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Polycyclic aromatic hydrocarbons (PAHs), due to their high hydrophobicity, have low affinity for metallic SERS-active surfaces,
which leads to their low SERS detection sensitivity. Various functional groups have been used to improve the affinity of metallic
substrates towards the target PAHs. However, a large portion of the signals generated from the “first-layer effect” of the
functionalized substrates may complicate the spectrum, leading to a distortion in the assignment of the intrinsic SERS fingerprints
of PAHs. In this study, a SERS sensor composed of Au nanoparticles (AuNPs) and reoxidized graphene oxide (rGO) was
developed for the simultaneous determination of 16 EPA priority PAHs.The synthesis of the rGO/AuNP substrate can be realized
without a complicated modification process. All the 16 PAHs could be identified based on their characteristic peaks in the
presence of the composited substrate, with estimated LOD as low as 0.2–2 ng·mL−1. The binary linear regression was optimized as
the fitting model for all PAHs except for benzo(k)fluoranthene, with the linear correlation coefficient ranging from 0.9889 to
0.9997. Based on the developed SERS substrates and sample pretreatment, the characteristic SERS peaks of four PAHs in Chinese
traditional fried food (youtiao) were identified without any background interference. The whole detection process only takes
approximately 15 minutes. The results demonstrate the potential of the multicomponent on-field detection of PAHs.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) consisting of
fused aromatic rings without any substitution groups are
well-known carcinogens and classified as a group of wide-
spread persistent organic pollutants. PAHs are ubiquitously
present in the atmosphere, water, and soil and generated
during incomplete combustion of organic matters [1]. PAHs
pose risk to human health due to their accumulation, mi-
gration, and transformation in the food chain. In addition,
the processing and cooking of food at high temperatures can
also contribute to the occurrence of PAHs. For instance,
deep-frying in edible oils leads to high risk of exposure to

PAHs [2, 3]. Based on the risk assessment by the United
States Environmental Protection Agency, in 1976, 16 PAHs
(Table 1) were selected as “priority polycyclic aromatic
compounds” on the basis of their toxicity and the risks to
human health [4, 5].

The traditional analytical methods for PAHs usually
include gas chromatography-mass spectrometry (GC-MS)
[6], high-performance liquid chromatography (HPLC) [7],
gas chromatography-triple quadrupole mass spectrometry
(GC-MS/MS) [8, 9], and comprehensive two-dimensional
gas chromatography with time-of-flight mass spectrometry
(GC×GC-TOF MS) [10]. The laborious pretreatment steps
and the large-scale instruments often required for these
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methods are only suitable for laboratory analysis. In recent
years, some novel screening methods such as fluorescence
microscopy [11], ion mobility spectrometry [12], real-time
immuno-PCR [13], electrochemical sensor [14–17], pH
change sensor [18], and surface-enhanced Raman spec-
troscopy (SERS) [19, 20] have emerged.

Surface-enhanced Raman scattering (SERS), as a powerful
analytical technique, can provide the fingerprint of a molecule
at the trace level concentrations. Under the synergism of
electromagnetic and chemical effects, the Raman signal of the
target compound can be greatly enhanced. Due to their high
hydrophobicity, PAHs have a low affinity for metallic SERS-
active surfaces, which results in their low SERS detection
sensitivity. Surface functionalization of the substrates has been
extensively investigated to improve their affinity towards the
target PAH molecules. Various functional groups or ligands
such as thiols [21], alkyl chains [22], calixarenes [23], cyclo-
dextrin derivatives [24], dopamine [25], inositol hex-
aphosphate [26], and antibodies [27] have been investigated for
surface modification. However, a large portion of the signals
generated from “first-layer effect” of the functionalized sub-
strates may complicate the spectrum leading to the distortion
and wrong assignment of the intrinsic SERS fingerprints of
target PAHs [28]. In addition, lower limit of detections (LODs)
can also be realized on substrates with specific geometries such
as core-shell MOF/Ag nanoparticle composites [29], Au
nanoparticles grafted on [18] or doped with [30] Fe3O4, and
gold nanoparticles embedded in alginate gel network [31].
These composites offered enhancedmetal-analytes interactions
by adsorbing target molecules in close proximity to the “hot
spots” at the junctions between nanoparticles. Despite the
ultrahigh enhancement effects obtained from these hybrid
SERS substrates, their synthesis was generally complicated.The
substrates were often required to be immersed in PAH so-
lutions for a certain period (10–60min) to allow the interaction

Table 1: The 16 EPA priority PAHs.

Chemical name Abbreviation CAS no. Molecular
structure

Naphthalene NAP 91-20-3

Pyrene PYR 129-00-0

Acenaphthene ACE 83-32-9

Acenaphthylene ACEY 208-96-8

Anthracene ANTH 120-12-7

Chrysene CHR 218-01-9

Fluorene FLU 86-73-7

Phenanthrene PHE 85-01-8

Benzo(a)pyrene BaP 50-32-8

Fluoranthene FLUA 206-44-0

Benz(a)anthracene BaA 56-55-3

Dibenz(a, h)
anthracene DiB 53-70-3

Table 1: Continued.

Chemical name Abbreviation CAS no. Molecular
structure

Benzo(b)
fluoranthene BbF 205-99-2

Benzo(k)
fluoranthene BkF 207-08-9

Benzo(g, h, i)
perylene BghiP 191-24-2

Indeno(1, 2, 3-cd)
pyrene Ind 193-39-5
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between the target PAHs and the substrates. Most of the
substrates reported earlier were prepared to detect only one or
more minority PAHs. Very few studies have focused on the
detection of several EPA priority PAHs.

In this study, a versatile SERS sensor composed of Au
nanoparticles (AuNPs) and reoxidized graphene oxide
(rGO) was developed for the simultaneous detection of 16
EPA priority PAHs. The use of GO is favorable for the
adsorption of PAHs because of the novel chemical and
physical properties of graphene. The PAHs could be dif-
ferentiated based on their characteristic Raman shifts.
Through sample pretreatment and SERS enhancement of the
stable and reproducible SERS sensor, the characteristic SERS
peaks of four PAHs in a sample of youtiao, a typical Chinese
fried food, were identified without any background inter-
ference.The whole detection process only takes about 15min.
The study offered a new method to tailor the structure of
graphene-based SERS substrates for on-site screening or
point-of-care applications for the detection of PAHs.

2. Materials and Methods

2.1. Materials and Reagent. Chloroauric acid tetrahydrate
(HAuCl4·4H2O, >47.8%), sodium citrate, and hydrogen
peroxide (30%) were of analytical grade and purchased from
Sinopharm Chemical Reagent Co., Ltd (Beijing, China).
Graphene oxide solution (GO, 1mgmL−1) was obtained from
XF Nano Co., Ltd (Shanghai, China). Naphthalene (1000ng
μL−1, methanol) was acquired from J & K Scientific Co., Ltd
(Beijing, China). Acenaphthene (100 ng μL−1, acetonitrile),
pyrene (100 ng μL−1, acetonitrile), anthracene (10 ng μL−1,
acetonitrile), acenaphthylene (100 ng μL−1, acetonitrile),
chrysene (100 ng μL−1, acetonitrile), fluorene (100 ng μL−1,
acetonitrile), phenanthrene (100 ng μL−1, acetonitrile), ben-
zo(a)pyrene (100 ng μL−1, methanol), fluoranthene (100 ng
μL−1, methanol), benzo(a)anthracene (100 ng μL−1, acetoni-
trile), dibenz(a, h)anthracene (100 ng μL−1, acetonitrile),
benzo(b)fluoranthene (100 ng μL−1, acetonitrile), benzo(k)
fluoranthene (10 ng μL−1, acetonitrile), benzo(g, h, i)perylene
(10 ng μL−1, acetonitrile), and indeno(1, 2, 3-cd)pyrene
(100 ng μL−1, cyclohexane) were purchased from ANPEL
Laboratory Technologies Inc. (Shanghai, China).

2.2. Preparation and Characterization of SERS Sensor.
The SERS sensor was prepared by a one-pot synthesis as
described previously with some modifications [32]. Briefly,
4mL of 1mg·mL−1 GO solution and 4mL of 30% H2O2
solution were mixed into 36mL of distilled water (DI) at room
temperature. After stirring overnight, 4mL of the mixture was
transferred into 80mL of DI water. With constant stirring at
800 rpm, 0.5mL of 1 wt. % HAuCl4 and 0.5mL of 30% H2O2
solution were added into the above mixture sequentially.
Following the addition of 0.3mL of 1 wt. % aqueous sodium
citrate, the resulting solution was heated to boiling and reacted
for 10min. After removing the heating source, the final rGO/
AuNP particles were continuously stirred and cooled down to
room temperature. The products were collected by centrifu-
gation at 2800 rpm for 5min, washed, and dispersed in DI
water. The prepared rGO/AuNP solution was stored at 4°C

and gently vortexed for 1min before every use. The mor-
phology of the substrate was characterized by transmission
electron microscopy (TEM) (Hitachi).

2.3. Detection of 16 PAHs. The calibration solutions of all 16
PAHs were diluted with methanol. Approximately 600 µL of
the rGO/AuNP colloid was gently mixed with a 60 µL solution
containing various concentrations of PAHs, for 10 s.Then, the
mixture was exposed to a 785 nm incident laser for 10 s at
200mW power assembled on the portable Raman spec-
trometer (Raman Tracer-200-HS). The Raman spectrum
obtained in the 500–2500 cm−1 range was an average of three
scans and processed with Raman Analyzer software from
Leap-SCI Technologies, Inc. The Savitzky–Golay second
derivative transformation was used to remove the background
signal, and other preprocessing algorithms such as smooth-
ening and polynomial subtraction were also used [33].

2.4. Sample Detection. A ceramic homogenizer for
QuECHERS and 5mL of hexane were mixed with 1.0 g of the
ground sample. After vigorous shaking for 1min, 10mL of a
mixture of water and acetonitrile (v/v� 1 :1) was added.
Subsequently, MgSO4 (4.2 g) and NaCl (0.6 g) were added
and the mixture was shaken for 1min and centrifuged at
12000 rpm for 30 s to separate the PAHs into the acetonitrile
phase. 1mL of the subnatant was added into a prepared mix
of the QuECHERS pouch (50mg PSA+ 150mgMgSO4) and
hand-shaken for 30 s. Centrifugation for 60 s at 10000 rpm
resulted in the formation of two separate layers. Further,
60 µL of the extracted supernatant was then vigorously
mixed with 600 µL of the rGO/AuNP colloid. The mixture
was detected with a portable Raman instrument under
similar conditions as described in Section 2.3.

3. Results and Discussion

3.1. The Morphology of the Substrate and Its Sensing
Performance. The oxygen functionalities may provide re-
active sites for the nucleation and growth of AuNPs. The
electrostatic interactions between the oxygen groups
(carboxylic and hydroxyl) on the surface of rGO, resulting
from the reoxidation operation, made the AuNPs anchor
more closely on the surface of the GO sheets (Figure 1).
With the synergism obtained between the aggregated
AuNPs and the graphene-enhanced Raman scattering
(GERS) effect of graphene, the composited substrate
demonstrated good SERS sensing performance for all 16
PAHs (Figure 2). Simultaneously, AuNPs with the same
diameters were prepared based on the synthesis conditions
described in Section 2.2. Compared to the AuNPs, the
substrates consisting of AuNPs supported on twice-oxi-
dized GO (rGO/AuNP) showed an excellent enhancement
of the Raman scattering when tested with the 16 PAHs
(Figure S1). There are fewer number of Raman peaks in the
presence of AuNPs, compared with the apparently char-
acteristic Raman shift obtained from rGO/AuNP. It is
supposed that at the initial preparation step, the twice
oxidization treatment for GO favors the increase of density
of oxygen functional groups (carboxylic and hydroxyl) on
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the surface. The oxygen groups are responsible for the
attachment of the free Au (III) ions in the solution because
of electrostatic interactions followed by nucleation. A
higher density of AuNPs deposited on the surface of GO
leads to much narrower interparticle distance and creates
more “hot spots.” LSPR from hot spots brings about greater
enhancement of the PAH signal.

The characteristic SERS peaks were identified by the
asterisk mark, and the corresponding vibrational modes
were assigned as shown in Tables S1–S16. The prepared
composited SERS substrates demonstrated high SERS ac-
tivity towards all 16 PAHs, especially in the regions of
1200–1600 cm−1, which was mainly attributed to C-H
bending modes. Compared with the C-C bending appearing
in the regions of 300–1000 cm−1, C-H bending modes
showed higher peak intensity, primarily due to their higher
polarizability [34]. Meanwhile, PAHs with a larger number

of C-H groups, such as DiB, BbF, BkF, BaP, and Bghip, have
a richer number of Raman fingerprints compared with
PAHs with fewer C-H groups (NAP). Furthermore, PAHs
with a more symmetric molecular structure like BkF and
CHR showed much more resolved peaks than other PAHs
with asymmetric structures. In previous studies, the SERS
substrates were often immersed in the target PAH solutions
for a certain period of time (e.g., 30min or 50min) to allow
the PAHs to partition to the substrate surface [24, 25].
Another common method was the solvent evaporation after
dropping of PAHs onto the substrate surface, which usually
required more than 10min [22]. However, the sensing
performance in the present study was realized as soon as the
interaction between the PAHs solutions and the rGO/AuNP
substrate was over, without the requirement any equili-
bration period, resulting in improvement of the overall
detection rapidity.
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Figure 2: SERS spectra of 16 PAHs (C� 100 ngmL−1) in the presence of rGO/AuNP substrates.

1μm

Figure 1: TEM image of the prepared rGO/AuNPs substrate.
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3.2. Calibration Curve and Limits of Detection (LOD). To
establish the quantitative calculation model for PAHs, dif-
ferent methods including linear regression and binary linear
regression were used. Three PAHs including NAP, PYR, and
ACE were analyzed. Meanwhile, the quantitative calculation
model of the other 13 PAHs is listed in Table S17.

NAP: as shown in Figure 3, the characteristic SERS peaks
of NAP appeared at Δv � 512, 760, 1018, 1165, 1382, and
1564 cm−1. Their intensities of the characteristic peak (I512,
I760, I1018, I1165, I1382, and I1564) gradually increased with

increasing concentration of NAP from 1 to 1000 ng mL−1.
However, I1018, I1382, and I1564 have displayed a more regular
variation trend and were selected for quantitative analysis.
First, the correlation between I and C was established using
linear regression. Figures 3(a)–3(c) show the linear corre-
lations between C and I1018, I1382, and I1564, and the linear
correlation coefficient (R2) was 0.9646, 0.8656, and 0.8073,
respectively. Second, two characteristic peaks at Δv � 1018
and 1564 cm−1 were selected and the correlation between
I1018, I1564, and C was established by the binary linear
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Figure 3: (a) The SERS spectra of NAP with different concentrations in the presence of rGO/AuNP; (b) fitting results of peak intensity (I)
and concentration (C) based on different characteristic peaks. (I) Linear regression with the characteristic peak at Δv � 1018 cm−1; (II) linear
regression with the characteristic peak at Δv � 1382 cm−1; (III) linear regression with the characteristic peak at Δv � 1564 cm−1; (IV) binary
linear regression with the characteristic peak at Δv � 1018 cm−1 and Δv � 1564 cm−1.
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regression (Figure 3(b) IV). The correlation coefficient (R2)
was 0.9989. The results of fitting results showed that the
model using the binary linear regression based on I1018 and
I1564 is the most suitable for the quantitative detection of
NAP.

PYR: three characteristic peaks at Δv � 594, 1234, and
1400 cm−1 were selected as the quantitative peaks. The linear
correlations between I and C are shown in Figure 4. The
binary linear regression between I1234, I1400, and C is also
shown in Figure 4(b) V. Interestingly, the peak at
Δv � 1020 cm−1 was exploited as an internal reference and
the calculated ratios of peaks intensities (I1234 cm−1/I1020 cm−1)
showed good linear correlation vs.C (R2 � 0.9924). Similar to

NAP, two characteristic peaks at Δv � 1234 and 1400 cm−1

were selected and the correlation between I1234, I1400, and C
was established by the binary linear regression (Figure 4(b)
V).The correlation coefficient (R2) was 0.9997.The results of
fitting results showed that the model using the binary linear
regression based on I1234 and I1400 is the most suitable for the
quantitative detection of PYR.

ACE: the characteristic peaks at Δv � 550, 660, and
798 cm−1 were obvious in ACE standard solutions at various
concentrations. The linear correlations between C and I550,
I660, and I798 are shown in Figure 5. The R2 values were
0.9977, 0.9912, and 0.9856, respectively. Similar to PYR, the
peak at Δv � 1022 cm−1 was exploited as an internal
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Figure 4: (a) The SERS spectra of PYR with different concentrations in the presence of rGO/AuNP; (b) fitting results of peak intensity (I)
and concentration (C) based on different characteristic peaks. (I) Linear regression with the characteristic peak at Δv � 594 cm−1; (II) linear
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Δv � 1234 cm−1 and Δv � 1400 cm−1.
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reference, and the linear correlation between the ratio of
peaks intensities (I550 cm−1/I1022 cm−1) and Cwas calculated as
R2 � 0.9459. The binary linear regression between I550, I660,
and C was also established in Figure 5(b) V. The results
showed that the model using the binary linear regression
based on I550 and I660 is the most suitable for the quantitative
detection of ACE.

In previous studies, the main principle behind quanti-
tative peak selection was based on the most intense Raman
band. However, in this study, the concentration-dependent
response of PAHs was described based on different modes,

especially the binary linear regression. Table S17 shows that
the binary linear regression model was the most optimized
fitting model for all PAHs except for BkF, while the linear
correlation coefficient ranged from 0.9889 to 0.9997. In
addition, compared with the previously reported studies, the
quantitative calculation range in the present study was larger
(10–100 μM level). As we know, because of the saturation of
“hot spots,” the maximum concentration adsorbed on the
substrates will reach a plateau. The higher density of hot
spots may lead to more influenced targeting of molecules. It
was indicated that the loading of AuNPs from the capture of
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rGO improves the detected mass sensitivity of target PAHs,
which was attributed to the combination of electromagnetic
effects of AuNPs and chemical interactions between the rGO
surface and PAHs [35].

The LOD was measured based on the 3σ methods [36], in
which the intensities of characteristic SERS peakswere compared
with a threshold value determined by three times the standard
deviation of the spectral intensity fluctuation at a featureless
spectra region (1700–1800cm−1). The LODs of 16 PAHs are
summarized in Table S17. Although the designed substrates have
demonstrated SERS activity towards all 16 PAHs, the LODs
(0.2–2ng·mL−1) were relatively higher than that reported in the
literature [19]. Future research will be directed towards the
improvement of the sensitivity of the composited substrate.

3.3. Stability andReproducibility. The random aggregation of
metal nanoparticles restricts their application for SERS. The
sp2 structure and the function of “thermal shielding” from
GO make the target compound homogeneously adsorbed on

the surface of GO and significantly prevent aggregation, thus
improving the stability of metal and graphene composites
[37, 38]. In this study, the time-dependent stability of the
composite substrates was estimated by RSD of the charac-
teristic peak intensity of NAP (I760, I1018, I1382, and I1564) at the
concentration of 100 ng mL−1 randomly collected at various
time intervals of 10min. The RSD is varied between 6.07 and
8.29% (Figure 6), demonstrating that the substrates can
produce stable SERS signals with at least 10min.

To investigate the reproducibility of the rGO/AuNP sub-
strates, ten different batches of substrates were prepared simul-
taneously in the samemanner and then the SERS performance of
the substrates between different batches wasmeasured (Figure 7).
The RSD of four characteristic peak intensities of NAP (I760, I1018,
I1382, and I1564) varied from 12.28% to 14.03%.

3.4. Real Sample Detection. The SERS-based method has
focused on the detection of PAHs in river water [39], soil
[22], or as purity compounds [40]. Very few studies have
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Figure 6: RSD of (a) I760, (b) I1018, (c) I1382, and (d) I1564 of NAP randomly collected at time intervals of 1min.
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investigated their presence in fried foods. We made an at-
tempt to investigate the analytical potential of the facile SERS
substrates developed in this study, for the detection of PAHs
in youtiao, a Chinese traditional fried bread commonly
consumed for breakfast. A youtiao sample (no. 1349A1-1)
was purchased from the local food stall and the pretreatment
was performed as described in the section on “Fried Food
Sample Detection.” Figure 8 shows that the key SERS peaks
of four PAHs (ACE, ACEY, BaA, and NAP) can be easily
distinguished with high resolution, without any background
interference. The whole detection process takes only about
15min.The results demonstrate the high potential of the on-
field multicomponent detection of PAHs.

4. Conclusion

In the present study, a novel SERS sensor was developed for
the detection of 16 EPA priority PAHs. The rGO/AuNP
substrate can be synthesized without any complicated
modification process. The hydrophobic PAHs could be

identified based on their characteristic peaks in the presence
of the rGO/AuNP composite substrate with estimated LOD
as low as 0.2–2 ng·mL−1. The different models including
linear regression, binary linear regression, and the internal
reference methods were optimized for the quantitative
calculation of PAHs. The prepared rGO/AuNP sensor
platform was preliminarily investigated for the identification
of PAHs in Chinese traditional fried food (youtiao) matrix
without any complicated pretreatment. The developed
SERS-based sensor could prospectively be applied as a
screening monitoring method to detect PAHs on-site for the
quality control of fried food.
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