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The objective of this work was to implement a motion-detection algorithm on a 
commercial real-time functional magnetic resonance imaging (fMRI) processing 
package for neurosurgical planning applications. A real-time motion detection 
module was implemented on a commercial real-time processing package. Simulated 
functional data sets with introduced translational, in-plane rotational, and through-
plane rotational motion were created. The coefficient of variation (COV) of the 
center of intensity was used as a motion quantification metric. Coefficients of 
variation were calculated before and after image registration to determine the 
effectiveness of the motion correction; the limits of correctability were also 
determined. The motion-detection module allowed for real-time quantification of the 
motion in an fMRI experiment. Along with knowledge of the limits of correctability, 
this enables determination of whether an experiment needs to be reacquired while the 
patient is in the scanner. This study establishes the feasibility of using real-time 
motion detection for presurgical planning fMRI and establishes the limits of 
correctable motion. 
 
PACS number: 87.61.-c 
 
Key words: functional magnetic resonance imaging, neurosurgical planning, motion 
detection 

 
 
I. INTRODUCTION 
Functional magnetic resonance imaging (fMRI), a noninvasive technique for performing 
functional brain mapping, is playing an increasingly important role in presurgical planning.(1) Prior 
to surgery, the patient is asked to perform a battery of functional tasks in order to determine the 
location of relevant functional centers relative to the tumor or lesion to be resected. The functional 
information is used preoperatively for risk management and planning the surgical trajectory and 
can be used intraoperatively to guide tumor resection.(1) Among the difficulties encountered when 
performing clinical fMRI are the increased likelihood of subject motion, the decreased likelihood 
of subject compliance, and the requirement that the results be generated rapidly to allow the data 
to be available to the surgeon. 

In traditional fMRI, the data are acquired and transferred to a separate workstation where 
offline statistical analysis, motion correction, and additional processing are performed. This offline 
processing is generally done after the examination is complete, meaning that the reacquisition of 
data corrupted by excessive motion or lack of patient compliance requires recall of the patient. In a 
busy clinical setting, fMRI data are often acquired the afternoon prior to an early morning surgery, 
making patient recall impractical or impossible. 

Real-time processing of fMRI data has recently been introduced in a number of commercially 
available software packages. Real-time processing is useful in that it allows the map of functional 
activation to be displayed immediately following the fMRI experiment, while the patient is still in 
the scanner. If the data are deemed to be inadequate, new data may be acquired immediately. 

In a review of their clinical fMRI experience, Krings et al. reported that presurgical fMRI 
failure was most frequently caused by head motion artifacts.(1) Real-time fMRI provides a purely 
qualitative assessment of motion based on the presence of areas of spurious activation around the 
periphery of the brain that is unique to an image corrupted by stimulus-correlated motion.(2) 



65 Steger and Jackson: Motion detection in fMRI... 65 
 

Journal of Applied Clinical Medical Physics, Vol. 5, No. 2, Spring 2004 
 

Although this artifact can be identified immediately via real-time processing, a difficulty arises in 
the fact that motion beyond a certain magnitude cannot be sufficiently corrected. For example, 
Krings et al. concluded that for their in-house image-registration package, motion greater than 2 
mm could not be adequately corrected.(1) Thus, lacking a quantitative measure of motion in real-
time processing, it is not possible to determine whether the motion-corrected data need to be 
reacquired. To our knowledge, no such quantitative metric is included in commercial real-time 
fMRI packages. The motion problem is compounded in clinical studies, since motion is more 
common in patients because of paresis, which often leads to recruitment of additional muscles to 
perform the task, and the presence of artifacts correlates with the degree of paresis.(1)  

To combat this problem, a number of techniques have been developed to reduce motion 
artifacts. These include non-image-based techniques such as immobilization,(3,4) although it has 
been our experience that immobilization of cancer patients can be self-defeating due to increased 
patient anxiety. One class of image-based techniques to reduce motion artifacts involves 
retrospective image registration and is incorporated into a number of public-domain 
postprocessing software packages, including SPM, AIR, and AFNI.(5–7) Another class involves 
prospective correction through navigator echoes.(8–13) A handful of other image-based techniques 
have also been discussed in the literature.(14,15) Because prospective techniques are not readily 
available on many commercial scanners, the use of image-registration software packages remains 
the most widely used approach to motion correction. 

Two recent studies compared the image-registration capabilities of the most widely used 
packages. Morgan et al. evaluated AIR, AFNI, and SPM on the basis of the number of false 
positives generated from simulated activation on a synthetic data set.(16) Ardekani et al. compared 
the motion-detection algorithms on the basis of the accuracy of motion estimation given fixed 
amounts of introduced motion.(17) While slight differences were seen in the image-realignment 
algorithms, there was no convincing evidence that any of these three registration algorithms were 
significantly superior. 

Because the motion-correction techniques work best when the motion is small in magnitude, 
large amounts of motion can render an fMRI experiment useless. It would be highly beneficial for 
neurosurgical planning applications of fMRI if there were a metric produced in real time that 
allowed for determination of whether motion in an experiment would be adequately corrected for 
by standard image-registration algorithms. Therefore, this study seeks (1) to develop—on a 
commercial real-time image-processing package—a quantitative motion-detection algorithm to 
determine the utility of a given data set, and (2) to use the motion-detection algorithm to evaluate 
the limits of a standard image-registration package’s performance using a computer-generated 
phantom. 

 
II. MATERIALS AND METHODS 
A real-time motion-detection module was added to the commercially available Real-Time Image 
Processor (RTIP) software (GE Medical Systems, Milwaukee, WI), which was loaded on the NV/i 
Visualization Platform (GE Medical Systems, Milwaukee, WI). The NV/i system utilizes a dual 
processor 296 MHz Sun UltraSPARC 2 computer with 512 MB of memory. The motion detection 
was performed using a center-of-intensity approach. After applying a threshold to eliminate pixels 
outside the brain, the centers of intensity in the x-, y-, and z-directions are calculated for each time 
point of an fMRI experiment (typically 14 slices and 65 time points in our implementation). Each 
center of intensity is calculated in real time. Immediately at the completion of the fMRI 
experiment, the coefficient of variation (COV) of the center of intensity is calculated and 
displayed. 

To permit assessment of the motion-detection method with a known amount of introduced 
motion, a synthetic data set was created from an existing clinical fMRI data set. The functional 
data set was acquired on a 1.5 T Signa NV/i scanner (General Electric Medical Systems, 
Milwaukee, WI) with the standard quadrature birdcage head coil. A single-shot gradient recalled 
echo planar imaging sequence with a repetition time of 4000 ms and an echo time of 50 ms; a 128 
× 128 matrix size was used to collect the 26 cm field-of-view, 6 mm thick images. Fourteen 
contiguous slices were obtained at 65 time points (five-time-point blocks of alternating activation 
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and rest for six cycles), for a total of 910 images. To create the synthetic data set, each slice from 
the first time point of the data set was duplicated for the remaining 64 time points. Translational, 
in-plane rotational (head shaking), and through-plane rotational (head nodding) motions were 
introduced to alternate blocks of five time points to mimic stimulus-correlated motion in a block 
paradigm study. These synthetic data sets were generated using MatLab software (The Math 
Works Inc., Natick, MA). Whole-pixel translations up to nine pixels were introduced in the x- and 
y-directions. Rotations with bicubic interpolation were simulated from 0° to 25° in-plane and from 
0° to 6° through-plane. In-plane rotations were performed through an axis that runs through the 
spinal cord. 

Each simulated motion data set was evaluated with the motion-detection algorithm, yielding 
COV values for the x-, y-, and z-directions. AFNI,(7) a standard offline processing package, was 
used to correct for motion using a three-dimensional image-registration algorithm, 3dvolreg, 
which is an iterative method optimized for small translations or rotations.(18) These motion-
corrected data sets were then evaluated by the motion-detection algorithm to provide a metric for 
determining the effectiveness of the motion correction. Due to the similar performance of the 
major image-registration packages reported by Ardekani et al. and Morgan et al., AFNI alone was 
used in this analysis. 

The replication of time points in the simulated data set implies that there should be no 
activation found in an fMRI analysis of the data set. However, the presence of motion can create 
spurious regions of activation, generating a nonzero value for the functional intensity. The 
intensity of the functional activation is the parameter α in the equation x = αr + a + b + η,  where x 
is the data time series vector, r is the reference time series vector, a is the mean signal, b is the 
linear drift, and η is the error term.(7) The functional intensity is analogous to the percentage signal 
change. The functional intensity per pixel before and after motion correction was calculated for a 
central slice to provide a further measure of the limits of acceptable motion correction. One would 
expect the functional intensity per pixel to reduce to zero for perfect motion correction. This 
investigation allows direct evaluation of the effect of the motion on the fMRI analysis and how the 
image-registration algorithms limit this effect. 

AFNI’s three-dimensional image-registration algorithm was also applied retrospectively to a 
20-patient sample of clinical fMRI runs (56 total data sets). The tasks studied were aurally 
presented paradigms designed to activate expressive speech, receptive speech, and sensorimotor 
functional centers. The image-registration algorithm produced the magnitude of the translation and 
rotation required to realign each slice in the functional data set. This yielded information regarding 
the amount of motion present in typical aurally presented clinical fMRI runs, and served as a 
validation of the limits determined in the simulated motion study. 

 
III. RESULTS 
The motion-detection algorithm was successfully implemented within the correlation coefficient 
module. To measure the speed of the algorithm, it was tested during a real-time fMRI experiment 
run on a phantom. The algorithm produced COV values for each of the three planes within 1 s of 
the end of the experiment. Having verified the ability of the algorithm to process at the necessary 
speed, the algorithm was applied retrospectively to the simulated motion data sets. Figs. 1 to 3 
show the COVs of the x-, y-, and z- centers of intensity obtained for translational, in-plane 
rotational, and through-plane rotational motion both before and after motion correction. The 
coefficients of variation prior to motion correction increased in a linear fashion, while the 
postcorrection coefficients of variation were small up to an inflection point. The inflection point 
occurred for a translation of 5 pixels in Fig. 1 and an in-plane rotation of 10° in Fig. 2, but was 
less evident in the through-plane rotation depicted in Fig. 3. Fig. 2(a) shows a greater COV along 
the x-axis than along the y-axis. This is likely due to the fact that for small angles of in-plane 
rotation of an oblong object such as the brain, the dominant shift in the center of intensity is likely 
to be perpendicular to the long axis of the object. Likewise, Fig. 3(a) shows a larger COV along 
the y-axis because a through-plane rotation is likely to show very little shift along the x-axis since 
the axis of rotation is along the same axis. 
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FIG. 1. Coefficient of variation (COV) of the center of intensity of the simulated fMRI time course before (a) and after (b) 
motion correction for translations up to 9 pixels. 

 

 
FIG. 2. Coefficient of variation (COV) of the center of intensity of the simulated fMRI time course before (a) and after (b) 
motion correction for in-plane rotations up to 25°. 
 

 
 
FIG. 3. Coefficient of variation (COV) of the center of intensity of the simulated fMRI time course before (a) and after (b) 
motion correction for through-plane rotations up to 6°. 
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Figs. 4 to 6 show the functional intensity per pixel for translation, in-plane rotation, and 
through-plane rotation before and after motion correction. It is readily apparent that the simulated 
stimulus-correlated motion generates an appreciable amount of spurious activation. However, the 
motion-correction algorithm removes this spurious activation for small magnitude translations and 
rotations, as evidenced by the low postcorrection functional intensity values in this domain. An 
inflection point was again present in each type of motion, implying that at motion levels beyond 
that inflection point there was a marked decrease in the ability of the software to remove the 
spurious activation. Inflection points occurred at approximately 5 pixels for translation, 10° for in-
plane rotation, and 5° for through-plane rotation. The data reflect the fact that AFNI’s image-
registration algorithm is designed for translations of only a few pixels and for rotations of only a 
few degrees.(18) 

 
FIG. 4. Functional intensity of the simulated fMRI time course per pixel before and after motion correction (MC) for 
translations up to 9 pixels. 

 

FIG. 5. Functional intensity of the simulated fMRI time course per pixel before and after motion correction (MC) for in-
plane rotations up to 25°. 
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FIG. 6. Functional intensity of the simulated fMRI time course per pixel before and after motion correction (MC) for 
through-plane rotations up to 6°. 

 
The inflection point values for functional intensity were consistent with the values from the 

COV analysis. Following analysis of the motion-detection parameters at these points, it was 
determined that the quadrature sum of the x-, y-, and z-coefficient of variation values is a good 
metric for identifying the inflection points for all three types of motion. Based on the results of the 
synthetic data analysis, a COV quadrature sum of 2.0 pixels corresponds to the threshold of 
correctability for the three types of introduced motion. Thus, it is recommended that any fMRI 
data set showing a COV quadrature sum greater than 2.0 pixels be reacquired to obtain a data set 
with less motion corruption. 

The analysis of motion in the 20 clinical data sets revealed that the maximum rotation 
required to align a slice was 1.4°, while the maximum translation required was 2.3 mm (about 1 
pixel). The fact that the maximum rotation and translation were well below the inflection points 
within which motion correction was possible indicated that these clinical data sets would be 
expected to contain correctable amounts of motion. 

 
IV. DISCUSSION 
The real-time motion-detection algorithm was selected and implemented in a manner that sought 
to minimize the calculation time during the run. More intricate motion-detection approaches were 
considered, but they would have required greater allocation of memory and processor time. The 
center-of-intensity method was efficient enough to operate in the real-time processing 
environment and generated results within one second of the end of the fMRI run. Thus, the degree 
of patient motion can be evaluated allowing an immediate decision regarding whether to reacquire 
the data. This is particularly useful due to the increased likelihood of motion in patients relative to 
healthy volunteers, and the impracticality of recalling surgical patients in a busy clinical setting 
where surgery may be performed within 24 h of the fMRI procedure. 

Synthetic data sets were employed during the validation of the algorithm because they were 
simple to create and allowed for the introduction of known amounts of motion of any type at any 
point in the time series. We chose to emphasize stimulus-correlated motion because this is the type 
of motion most troublesome to fMRI data analysis and is common in clinical fMRI. 

It is worth noting that in Figs. 1 and 2, which show results after in-plane motion was 
introduced, a z-component for the COV appeared after motion correction. This is explained by the 
fact that the motion-correction algorithm uses scaling and rotations in all directions to align the 
images. This may introduce variations of the center of intensity in the z-direction. An additional 
observation of the phantom analysis is that the degree of correction of through-plane motion was 
far less than the degree of correction for in-plane rotation or translation. This is likely due to the 
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fact that the z-axis dimension of 6 mm is far greater than the approximately 2 mm in-plane voxel 
dimension. Thus, interpolation errors contribute preferentially to through-plane motion correction. 

The motion analysis of the 20 previously acquired fMRI cases provided an estimate of the 
amount of motion seen in typical clinical fMRI data sets. No motion that exceeded our threshold 
of correctability was present in these data sets. However, the paradigms analyzed were all aurally 
presented. Motion may be more likely in visually presented paradigms, in which the patient may 
adjust his or her head to better view the stimulus. Additionally, the data sets were biased toward 
being relatively free of motion artifacts, because they were selected from a database containing 
data sets presented to the neurosurgeons for presurgical planning. Other fMRI applications may 
have a higher incidence of rejected data sets than the ones investigated here. 

In conclusion, we have implemented a real-time motion-detection algorithm and have 
established the motion-detection values that define the threshold of correctability, allowing a 
decision to be made within one second of the end of the experiment regarding whether data 
reacquisition is necessary. Clinical implementation of the procedures used in these studies would 
be expected to reduce the need to recall patients at a later time and limit the number of fMRI runs 
discarded because of uncorrectable motion artifacts. The overall result of this work is the addition 
of a tool to augment the ability of real-time fMRI data processing to assist in neurosurgical 
planning. 
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