed, and it includes steady inflammation, genetic
and environmental interactions leading to epithelial injury, changes
in the unfolded protein response, absence of type 1 pneumocytes,
differentiation of fibroblasts to myofibroblasts, activation of matrix
metalloproteinases, changes in angiogenesis, and maladaptive repair
(65, 68, 69, 75). Since all of thesemechanisms are observedduring the
course of type 1 and type 2 diabetes, it is plausible to study the
association of pulmonary fibrosis with type 1 and type 2 diabetes.
PULMONARY FIBROSIS IN PATIENTS
WITH DIABETES

Several studies have reported an association of type 1 and type 2
diabetes with restrictive lung disease and pulmonary fibrosis (2–
5, 7, 10, 11, 23, 76–79). While several authors found a decline in
lung function in patients with diabetes (38–42), this does not yet
prove that this decline is due to pulmonary fibrosis. In 1990,
Lange and coworkers found that during a 5-year observation
period, that the forced expiratory volume in one second and
forced vital capacity declined faster in patients with type 2
diabetes (39), which was supported by the ARIC study (79).
Enomoto et al. calculated that the adjusted odds ratio for IPF due
to smoking was 5.4, while it was almost the same, namely 4.06 for
diabetes (61), suggesting that diabetes may be an independent
risk factor for IPF. This fits well with several studies showing that
the prevalence of diabetes among patients with IPF is higher than
in the general population or in other lung diseases (7, 10, 18, 76,
BOX 1 | Pulmonary diseases potentially associated with diabetes [reviewed in REF. (3)].

• Idiopathic pulmonary fibrosis (1, 10–13)
• COPD (14–17)
• Asthma (18–22)
• Pulmonary hypertension (23–26)
• Lung cancer (27–29)
• More severe course of SARS-CoV2 (30)
• Increased risk of inflammatory lung disease (such as tuberculosis, pneumonia, autoimmune and connective tissue diseases) (31–34)
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80–82). The meta-analysis by Vanden Borst et al. (8) provided
clear evidence of an association between diabetes and restrictive
lung disease, probably fibrosis. The relation of pulmonary
fibrosis to type 1 diabetes became likely because restrictive
lung disease was correlated with diabetic nephropathy (61),
known to be associated with renal fibrosis.

Furthermore, a relation toglycemic controlwas observed in type
1 diabetes. A study from Korea showed that metabolic syndrome
increased the odds ratio for restrictive lung disease (diagnosed by
FVC<80%, FEV1/FVC<0,7) to 1.4 (83), indicating that not only
type 1 diabetes but even early stages of type 2 diabetes, affect the
lung. An association of HbA1c with a restrictive spiroergometric
pattern (61) supported the view that restrictive lung disease is a
diabetic complication.Besides, patientswithdiabetes and restrictive
lung disease have a worse prognosis (67, 84). A recent study shed
additional light on this topic by using a combined approach of
clinical symptoms, clinical tests, including a six-minute-walking-
test, comprehensive lung function tests, and high-resolution CT, as
well as histology in patients with type 2 diabetes (5). In this cross-
sectional study, 48 non-diabetic patients, 68 patients with
prediabetes, 29 patients with newly diagnosed type 2 diabetes,
and 110 patients with long-term diabetes were thoroughly
examined for metabolism, all known diabetic complications, but
also for clinical parameters, such as breathlessness and 6-minute
walking test. Some patients underwent a multidetector computed
tomography, and in some patients, histology was also performed.
The study showed that breathlessness in combination with
restrictive lung disease was found in 9% of the patients with
prediabetes, 20% of patients with newly diagnosed diabetes, and
27% of patients with long-term type 2 diabetes (Figure 1A).

Most importantly, the presence of albuminuria increased the
risk for restrictive lung disease (OR 8.57) as compared to non-
diabeticpatients (Figure1B).Multidetector computed tomography
confirmed interstitial lung disease, and histological analysis
confirmed the presence of increased alveolar septal fibrosis. There
was a relation between clinical symptoms and the severity of lesions
observed in CT scans. However, there was no typical or uniform
morphological appearance in this small series ofCT scans since two
patients had subtle and mild intra- or interlobular reticulations,
other sub-pleural intralobular reticulations, and ground-glass
opacities. In contrast, the patient with the most severe clinical
symptoms showed marked sub-pleural intralobular reticulation.
Recently, one study with a follow-up of three years was published
(61). Here, the decline of lung function in 3 years was not
significantly higher in patients with type 2 diabetes than in non-
diabetic patients. Furthermore, having more patients studied, the
progression of clinical symptoms (breathlessness and 6-minute
walking test) correlated well to the CT scan. Of note, even in this
more extensive series, no diabetes-specificCT scan pattern could be
detected. Thus, more comprehensive studies involving diabetic
patients with IPF, but excluding those with other pulmonary and/
or cardiac disease, are needed to determine whether there exist any
diabetes-specific signatures in high-resolution CT scans of diabetic
patients with IPF.

Overall, both studies together strongly suggest to systematically
study diabetic patients for pulmonary fibrosis. This includes a
Frontiers in Endocrinology | www.frontiersin.org 4
detailed history, the 6-minute-walking-test, and, if indicated, a
multi-detector high-resolution CT scan (Box 2). These data make
it very likely that diabetes is indeed responsible for developing
pulmonary fibrosis, especially since markers of glycemic control
were predictive of a declining lung function in this study.Whilst the
data are convincing for patients with type 2 diabetes, studies using
clinical, functional, andCTscansaremissing for type1diabetes. For
the final proof, a randomized controlled study of poor and
intensified glycemic control patients with type 1 diabetes with
insulin and patients with type 2 diabetes using oral anti-
hyperglycemic drugs is required. It would help to learn more
about the assumed pulmonary side effects of insulin. However, at
themoment, the likelihood of this kind of study is relatively low. As
long as such a clinical study is lacking, animal studies will have to
provide the final proof of the existence of DiPF.
SOCIO-ECONOMIC CONSIDERATION IN
DIABETES-ASSOCIATED IPF DIAGNOSIS

Like other infectious diseases, the onset and progression of
diabetic complications are directly influenced by the socio-
economic status of the patients. Among the common socio-
economic factors, such as education level, income and
occupation are directly linked to diabetic complications (89–
91). Persistent ignorance or poor understanding of future
A

B

FIGURE 1 | Clinical characterization of diabetic patients with restrictive lung
disease. (A) Percentages of patients with restrictive lung disease shown in bar
graphs according to group [as shown (5)]. (B) Calculated odds ratios (OR)
with 95% confidence interval for restrictive lung disease plotted on x-axis for
selected clinical parameters in patients with type 2 diabetes and albuminuria
as compared to non-diabetic patients [modified as described earlier (5)].T2D,
type 2 diabetes; OR, odds ratio.
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complications is also linked to early school dropouts and the
premature onset of late-stage complications (89, 90). However,
such detailed studies have yet not been described in the context
of diabetic lung fibrosis. Still, in several studies, it has been shown
that low socio-economic groups are mostly associated with
insufficient health care facilities and shows an inverse
relationship to lung fibrosis, asthma, pulmonary hypertension
and other chronic respiratory diseases to the socio-economic
status. Thus current scenario of diabetic complications needs a
comprehensive investigation by pairing the socio-economic
factors to the onset of diabetic pneumopathy.
PATHOPHYSIOLOGICAL STUDIES AND
EXPERIMENTAL DIABETES MODELS

Several studies inmice and rats have shown that inmodels of type 1
or type 2 diabetes, pulmonary fibrosis is prominently evident. The
first study, published in 1979, showed streptozotocin (STZ)-
mediated changes in lysyl-oxidases (92). Later studies in diabetic
rats demonstrated the appearance of pulmonary fibrosis and, most
importantly, for the support of diabetes-induced pulmonary
fibrosis, they demonstrated in STZ treated mice an almost
complete normalization of lung fibrosis by insulin treatment (93).
This directly indicates that hyperglycemia causes pulmonary
fibrosis, which extends our view on DiPF from an association to a
causative effect of diabetes. This is seen in STZ treated mice. But
since STZ is an agent known to have pro-inflammatory and DNA
damaging effects, it is important that similar effects are alsoobserved
in different models, such as the OVE26 transgenic mouse, which
develops diabetes without the addition of a toxin and can be kept
without insulin administration (94). The fact that pulmonary
fibrosis was not only seen in mice and rats but also in diabetic
cats (95) makes it likely that these findings are not attributed to
artefacts of animal models but rather confirmed and bona fide
complications of diabetes (96, 97).

Thus, reversibility by glucose control and appearance of
pulmonary fibrosis in various animal models and various species
makes a strong point for the existence ofDiPF.However, one fact is
still missing, namely, the detailed description of a pathogenic
mechanism, which stops or even reverses pulmonary fibrosis in
an animal model and at the same time also exists in patients with
diabetes. Aging is also a risk factor for IPF, and it is not surprising
that cellular senescence plays a role in fibrotic pulmonary disease
(98). Furthermore, several signaling pathways such as PI3-Akt,
Frontiers in Endocrinology | www.frontiersin.org 5
VEGF signaling, TGF-ß, and Wnt/ß-catenin signaling pathways
have been shown to be activated in IPF (61). Senescence is
intrinsically linked to the so called senescence-associated
secretory phenotype (SASP), which involves secretion of growth
factors and cytokines, chemokines, and matrix remodelling
proteases (98–113). Thus, these senescent cells severely affect
their closest environment and systemically the whole organ by its
anti-proliferative and pro-inflammatory fibrosis promoting
paracrine milieu (104, 111, 114–116). In several animal models,
senescence has been shown to be directly responsible for the
development offibrosis (Figure 2).
A CONJUNCTION OF DNA DAMAGE
RESPONSE AND SENESCENCE IN DiPF

Senescence-promoting mechanisms trigger fibrosis, while
senescence-inhibiting strategies, including the use of “senolytic
drugs”, inhibit fibrosis. This leads to the question of the signals
triggering senescenceandSASP.DNAdouble-strandbreaks (DSBs)
are the most cytotoxic forms of DNA lesions, eliciting a complex
series of events classified as DNA-damage- response (DDR), and
leading either to error-free homologous recombination repair
(HRR) or error-prone non-homologous end-joining repair
(NHEJ) (117). HRR requires extensive nucleolytic processing of
broken DNA ends, generating single strand DNA-tails (118, 119).
In this region, the so-called DNA-damage sensor complex forms,
consistingofaprotein calledReceptor forAdvancedGlycationEnd-
products (RAGE) (111, 120–124), an enzyme MRE11, and its
cofactors Rad50 and Nbs1 (119). This complex then helps to
convert the exonuclease activity of MRE11 to the required
endonuclease activity (111). In the absence of timely generation
of an endonucleolytic activity of MRE11, SASP inflammation and
fibrosisoccurs (104, 115, 116, 125).The important role ofRAGEas a
cell surface receptor promoting diabetic complications has been
described previously (125–128). When RAGE is expressed at the
cell surface, it can bind as a pattern recognition receptor not only
AGE´s, but also other pro-inflammatory mediators, such as S100
proteins and HMGB1 (129). Binding RAGE triggers a cascade of
pro-inflammatory reactions, contributing to late diabetic
complications. However, the lung is strikingly different from
other organs, such as skin. Therefore, it more directly encounters
the environmental challenges, thus constitutively expresses large
amounts of nuclear RAGE (130–132). Loss of RAGE impairs
pulmonary repair mechanisms, which altogether promotes
BOX 2 | Work up and indication for work up.

Patients with:

• Long-standing diabetes and/or albuminuria
• Breathlessness and exclusion of cardiac disease (NT-pro-BNP, cardiac ultrasound, exclusion of coronary heart disease) or other known lung diseases (e.g.

pneumoconiosis, extrinsic allergic alveolitis, Radiation-induced lung injury)
• 6-minute-walking-test with a reached distance below 400 meters (normal persons would reach between 700-800 meters) (85)
• Increased dyspnea during the walking test (quantified by using the modified BORG-scale ranging from 0 to 10) (86)
• Suspect lung function testing with reduced forced vital capacity (FVC) <80%, reduced total lung capacity in bodyplethysmography (TLC-B) <80%, and reduced

single breath diffusion capacity (SB-DLCO) <80% in the presence of normal or increased Tiffineau-index (FEV1/VC) (71, 87, 88).
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pulmonary fibrosis (111, 129, 133, 134). This is not surprising since
other pattern recognition receptors are also involved inDNA repair
(133, 135, 136).
NUCLEAR RAGE AND DNA REPAIR IN
PERSISTENT DNA DAMAGE SIGNALING

Nuclear RAGE is part of the DNA-damage sensor complex and
recruits to the site of DNA damage via an ATM signaling cascade.
At the site of damage, it interacts with the DNA end-resection
complex MRN (MRE11, Nbs1 and Rad50). RAGE modulates the
end-processing activity ofMRE11 from an unwarranted exo- to an
endo-nuclease. This explains why RAGE-/- mice suffer from
increased senescence, SASP, pulmonary fibrosis, and reduction of
lung function (111). Most importantly for the topic of pulmonary
fibrosis, reconstitution of RAGE restores DNA DSBs repair, thus
reverses pulmonary fibrosis, in part, by promoting efficient RPA2
and CHK1 phosphorylation, required for efficient DNA repair and
preventionof senescence (111). In the absenceofnuclear and timely
phosphorylated RAGE, DSBs signaling can orchestrate the cascade
leading via senescence and SASP to fibrosis.

These findings shed new light on the mechanisms leading to
pulmonaryfibrosis inpatientswithdiabetes (99).Thehealth risksof
Frontiers in Endocrinology | www.frontiersin.org 6
the Western lifestyle reflect the net result of defective defense and
repair, affecting many organs, including the lung (137, 138).
In diabetes, genotoxic reactive metabolites such as ROS and
dicarbonyls challenges DNA integrity and repair (5, 52, 139–
145).The ultimate proof that impaired DNA repair is leading to
diabetic complicationswasmissing, but its associationwithdiabetic
complications has been shown in several studies (77, 143, 146–151).
Since most diabetic complications, including in the kidney, are
associated with fibrosis, it was likely that increased DNA damage
and impaired DNA repair lead to a persistent DNA damage
response, senescence, SASP, and fibrosis. Recently, we have
shown that exposure of human alveolar type-II cells (but also
other cell types) to reducing carbohydrates, such as glucose,
ribose, and fructose, known to be associated with increased ROS
formation (123, 140), impair the repair of DSBs repair in the
presence of etoposide. The reduction of the DNA repair,
especially the non-homologous end-joining (NHEJ) repair
pathway, correlated with the reducing capacity of the
carbohydrates used. Central to this impairment of the DNA
repair capacity was the reducing sugar-triggered change in the
NAD+/NADH ratio, shifting the equilibrium towards a decreased
NAD+ and increased NADH cofactor pool required for the activity
of SIRTandPARP, two important players in theNHEJ repair (152).
In the presence of high glucose, the addition ofNAD+ disrupted the
interaction of PARP1with its inhibitor Dbc-1, thusmaking PARP1
FIGURE 2 | Diabetes-associated persistent DSB signaling, senescence and SASPs modulates the normal repair of idiopathic pulmonary fibrosis. Diabetes-
associated perturbed cellular metabolism is cumulatively linked to diabetic pneumopathy. Elevation of ROS, disturbed NAD+/NADH equilibrium, and non-specific
modifications of active biomolecules affect the integrity of the genome and the kinetics of DNA repair. The absence of timely DNA repair activates persistent DNA
damage signaling, followed by an irreversible cell cycle arrest, cellular senescence and senescence-associated secretory phenotype (SASP). The SASP releases
various pro-inflammatory cytokines such as IL-1a/b, IL-6, IL-8, TGF-b, ICAM, Mcp1 & TNF-a. These cytokines act autocrine and paracrine by altering the cellular
homeostasis to maladaptive genetic transformations resulting in severe inflammation and organ fibrosis. The cytokines released from the SASP zone, such as IL-6,
IL-8 and TGF-b, activate the fibrotic program via the JAK-STAT pathway. Therefore, the accumulated ECM compromises the functional integrity of diabetic lungs and
transforms the parenchymal organ to idiopathic pulmonary fibrosis.
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available for DNA repair. Therefore, reducing sugars impair the
NHEJ repair, leading to a DNA damage response, senescence,
SASP, and fibrosis. This was also demonstrated in an
experimentaltype1diabetesmodel and supported by db/db mice
data. Diabetes was associated with increased activation of the
DSBs repair pathway, including an increase in oxidative stress, a
shift in the NAD+/NADH-ratio, senescence, SASP, pulmonary and
renal fibrosis.

AnAAV-driven expression system for RAGE,which exclusively
results in nuclear expression of RAGE, reduces the DNA damage
response-driven cascade causing renal and pulmonary fibrosis in
experimental diabetes. Most interestingly, while fibrosis was
reduced, there was no effect on albuminuria, indicating that
microangiopathy and organfibrosis is not causally connected.
Since one of the requirements to accept the term DiPF is the
similarity of events found in mice and humans. DNA damage
response, the extent of senescence, and SASP were also studied in
humans with type 2 diabetes (61). Overall, recent data have
established that markers of this cascade are excellent predictors of
DiPF, not only in a cross-sectional study but also in a prospective
three years study (61). Thus, the cascade leading to the persistent
DNA damage response, senescence, SASP, and fibrosis occurs not
only in experimental diabetes but similarly in diabetic patients.

May we use the term DiPF?
The evidence that pulmonary fibrosis is a bona fide diabetic
complication is based on the following arguments:

1. Various animal species develop pulmonary fibrosis.
2. Pulmonary fibrosis is seen in experimental type 1 and type

2diabetes.
3. The prevalence of pulmonary fibrosis is higher in humans

with type 1 or type 2 diabetes.
4. In humans, the decline of lung function and the presence of

pulmonary fibrosis are linked to glycemic control.
5. In experimental diabetes, glucose control alleviates the degree

of pulmonary fibrosis.
6. The DNA damage driven cascade leading to senescence,

SASP, and fibrosis can be observed in experimental
diabetes as well as in humans.

7. At least in experimental diabetes, restoring DNA repair not
only stops but rather reverses DiPF.

A prospective, randomized controlled clinical trial to prove
the role of glucose control for the development and progression
of pulmonary fibrosis in type 1 and type 2 diabetes has yet to be
conducted. However, the evidence presented above argues for the
existence of DiPF as a bonafide diabetic complication.
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OPEN QUESTIONS

There are many open questions, which require intensive research.
This includes a better description of the natural course of DiPF, the
characterization of the patients with rapid progression, the
differences between type 1 and type 2 diabetes, and of course,
the study of therapeutic options: For example, is physical exercise
as effective in patients with diabetes as in non-diabetic patients
with IPF (153, 154)?Which drugs can be used, and are their effects
and side-effects similar inpatientswith type 1 and type 2diabetes, as
in non-diabetic patients? Based on the patho-mechanisms
described above, which strategies can be used to improve and
maintain DNA repair or is the repair capacity entirely genetically
determined and cannot be subject to treatment (143)?
OUTLOOK

This review has collected evidence for the existence of diabetes-
induced pulmonary fibrosis as a bona fide diabetic complication.
Thus, DiPF should obtain the same attention as other
complications of the kidney, eye, nerve, vessel, and heart.
Therefore, more intense training of clinicians in the history
and diagnosis of DiPF warrants its inclusion into educational
sessions, textbooks, IPF and national, as well as international
diabetes association guidelines.
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