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Improving the design stage of air 
pollution studies based on wind 
patterns
Léo Zabrocki1*, Anna Alari2 & Tarik Benmarhnia3

A growing literature in economics and epidemiology has exploited changes in wind patterns as a 
source of exogenous variation to better measure the acute health effects of air pollution. Since the 
distribution of wind components is not randomly distributed over time and related to other weather 
parameters, multivariate regression models are used to adjust for these confounding factors. 
However, this type of analysis relies on its ability to correctly adjust for all confounding factors and 
extrapolate to units without empirical counterfactuals. As an alternative to current practices and 
to gauge the extent of these issues, we propose to implement a causal inference pipeline to embed 
this type of observational study within an hypothetical randomized experiment. We illustrate this 
approach using daily data from Paris, France, over the 2008–2018 period. Using the Neyman–Rubin 
potential outcomes framework, we first define the treatment of interest as the effect of North-East 
winds on particulate matter concentrations compared to the effects of other wind directions. We 
then implement a matching algorithm to approximate a pairwise randomized experiment. It adjusts 
nonparametrically for observed confounders while avoiding model extrapolation by discarding treated 
days without similar control days. We find that the effective sample size for which treated and control 
units are comparable is surprisingly small. It is however reassuring that results on the matched sample 
are consistent with a standard regression analysis of the initial data. We finally carry out a quantitative 
bias analysis to check whether our results could be altered by an unmeasured confounder: estimated 
effects seem robust to a relatively large hidden bias. Our causal inference pipeline is a principled 
approach to improve the design of air pollution studies based on wind patterns.

A growing literature in economics and epidemiology has recently re-examined the short-term effects of air 
pollution on mortality and emergency admissions using causal inference methods. Among these techniques, 
instrumental variable strategies have been very popular since they can overcome the biases caused by unmeasured 
confounders and measurement errors in air pollution exposure1–6. Daily changes in wind directions are such 
instrumental variables since they arguably meet two of the three main requirements for the method to be valid: 
they can strongly affect air pollutant concentrations while having no direct effects on health outcomes7–9. This 
strategy however rests on the remaining assumption that changes in wind directions occur randomly, which is 
often not credible without further statistical adjustments. One could unfortunately fear that the resulting analysis 
would depend on the quality of the model10,11. Does the model take into account all relevant confounding factors, 
and if so, are they adjusted for with the correct functional forms? Is the model also able to extrapolate when there 
is little overlap in covariate distributions?

To illustrate these issues, imagine that we are interested in estimating the influence of particulate matters on 
daily mortality in Paris, France, over the 2008–2018 period. Research in atmospheric science has shown that 
winds blowing from the North-East could transport particulate matters due to wood burning in the region but 
also from other sources located in North-Eastern Europe12–14. We could therefore use the comparison of winds 
blowing from the North-East to those from other directions as an instrumental variable for particulate matters.

In Panel A of Fig. 1, we display polar plots of air pollutant concentrations that were predicted using a Gen-
eralized Additive Model (GAM) and wind components as inputs15. We clearly see that winds blowing from 
the North-East are associated with higher PM10 and PM2.5 concentrations. These patterns could however be 
confounded by other variables such as the weather parameters or a shared seasonality in air pollution and 
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wind patterns. For instance, in Panel B of Fig. 1, the density distribution of the average temperature ( ◦ C) is not 
similar for the groups of wind directions. We must take into account this confounding variable if we want to 
make the as-if random distribution of North-East wind more credible. Multivariate linear regression have been 
the standard approach to help achieve this goal but more flexible methods such as generalized additive models 
and machine learning algorithms could also be used16,17. Yet, even a very flexible model will not overcome the 
second issue visible in Panel B of Fig. 1: as for January 2008, the model will sometimes depend on extrapolation 
since there are no empirical counterfactuals to estimate what would have happened had the wind blown from 
the North-East. Finally, it could be argued that we fail to adjust for a confounding variable which we have not 
measured. In addition to explaining with qualitative arguments why it is not likely the case, we should also try 
to quantify the bias induced by an unmeasured confounder.

In this paper, we show how we can evaluate the extent to which studies exploiting wind directions as instru-
mental variables could be prone to the issues raised above. To achieve this goal, we follow the four consecutive 
stages of the causal inference pipeline proposed by18,19 that explicitly embed the design of this type of observa-
tional study within an hypothetical randomized experiment20–23.

First, in a conceptual stage, we clearly state the causal question of interest using the Neyman–Rubin potential 
outcomes framework24,25. Our treatment of interest is the effect of North-East winds on air pollution compared 
to other wind directions. To estimate this effect, for treated days with winds blowing from the North-East, we 
need to impute the concentrations that would have been observed had winds blown from other directions. The 
issue is that wind patterns are not randomly assigned: control days with wind blowing from other directions are 
not similar to treated days.

We therefore implement a design stage where we approximate a pairwise randomized experiment using a 
matching algorithm recently designed for air pollution studies26. Matching is a transparent method to adjust for 
confounders without making parametric assumption and directly looking at observed outcomes27,28. Given a 
set of chosen covariate distances, each treated day is matched to its closet control day. This method also avoids 
model extrapolation since treated days for which no control days exist in the data are discarded from the analysis.

The third step is an analysis stage where we estimate the influence of North-East winds on air pollutant con-
centrations. We simply compute the average difference in concentrations between matched treated and control 
days and rely on Neymanian inference to compute an estimate of the sampling variability22. The last and fourth 
step is to carry out a sensitivity analysis. Throughout the previous steps, we must make the strong assumption that 
no unmeasured variables could be related both to wind patterns and air pollutant concentrations. Quantitative 

Figure 1.   Polar plots of air pollutant concentrations predicted by wind components and average temperature 
imbalance of wind directions by year and month. In panel (A), each plot represents the concentrations (in 
µg/m3 ) of an air pollutant that were predicted using a generalized additive model based on a smooth isotropic 
function of the two wind components u and v15. The direction from which the wind blows is described on a 
360◦ compass rose and wind speed (in m/s) is represented by a series of increasing circles starting from the 
intersection of the two cardinal directions axes where wind speed is null: the farther the circle is away from 
the intersection, the faster the wind speed is. In panel (B), the density distribution of the average temperature 
(in ◦ C) is drawn for North-East winds (orange colour) and other wind directions (blue colour). The figure is 
divided into subplots by month and year (2008–2010).
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bias analysis was initially proposed by29 to assess which magnitude of hidden bias would be required to alter 
observed results. We follow here the method developed by21,30.

With this study, we aim to bring two contributions to the causal inference literature on the acute health effects 
of air pollution. First, we show that using wind directions as instrumental variables requires more caution to 
make the assumption that they are “as-if ” randomly distributed according to observed covariates convincing. 
The effective sample size where treated and control units are similar on a set of observed covariates is actually 
small. The standard approach used in the literature based on multivariate regression models will therefore rely 
on its ability to adjust correctly for the functional forms of covariates and extrapolate to units without empirical 
counterfactuals. Second, our quantitative bias analysis reveals that the estimated increase in particulate matter 
concentrations due to North-East winds is relatively robust to the presence of hidden bias. Even if an unobserved 
confounding factor is twice more common among days with winds blowing from the North-East than among 
days with winds from other directions, the large range of estimates consistent with the data remains positive.

We also hope that the approach we propose in this paper could be of interest to atmospheric scientists. The 
fact that wind patterns play a key role in the variation of air pollution concentrations is obviously not new31–34. 
Yet, causal inference methods have rarely been implemented in atmospheric science to estimate the influence of 
weather parameters on air pollution. We believe that mimicking a randomized experiment corresponds to an 
intuitive approach and could complement source apportionment and emission inventory approaches. While wind 
is non manipulable, emission sources are and our framework could also serve as a stepping-stone to evaluate 
potential interventions to control emissions—if a source is shut-down in the North-East of Paris, would wind 
blowing from this direction influence less specific air pollutant concentrations?

We took great care to make our work fully reproducible to help researchers implement but also improve and 
criticize our approach. Data and detailed R codes are available at https://​lzabr​ocki.​github.​io/​design_​stage_​wind_​
air_​pollu​tion/ and backed-up in an Open Science Framework repository35.

Methods
Data.  We built a dataset combining daily time series of air pollutant concentrations and weather parameters 
in Paris over the 2008–2018 period. We chose to carry out an analysis at the daily level as done in studies on the 
acute health effects of air pollution3,4,6.

First, we obtained hourly air quality data from AirParif, the local air quality monitoring agency. Figure 2 
displays the location of the selected measuring stations. Using a 2.5% trimmed mean, we first averaged at the 
daily level the concentrations ( µg/m3 ) of background measuring stations for NO2 , O 3 and PM10 . For a given 

Figure 2.   Map of road network and location of air pollution measuring stations in Paris, France . Grey lines 
represent the road network. The orange line is the orbital ring surrounding Paris. Blue crosses are the locations 
of air pollution measuring stations. NO2 concentrations are measured at stations PA07, PA12, PA13, PA18; 
O 3 concentrations at PA13, PA18; PM10 at PA18; PM2.5 at PA01H and PA04C. The map was created with the 
R programming language (version 4.1.0)36, data were provided by OpenStreetMap37 and retrieved with the 
osmdata package38.

https://lzabrocki.github.io/design_stage_wind_air_pollution/
https://lzabrocki.github.io/design_stage_wind_air_pollution/
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day, if more than 3 hourly readings were missing, the average daily concentration was set to missing. The pro-
portion of missing values for stations ranged from 2.8% up to 9.1%. We also computed the average daily con-
centrations of PM2.5 but 25% of the recordings were missing: the air pollutant was not measured by Airparif 
between 2009/09/22 and 2010/06/23. It is important to note that we did not retrieve data from traffic monitors 
but only from background monitors as they are used to assess the residential exposure of a city population in 
epidemiological studies.

We then retrieved meteorological data from the single monitoring station located in the South of the city 
and ran by the French national meteorological service Météo-France. We extracted daily observations on wind 
speed (m/s), wind direction (measured on a 360◦ wind rose where 0 ◦ is the true North), the average temperature 
( ◦C), and the rainfall duration (min). Weather parameters had very few missing values (e.g., at most 2.5% of 
observations were missing for the rainfall duration).

Finally, to avoid working with a reduced sample size, we imputed missing values for all variables but PM2.5 . 
There were no clear patterns in the missingness of NO2 , O 3 and PM10 concentrations. We used the chained 
random forest algorithm implemented by the R package missRanger39. A small simulation exercise showed 
that it had good performance for imputing NO2 concentrations (the absolute difference between observed and 
imputed values was equal to 3.2 µg/m3 for an average concentration of 37.6 µg/m3 ) but was much less effective 
for imputing PM10 concentrations (the absolute difference between observed and imputed values was equal to 6.1 
µg/m3 for an average concentration of 23.4 µg/m3 ). Once the data were imputed, we averaged the air pollutant 
concentrations at the city level as it is the spatial level of analysis used in3,4.

Further details on data wrangling and an exploratory analysis of the data can be found in the supplementary 
materials (https://​lzabr​ocki.​github.​io/​design_​stage_​wind_​air_​pollu​tion, tab Data). We were not allowed to share 
weather data from Météo-France so we added some noise to the weather parameters.

A causal inference pipeline.  We present below the four stages of the causal inference pipeline we advocate 
to use for improving the design of air pollution studies based on wind patterns. Its implementation was done 
with the R programming language (version 4.1.0)36.

Stage 1: Defining the treatment of interest.  The first step of our causal inference approach is to clearly state the 
question we are trying to answer: What is the effect of North-East winds on particulate matter in Paris over the 
2008–2018 period? This question is motivated by the exploratory analysis of Fig. 1 and research in atmospheric 
science on the sources of particulate matter located in the North-East of the city. Our treatment of interest is 
therefore defined as the comparison of air pollutant concentrations when winds are blowing from the North-
East (10◦–90◦ ) with concentrations when wind come from other directions. We frame this question in the 
Rubin–Neyman causal framework24,25. Our units are 4018 days indexed by i (i=1,..., I). For each day, we define 
our treatment indicator W i  which takes two values. It is equal to 1 if the unit is treated (the wind blows from 
the North-East), and 0 if the unit belongs to the control group (the wind is blowing from another direction). 
Under the Stable Unit Treatment Value Assumption (STUVA), we assume that each day can have two potential 
concentrations in µg/m3 for an air pollutant: Y i (1) if the wind blows from the North-East and Y i (0) if the wind 
blows from another direction.

The fundamental problem of causal inference states that we can only observe for each day one of these two 
potential outcomes: it is a missing data problem40,41. The observed concentration of an air pollutant Y obs is defined 
as Y obs = (1-W i  ) × Y i (0) + W i  × Y i (1). If the unit is treated, we observe Y i (1). If it is a control, we observe Y i
(0). To estimate the effect of North-East winds on air pollutant concentrations, we therefore need to impute the 
missing potential outcomes of treated units—what would have been the air pollutant concentrations if the wind 
had blown from another direction?

Stage 2: Designing the hypothetical randomized experiment.  The second stage of our causal inference pipeline 
is to embed our non-randomized study within an hypothetical randomized experiment. We are dealing with 
an observational study where North-East winds are not randomly distributed through a year and are correlated 
with other weather parameters influencing air pollutant concentrations. In Fig. 3, we plot, for each month, the 
absolute standardized mean differences between treated and control units for the average temperature, relative 
humidity and wind speed: most differences are superior to 0.1, which is often considered as a threshold to assess 
the imbalance of covariates.

To better approximate a randomized experiment, we must therefore find the subset of treated units which 
are similar to control units. Formally, we want to make plausible for this subset of units the assumption that 
the treatment assignment is independent from the potential outcomes of units given their covariates X: Pr(W 
| X, Y(0), Y(1)) = Pr(W | X). The issue is that some units’ covariates are observed while other are not. Unlike a 
randomized experiment where both observed and unobserved covariates will be, on average, balanced across 
treatment and control groups, we must assume that no unobserved covariates affect the treatment assignment.

Matching methods are particularly convenient to design hypothetical randomized experiments. Contrary 
to standard regression approaches, matching is a non-parametric way to adjust for observed covariates while 
avoiding model extrapolation since units without counterfactuals in the data are discarded from the analysis. 
Specifically, we use a constrained matching algorithm to design a pairwise randomized experiment where, for 
each pair, the probability of receiving the treatment is equal to 0.5 (see26 for further details on the algorithm). 
Each treated unit is matched to its closest unit given a set of covariate constraints which represent the maximum 
distance, for each covariate, allowed between treated and control units. We match on the two sets of covariates 
influencing both wind directions and air pollutant concentrations.

https://lzabrocki.github.io/design_stage_wind_air_pollution
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First, we match on calendar variables such as the Julian date, weekend, holidays and bank days indicators. A 
treated unit could be matched up to a control unit with a maximum distance of 60 days. If we extend this distance, 
it would be easier to match treated units to control units but the treatment effect could be biased by seasonal vari-
ation in air pollutant concentrations. We match exactly treated and control units for the other calendar indicators.

Second, we match on weather variables. The average temperature between treated and control units could not 
differ by more than 5 ◦ . The difference in wind speed must be less than 0.5 m/s. The rainfall duration (divided in 
four ordinal categories) needs to be the same and the absolute difference in average humidity could be up to 12 
percentage points. We also force the absolute difference in PM10 concentrations in the previous day to be less or 
equal to 8 µg/m3 . The thresholds we set up were chosen through an iterative process were we checked (1) that 
they led to balanced sample of treated and control units and (2) that there were enough matched pairs to draw 
our inference upon.

Finally, the Stable Unit Treatment Value Assumption (SUTVA) requires that there is no interference between 
units and no hidden variation of the treatment. To make this assumption more plausible, we discard from the 
analysis the matched pairs for which the distance in days is inferior to 4 days and make sure that the first lag of 
the treatment indicator for treated and control units.

Stage 3: Analyzing the experiment using Neymanian inference.  In the third stage, we proceed to the analysis 
of our hypothetical pairwise randomized experiment. Several modes of statistical inference such as Fisherian, 
Neymanian or Bayesian could be implemented42. Here, we take a Neymanian perspective where the potential 
outcomes are assumed to be fixed and the treatment assignment is the basis of inference. Our goal is to measure 
the average causal effect for the sample of matched units. We assume that each of the two units of a matched pair 
j has two potential concentrations for an air pollutant. If we were able to observe these potential outcomes, we 
could simply measure the effect of North-East winds on air pollutant concentrations by computing the finite-
sample average treatment effect for matched treated units τfs . We would first compute for each pair the mean dif-
ference in concentrations and then average the differences over the J pairs. While we only observe one potential 
outcome for each unit, we can nonetheless estimate τfs with the average of observed pair differences τ̂:

Here, the subscripts t and c respectively indicate if the unit in a given pair is treated or not. Since there are only 
one treated and one control unit within each pair, the standard estimate for the sampling variance of the average 
of pair differences is not defined. We can however compute a conservative estimate of the variance22:

τ̂ =
1

J

J
∑

j=1

(Yobs
t,j − Yobs

c,j ) = Y
obs
t − Y

obs
c

Figure 3.   Evidence of imbalance for weather covariates . For each month, we compute the absolute 
standardized differences for continuous weather covariates between treated and control groups. These 
differences are represented as blue points. The vertical orange line is the 0.1 threshold which is used in the 
matching literature to spot covariates imbalance. The vertical black line is at 0.
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We finally compute an asymptotic 95% confidence interval using a Gaussian distribution approximation:

The obtained 95% confidence interval gives the set of effect sizes compatible with our data43.

Stage 4: Sensitivity analysis.  The fourth step of our causal inference pipeline is to explore how sensitive our 
analysis is to violation of the assumptions it relies upon. We carry out three types of robustness checks.

First, we make the strong assumption that the treatment assignment is as-if random: winds blowing from the 
North-East occur randomly conditional on a set of measured covariates. Other researchers could however argue 
that we fail to adjust for unmeasured variables influencing both the occurrence of North-East winds and air pol-
lutant concentrations. Within matched pairs, these unobserved counfounders could make the treated day more 
likely to have wind blowing from the North-East than the control day. We therefore implement the quantitative 
bias analysis, also called sensitivity analysis, that was developed by21,30. It allows us to explore how our results 
would be altered by the effect of an unobserved confounder on the treatment odds, denoted by Ŵ . In our matched 
pairwise experiment, we assume that within each pair, control and treated days have the odds to see the wind 
blowing from the North-East: the odds of treatment is such that Ŵ = 1 . The quantitative bias analysis allows to 
compute the 95% confidence intervals obtained for different values of bias the unmeasured confounder has on 
the treatment assignment. For instance, if we assume that an unmeasured confounder has a small effect on the 
odds of treatment (i.e., for a Ŵ > 1 and close to 1) but the resulting 95% confidence interval becomes completely 
uninformative, it would imply that our results are highly sensitive to hidden bias. Conversely, if we assume that 
an unmeasured confounder has a strong effect on the odds of treatment (i.e., for a large Ŵ ) and we find that the 
resulting 95% confidence interval remains similar, it would imply that our results are very robust to hidden bias. 
In a complementary manner, we also check whether unmeasured biases could be present by using the first daily 
lags of air pollutant concentrations as control outcomes44. If our matched pairs are indeed similar in terms of 
unobserved covariates, the treatment occurring in t should not influence concentration of air pollutants in t − 1.

Second, for many matched pairs, air pollutant concentrations were imputed using the chained random for-
est algorithm39. We check whether the results are sensitive to the imputation by re-running the analysis for the 
non-missing concentrations.

Third, we make sure that the treatment assignment within pairs was effective to increase the precision of 
estimates. We compare the estimate of the sampling variance of a pairwise randomized experiment to the one of a 
completely randomized experiment. If the estimate of sampling variability for the pairwise experiment is smaller 
than the estimate of sampling variability for a complete experiment, it means that our matching procedure was 
successful to match similar units within pairs compared to randomly selected units22.

Results
Performance of the matching procedure.  Our initial dataset consists in 4018 daily observations, 
divided into 912 treated units and 3106 control units. The matching procedure results in 121 pairs of matched 
treated-control units—only 13% of treated units could be matched to similar control units given the constraints 
we set. In the supplementary materials (https://​lzabr​ocki.​github.​io/​design_​stage_​wind_​air_​pollu​tion/4_​compa​
ring_​initi​al_​to_​match​ed_​data.​html), we show that the matched sample has different characteristics from the 
initial sample: observations belong more to the period ranging from May to October, their average temperature 
is higher and their relative humidity is lower.

In Fig. 4, we display how the balance of continuous and categorical covariates improves after the match-
ing procedure. Blue dots represent either the absolute mean differences between treated and control units for 
continuous variables or the absolute differences in percentage points for categorical variables. For continuous 
covariates, the average standardized mean differences between treated and control days is 0.26 before matching 
and reduces to 0.07 after the procedure. For categorical covariates, the average difference in percentage points 
diminishes from 6.2 to 1.8 after matching. Our matching procedure therefore leads to a consequent reduction of 
our sample size but allows us to compare treated units that are more similar to control units. A complete analysis 
of the balance improvement for each covariate is available in the supplementary materials (https://​lzabr​ocki.​
github.​io/​design_​stage_​wind_​air_​pollu​tion/6_​check​ing_​balan​ce_​impro​vement.​html).

North‑east wind effects on air pollutant concentrations.  For each air pollutant, we plot in Fig. 5 the 
estimated average difference in concentration ( µg/m3 ) between North-East winds and other wind directions. 
We also display the estimated differences for the previous day and the following day. Thick lines represent the 
95% confidence intervals while thin lines are the 99% confidence intervals. The third panel of Fig. 5 confirms the 
exploratory analysis of the polar plot. When wind blows from the North-East, PM10 concentrations increase by 
4.4 µg/m3 , with the lower and upper bounds of the 95% confidence being respectively equal to an increase by 
1.7 µg/m3 and 7.2 µg/m3 . The estimated difference represents an 18% increase in the average concentration of 
PM10 . We also observe a positive difference of 25% in PM10 concentrations the following day (point estimate of 
4.9; 95% CI 1.8, 8.1).

V̂(τ̂ ) =
1

J(J − 1)

J
∑

j=1

(Yobs
t,j − Yobs

c,j − τ̂ )2

CI0.95(τfs) =
(

τ̂ − 1.96×

√

V̂(τ̂ ), τ̂ + 1.96×

√

V̂(τ̂ )

)

https://lzabrocki.github.io/design_stage_wind_air_pollution/4_comparing_initial_to_matched_data.html
https://lzabrocki.github.io/design_stage_wind_air_pollution/4_comparing_initial_to_matched_data.html
https://lzabrocki.github.io/design_stage_wind_air_pollution/6_checking_balance_improvement.html
https://lzabrocki.github.io/design_stage_wind_air_pollution/6_checking_balance_improvement.html
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North-East winds do not seem to influence NO2 (point estimate of 1.5; 95% CI − 3.4, 6.4), and O 3 (point 
estimate of − 1.2; 95% CI − 5.5, 3.1) concentrations on the current day. This is also the case for the concentrations 
of these two air pollutants on the following day.

Regarding the effects of North-East winds on PM2.5 , we restrain our analysis to pairs without missing con-
centrations. For the current and following days, we respectively find an average increase of 1.4 µg/m3 (95% 
CI − 0.6, 3.4) and 2.7 µg/m3 (95% CI 0.8, 4.5). These point estimates respectively represent a 8.8% and a 17% 
relative increases in PM2.5 concentrations.

Sensitivity analysis.  Our quantitative bias analysis reveals that if we have failed to adjust for an unobserved 
confounder twice more common among treated days, the resulting 95% confidence intervals for the estimated 
effects of North-East winds on PM10 would be equal to (0.5, 9) for the current day and to (− 0.2, 10) for the the 
following day. Confidence intervals are still consistent with mostly positive effects but are relatively wide. As a 
complementary test for unobserved confounders, we also check that the occurrence of North-East winds on the 
current day does not have any effect on concentrations measured in the previous day. Reassuringly, for NO2 and 
O 3 , 95% confidence intervals do not suggest clear negative or positive average differences in concentrations as 
shown in Fig. 5 (for PM2.5 , the estimated average difference is − 0.1 µg/m3 (95% CI − 1.2, 1)).

Figure 4.   Overall balance improvement in continuous and categorical covariates . In Panel (A), we plot, before 
and after matching, the absolute standardized differences in continuous covariates between treated and control 
groups. Each blue dot represents an absolute mean difference for a given covariate. In panel (B), we plot, before 
and after matching, the absolute difference in percentage points for categorical covariates.

Figure 5.   Effects of North-East winds on air pollutant concentrations . In each panel, we plot the estimated 
effects of North-East winds on air pollutant concentrations for the previous, current and following days. Point 
estimates are depicted by blue points; blue thick lines are 95% confidence intervals and thin lines are 99% 
confidence intervals. The 95% and 99% confidence intervals associated with the estimated average difference 
in PM10 in the first lag are smaller than other intervals for the following days since we added a constraint in the 
matching procedure for this lag of the air pollutant.
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In the supplementary materials (https://​lzabr​ocki.​github.​io/​design_​stage_​wind_​air_​pollu​tion/7_​analy​zing_​
resul​ts.​html), we check whether the imputation of missing air pollutant concentrations did not drive our results. 
For NO2 , O 3 and PM10 , 13%, 8% and 7% of concentrations were respectively imputed. We replicate our analysis 
on the subset of pairs without missing observations: point estimates remain very similar but confidence intervals 
are a bit larger due to the sample size loss. This robustness check implies that our imputation did not bias our 
estimates.

Finally, the pairwise design of our hypothetical experiment does not help increase the precision of the esti-
mated differences in P M10 concentrations. The standard error under a completely randomized assignment is 
equal to 1.35 while the one of a pairwise randomized assignment is 1.4. The pairwise design however increases 
the precision estimates for O 3 by 23% for O 3 but decreases the precision by 42% for NO2.

Discussion
In our study, we follow a causal inference pipeline to craft a hypothetical experiment for measuring the effects of 
North-East winds on daily particulate matter concentrations in Paris. Our constrained pair matching algorithm 
enables us to find the subset of treated days that were similar to control days for a set of calendar and weather 
confounding factors. Compared to a statistical adjustment based on a multivariate regression model, matching 
is non-parametric and avoids to extrapolate to units without empirical counterfactuals. At the very heart of this 
method, graphical displays of covariates balance allow to check in a transparent manner whether the as-if ran-
dom distribution of the treatment was achieved conditional on observed confounders. We were surprised that 
covariates balance could only be achieved for 13% of treated units. It would be an interesting question for future 
research to see if alternative methods such as cardinality matching or bayesian additive regression trees lead to 
similar results45–47. The relevant structure of the hypothetical experiment to target should also be of interest since 
our pair matching algorithm failed to increase the precision of estimates compared to a completely randomized 
assignment of the treatment.

The difficulty to find similar treated and control units could lead researchers interested in the acute health 
effects of air pollution to worry that instrumental variable strategies exploiting wind patterns and based on mul-
tivariate regression models might suffer from extrapolation bias10,27. In the supplementary materials (https://​lzabr​
ocki.​github.​io/​design_​stage_​wind_​air_​pollu​tion/7_​analy​zing_​resul​ts.​html), we show that results based on an 
outcome regression approach, even if they are based on the entire sample, are consistent with those found with the 
matched data. This may increase the confidence in the capability of a multivariate regression model to correctly 
extrapolate. Matching estimates are however much less precise. Further research is therefore needed to better 
understand if improving the design stage of instrument variable studies with matching methods is feasible given 
the small sample size it entails48–51. If it is the case, could matching methods actually lead to different results52–54?

In addition to providing evidence on the effective sample size for which covariates balance was achievable, 
our study was the occasion to assess whether the estimated effects of North-East wind on particulate matters 
were robust hidden bias. It would require an unmeasured confounder twice more common among treated days 
to raise doubt on the direction of the estimated effects. This raises our confidence in the assumption that North-
East wind are also randomly distributed according to unobserved variables. To the best of our knowledge, this 
assumption was waiting to be quantitatively evaluated. This could be explained by the fact that the sensitivity 
analysis we rely on was developed for pairwise matched data30. As an alternative, researchers wishing to keep 
working with a regression approach could implement the new method developed by55,56.

Finally, our study presents two main limits regarding the improvement of the design stage of air pollution 
studies based on wind directions. The first limit concerns the definition of the contrast of interest, that is to say 
the difference of air pollutant concentrations between North-East winds and other wind directions. If this com-
parison is easy to understand, the treatment we defined is not manipulable contrary to those found in randomized 
controlled trials. It might lack a certain appeal to policy-makers as our estimates only indicate whether North-
East winds lead to higher particulate matter concentrations than other wind directions57,58, without determining 
the origin of the sources emitting the air pollutant. To overcome this limit, a study exploiting variations in wind 
directions should be combined with a clear shock on one of the sources emitting an air pollutant. For instance, 
in a recent paper in Southern California34, it was shown that Santa Ana winds have a predominant ventilation 
effect on PM2.5 but when inland wildfires occur, Santa Ana winds are instead increasing PM2.5 levels on the coast.

The second limit revolves around the assumption that, for wind direction to be a valid instrument, its effects 
on a health outcome must be fully mediated by a single air pollutant7–9. As recognized by researchers, studies 
exploiting wind patterns could violate this assumption if changes in wind direction affect simultaneously several 
air pollutants. In our study, once the data are matched, it seems that North-East winds only influence particu-
late matter, which could reinforce the credibility of the assumption. Yet, this should not be always the case as 
it would be highly dependent on the city and air pollutant investigated. Methodological work is much needed 
to understand in which cases the air pollutants co-variance structure could lead to biased dose-response. In a 
recent work59, propose to run a multi-pollutant model where each air pollutant concentration is predicted by 
selecting the optimal set of instrumental variables using least absolute shrinkage and selection operator (lasso). 
The authors show that results of an instrumented multi-pollutant model can be very different from those found 
by single-pollutant models. It remains to be studied if matching could also help limit this well-known issue.
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