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Abstract

Due to a rising annual incidence of bladder cancer, there is a growing need for development of 

new strategies for treatment. In 2018, the World Cancer Research Fund and other groups reported 

that there were ~550,000 new cases worldwide of bladder cancer. It has been further estimated 

that >200,000 individuals die annually from bladder cancer worldwide. Various treatment options 

exist. However, many if not all remain suboptimal. While the preferred chemotherapeutic options 

have changed in the past few years there have been few advances in the bladder cancer medical 

device field. Cryoablation is now being evaluated as a new option for the treatment of bladder 

cancer. While several studies have shown cryoablation to be promising for the treatment of bladder 

cancer, a lack of basic information pertaining to dosing (minimal lethal temperature) necessary to 

destroy bladder cancer has limited its use as a primary therapeutic option. Concerns with bladder 

wall perforation and other side effects have also slowed adoption.

In an effort to detail the effects of freezing on bladder cancer, two human bladder cancer cell 

lines, SCaBER and UMUC3, were evaluated in vitro. SCaBER, a basal subtype of muscle invasive 

bladder cancer, and UMUC3, an intermediate transitional cell carcinoma, are both difficult to treat 

but are reportedly responsive to most conventional treatments. SCaBER and UMUC3 cells were 

exposed to a range of freezing temperatures from −10 to −25°C and compared to non-frozen 
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controls. The data show that a single 5 minute freeze to −10°C did not affect cell viability, 

whereas −15°C and −20°C results in a significant reduction in viability 1 day post freeze to <20%. 

These populations, however, were able to recover in culture. A complete loss of cell viability 

was found following a single freeze at −25°C. Application of a repeat (double) freeze resulted in 

complete cell death at −20°C. In addition to freezing alone, studies investigating the impact of 

adjunctive low dose (1 μM) cisplatin pre-treatment (30 minutes and 24 hours) in combination with 

freezing were conducted. The combination of 30 minute cisplatin pre-treatment and mild (−15°C) 

freezing resulted in complete cell death. This suggests that subclinical doses of cisplatin may be 

synergistically effective when combined with freezing.

In summary, these in vitro results suggest that freezing to temperatures in the range of −20 to 25°C 

results in a high degree of bladder cancer cell destruction. Further, the data describe a potential 

combinatorial chemo/cryo therapeutic strategy for the treatment of bladder cancer.

Introduction

There is an indisputable need for the development of new strategies and medical devices 

for treating both local and metastatic bladder cancer. The World Cancer Research Fund and 

others report that there were ~550,000 new cases of bladder cancer worldwide in 2018 and 

it is projected that >200,000 individuals will die from bladder cancer worldwide in 2019 

[1–5]. Further, bladder cancer has the highest lifetime treatment costs per patient of all 

cancers [6]. Although slightly less common in women, it is the fourth most common cancer 

in men. About half of newly diagnosed cases are non-invasive cancers contained within the 

inner layer of the bladder wall. About 33% of cases are more locally advanced with muscle 

invasion having spread into deeper layers of the bladder upon diagnosis, and the remaining 

cases represent metastatic bladder cancers [7]. According to the American Cancer Society 

the survival rate for bladder cancer varies based on the SEER stage: Localized (69%); in situ 
alone (95%); Regional (35%); Distant (5%); and 77% for all SEER stages combined [5].

Treatment for bladder cancer is dependent upon grade and stage. Low grade, 

early stage non-invasive cancers can be treated successfully with a combination of 

transurethral resection (TURBT) and intravesical therapy, where by a chemotherapeutic 

or immunotherapy agent is injected into the bladder for up to two hours [8]. Cancer that 

has grown deeply into the bladder wall or metastasized outside of the bladder is treated 

with radiation, systemic chemotherapy, and/or radical cystectomy. Cisplatin, 5-Fluorouracil, 

Mitomycin, and Gemcitabine are the most common chemotherapeutic agents used, often 

in some combination with or without radiation. Various treatment options exist but a 

number of issues have been reported, including high cost of treatment, patient discomfort, 

complications, incomplete treatment, procedural invasiveness, and poor efficacy, among 

others.

While there have been advances and shifts in the neoadjuvant chemotherapy used following 

radical cystectomy in patients with invasive bladder cancer (e.g. methotrexate, vinblastine, 

doxorubicin and cisplatin to now gemcitabine and cisplatin) [9,10], there have been few 

advances in ablative approaches to treat bladder cancer. Cryoablation is an established 

method of solid tumor ablation, offering comparable disease-free survival rates to other 
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modalities in the treatment of prostate cancer [11] and is also used in kidney, liver, and 

breast cancers [12–14]. Cryoablation extracts heat from tissues and creates a dynamic 

thermal environment in which ultralow temperatures nearest to the cryoprobe induce 

cell rupture. Warmer sub-freezing isotherms extending radially from the probe’s surface 

result in a zone of complete necrosis, followed by a transitional zone characterized by 

necrotic, apoptotic and living cells due to a combination of factors including ice crystal 

formation, hypoxia, pH, ionic changes, energy deprivation, free radical formation, etc. 

[15,16]. Temperature exposure in the range of −25°C to 0°C (cancer type dependent) are 

characteristic of this transitional zone of heterogeneous cell death and survival. As such, this 

transitional zone region presents an increased probability for cancer reoccurrence in vivo 
and thereby represents a prime target for combination strategies using sensitizing agents 

with the goal of synergistically increasing cell death while reducing the need for prolonged 

freezing [16].

As a minimally invasive modality, cryoablation is an attractive option for the treatment of 

superficial or muscle invasive bladder cancers. A number of studies have been published 

showing the ability for cryoablation to freeze through the bladder wall without damage 

to the bladder structure [17–20]. While showing promise, the use of cryotherapy to treat 

bladder cancer remains limited clinically. This is due in part to a lack of data related to 

bladder cancer cell response to freezing, including minimal temperature and exposure time 

necessary (dosing) to assure lethality, concerns with perforation of the bladder wall, few 

cystoscopic compatible cryodevices, extended procedure time, cost and ability to target 

metastatic disease which limit widespread application. The purpose of this study was to 

investigate the freeze sensitivity of two distinct bladder cancer cell lines as an initial step in 

establishing dosing parameters for bladder cancer cryoablation. The SCaBER and UMUC3 

cell lines were selected as SCaBER, a Squamous Cell Carcinoma (SCC), represents an 

aggressive basal muscle invasive bladder cancer (MIBC) whereas UMUC3, a Transitional 

Cell Carcinoma (TCC), represents an intermediate to high risk cancer. Analysis of the 

two bladder cancer variants was conducted as studies have shown that different stages and 

molecular dispositions of similar cancers (tissue type) can respond differently to similar 

treatments [21].

In addition to the potential of cryoablation, a number of studies have demonstrated 

the benefit of adjunctive strategies involving freezing in combination using various 

chemotherapy and nutraceutical agents to augment cancer cell death in various cancer 

types [22–25]. In the area of bladder cancer treatment, studies have shown that thermal 

therapy (heat and freezing) alone or in combination with chemo/radiation offers an effective 

approach to treat unresectable pT4b bladder cancer as well as other bladder cancer and 

ureteral cancer [26]. While adjunctive studies are limited, they nonetheless have shown 

the potential of this approach. Accordingly, in this study we also investigated the impact 

of the combination of low-dose (sub-clinical) cisplatin treatment in combination with mild 

freezing on bladder cancer cell destruction. Cisplatin was selected for combination studies 

as it is often used clinically to treat bladder cancer, either alone or in combination with 

other chemotherapeutic agents. Clinical dosage of cisplatin for the treatment of bladder 

cancer ranges from 35–100 mg/m2 [3.1–9 μM]. Given that high doses of chemotherapy 

cause deleterious side effects and impact patient quality of life, in this study we elected 
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to investigate the impact of lower doses of cisplatin [1 to 1.75 μM (e.g. 11 to 19 mg/m2)] 

combined with freezing as a potential path to limit the side effects associated with drug 

exposure. Our hypothesis was that pre-treatment with low dose cisplatin would sensitize 

the bladder cancer cells so that when combined with mild freezing (−15°C) complete cell 

destruction would be achieved under conditions in which either the drug or freezing alone 

yield minimal to no impact.

This in vitro study was designed as a first step investigation into the sensitivity of bladder 

cancer to freezing as well as to evaluate the potential benefit of the combination of sub-

clinical doses of cisplatin with freezing. Results detailed herein demonstrate that exposing 

bladder cancer cells to a single freezing event of >−25°C results in complete cell destruction 

with no recovery. Application of a repeat or double freeze resulted in an elevation of the 

minimal lethal temperature to >−20°C. Further, the combination of low dose cisplatin and a 

single freeze exposure resulted in an elevation of the minimal lethal temperature to −15°C.

Materials and Methods

Cell culture

Bladder cancer cells, SCaBER (Squamous Cell Carcinoma (SCC); ATCC HTB-3) and 

UMUC3 (Transitional Cell Carcinoma (TCC); ATCC CRL 1749), were cultured in T-75 

flasks (Cell Treat, Shirley, MA, USA) in EMEM (ATCC 30–2003) supplemented with 10% 

FBS (Peak Serum, PS FB-3) and 1% penicillin/streptomycin (Lonza). Cells were lifted 

using TrypLE Express (Gibco/Life Technologies, Grand Island, NY), centrifuged and plated 

into Costar strip well plates (Corning, Tewksbury, MA, USA) at 10,000 cells per well and 

cultured for 2 days prior to experimentation.

Cisplatin treatment

Cisplatin (cis-Diamineplatinum(II) dichloride, SigmaAldrich #479306, St. Louis, MO) was 

prepared fresh in sterile water prior to each use and diluted to final sub clinical concentration 

of 1 μM (11.6 mg/m2) or 1.75 μM (19.5 mg/m2) in media. Samples were exposed to a single 

application of cisplatin for 24 hours or 30 minutes prior to freezing.

Freezing protocol

Samples in Costar 8-well strips (75 μL medium/well) were exposed to freezing temperatures 

of −10°C, −15°C, −20°C or −25°C in a refrigerated circulating bath (Neslab/Thermo 

Scientific, Waltham, MA) for 5 minutes. 30 minutes prior to freezing, culture medium 

was aspirated and replaced with 75 μL per well of appropriate culture medium. Strips were 

placed into aluminum blocks, containing a thin coating of ethanol to facilitate complete 

contact and thermal exchange with each well, within the baths. Ice nucleation was initiated 

at −2°C using liquid nitrogen vapor to prevent super cooling. Sample temperature was 

recorded at 1 second intervals using a type T thermocouple (Omega HH806AU, Omega, 

Stamford CT). For single freeze conditions, samples were held for a total time of 5 minutes 

in the freezing bath, passively thawed at room temperature for 10 minutes under a laminar 

flow hood and then placed at 37°C for recovery and assessment. For repeat (double) freeze 

conditions, samples were held for 5 minutes, passively thawed for 10 minutes, and then 
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frozen again for an additional 5 minutes (5/10/5 protocol). Following the second freeze 

interval, samples were passively thawed at room temperature for 10 minutes and then placed 

into 37°C for recovery and assessment.

Viability assessment

The metabolic activity indicator alamarBlue (Invitrogen, Carlsbad CA) was utilized to assess 

cell viability. Stock alamarBlue was diluted 1:20 in Hank’s Balanced Salt Solution (HBSS, 

Corning/Mediatech) and applied to samples for 60 min (±1 min) at 37°C. Raw fluorescent 

units were obtained using a TECAN Infinite plate reader (excitation 530 nm and emission 

590 nm, Tecan Austria GmBH, Grodig, Austria) and analyzed using Microsoft Excel. Raw 

fluorescence units were converted to percentages based upon pre-freeze control values 

(±SEM). Assessments were conducted on day 1, 3, 5 and 7 of recovery. A minimum of 3 

experimental repeats with an intra experimental repeat of 7 wells was performed in each 

condition (n ≥ 21). Statistical significance was determined by single factor ANOVA where p 

< 0.01 was applied as the significance threshold.

Cell death assessment

Cell Event Green (ThermoFisher, C10423) and SytoxRed (ThermoFisher, S11380) were 

used to assess the modes (apoptosis and necrosis, respectively) and timing of cell death 

at 4 hours, 1, 3 and 5 days post-freeze. Cell Event Green (caspase 3/7 activation) was 

used to assess apoptotic involvement whereas Sytox Red indicated necrosis. Samples were 

incubated for 30 minutes at 37°C with 5 μM Cell Event in 1X PBS, followed by a 15 minute 

37°C incubation with 500 nM Sytox Red. Samples were counterstained with 3 μg/mL 

Hoechst 33342 (Invitrogen, H3570) in 1X PBS and then washed for 5 minutes in 1X PBS. 

Samples were then analyzed with the Cell Insight CX5 high content screening platform 

(ThermoFisher) using the Target Activation Assay protocol. A minimum of 3 experimental 

repeats with an intra experimental repeat of 3 wells was performed in each condition (n ≥ 9). 

Statistical significance was determined by single factor ANOVA.

Results

Single freeze exposure response of bladder cancer cells

In order to identify the minimal lethal temperature for bladder cancer, SCaBER and UMUC3 

cells were exposed to a single 5 minute freeze at −10°C, −15°C, −20°C or −25°C, thawed, 

allowed to recover in culture and assessed for initial cell viability (24 hours) as well 

as recovery over a 7 day period. Analysis of SCaBER samples revealed minimal death 

following exposure to a −10°C single freeze (Figure 1A). Exposure to −15°C resulted in a 

significant decline in SCaBER viability at day 1 post-freeze to 16% (± 1.0). The surviving 

cells, however, were found to rapidly recover reaching 84% (±2.2) by day 7. Exposure to 

−20°C resulted in a further reduction in SCaBER viability to 2% (±0.1) 1 day post freeze. A 

low but significant level of regrowth was observed over the 7 day post-thaw analysis interval 

(D7=7% (±0.8) vs. D1=2% (±0.2); P<0.01). When SCaBER cells were treated with a single 

freeze at −25°C, complete cell death at day 1 was observed and no regrowth was noted over 

the 7 day recovery period (D1 survival=0.2% (± 0.01), D7=0% (± 0.1), P>0.5).
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Studies using the UMUC3 cell line (TCC) yielded similar results as the SCaBER studies. 

Exposure to a single freeze at −10°C yielded minimal cell death and −15°C resulted in day 1 

survival of 22.8% (± 0.3) which increased to 97.5% (±1.1) by day 7 (Figure 1B). Exposure 

to −20°C resulted in a further decline in day 1 viability with a low level of recovery noted by 

day 7 (D1=3.2% (±0.2) vs. D7=17.3% (±0.7); P<0.01), whereas exposure to −25°C yielded 

complete cell death and no recovery. The results from these experiments suggested that for 

a single freeze episode the minimal lethal temperature for bladder cancer (SCC and TCC) is 

−25°C.

Repeat (Double) freeze exposure response of bladder cancer cells

With the identification of −25°C as completely lethal for SCaBER and UMUC3 cells, 

studies were conducted to assess the impact of a repeat (double) freeze exposure on cell 

viability and recovery. To this end, samples were exposed to repeat freezing at-10, −15 

and −20°C. Repeat freeze exposure (double 5 minute freezes) to −10°C yielded a similar 

outcome as the single freeze exposure within minimal cell death observed in either the 

SCaBER or UMUC3 cells (Figure 2). In the UMUC3 samples, an initial decrease in viability 

to 67.9% (± 2.6) was noted. These samples, however, recovered to control levels by Day 5 

recovery. Repeat freezing at −15°C resulted in a significant increase in cell death in both the 

SCaBER and UMUC3 samples at day 1 post freeze compared to a single freeze exposure 

(repeat vs. single=SCaBER: 2.8%(±0.3) vs. 16%(±1), P<0.01; UMUC3: 4.7%(±0.3) vs. 

22.8%(±0.3), P<0.01). The repeat −15°C samples were found to recover to around 20% 

over the 7 day recovery interval (D7: SCaBER: 19.1%(±3.7); UMUC3: 21.5%(±1.3)). While 

slight, this recovery was significant compared to day 1 survival for both cell types (D1 

vs. D7 P<0.01 for both cell types). Repeat exposure to −20°C resulted in complete cell 

destruction with no recovery over the 7 day assessment interval in both cell types. The 

results from the double freeze experiments suggested that the repeat exposure results in an 

elevation of the minimal lethal temperature to around −20°C.

Impact of adjunctive cisplatin and freezing treatment

With the identification of the minimal lethal temperature for SCaBER and UMUC3 cell 

destruction and the elevation of this temperature when a repeat freeze was applied, we 

explored combining low dose cisplatin pretreatment followed by freezing to further increase 

cell death. Given the significant decrease in viability observed following exposure to −15°C 

with a subsequent population recovery over the 7 day interval, we chose to investigate 

the combination of cisplatin and freezing at −15°C. SCaBER and UMUC3 samples were 

exposed to low dose cisplatin for 24 hours prior to freezing. Cisplatin dosages of 1 μM for 

SCaBER cells and 1 μM and 1.75 μM for UMUC3 cells were examined. These dosages were 

selected as dose response studies revealed minimal to no negative effect on cell survival or 

recovery over the 7 day assessment period (data not shown). SCaBER cells exposed to 1 μM 

cisplatin for 24 hours followed by a single freeze at −15°C (C/−15) resulted in an increase in 

cell death compared to the −15°C freeze (−15) alone samples (C/−15: 10.5% (± 0.8) vs. −15: 

16% (±1.1); P<0.01) (Figure 3A). While a significant decrease in day 1 post-freeze viability 

was noted, as in the −15°C freeze only condition, the cisplatin/ −15°C samples were found 

to recover over the 7 day interval, however to a much lower degree than in the freeze only 

samples (D7: C/−15: 33%(±5.4) vs. −15: 84%(±2.2); P<0.01)). As recovery was noted in 
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the cisplatin ±15°C samples, experiments examining the impact of a repeat freeze at −15°C 

(−15R) in combination with cisplatin pretreatment (C/−15R) were conducted. These studies 

revealed similar day 1 survival to repeat freeze alone at −15°C (C/−15R: 4.4% (±1.4) vs. 
−15R: 2.8% (±0.3), P=0.3). Interestingly, SCaBER samples exposed to cisplatin and repeat 

−15°C freezing did not recover over the 7 day assessment period whereas the repeat freeze 

only samples did (D7: C/−15R: 3.7% (±1.2) vs, −15R 19.1%(±7.2); P<0.01).

Combination studies with 24 hour pretreatment using cisplatin followed by exposure to 

−15°C in the UMUC3 cell line yielded similar results as SCaBER samples. UMUC3 cells 

exposed to cisplatin (1 μM or 1.75 μM) alone for 24 hours resulted in minimal cell death 

(Figure 3B). When 1 μM cisplatin treatment was followed by −15°C freezing, a slight 

decrease in cell survival was noted at day 1 compared to freeze only samples (C/−15: 

20% (±0.5) vs −15: 22.8% (±0.3); P=0.006)). While similar at day 1, analysis at day 7 

revealed a marked decrease in sample recovery in the cisplatin/freeze combination condition 

vs freeze alone (C/−15: 62.4% (±2) vs. −15: 97.5% (±1.1), P<0.01). Pretreatment with 1.75 

μM cisplatin for 24 hrs followed by freezing to −15°C (C1.75/−15) resulted in similar day 

viability as the 1 μM cisplatin/freeze and freeze alone samples (C1.75/−15: 19.4% (±1.0) vs. 

C/−15: 20 (±0.5) vs. −15: 22.8% (±0.3), respectively). Interestingly, the increase in cisplatin 

to 1.75 μM in combination with freezing resulted in a further reduction in cell recovery 

over the 7 day interval compared to the 1 μM cisplatin/freeze samples (D7: C1.75/−15: 

34.7%(±2.4) vs. C/−15: 97.5% (±1.1); P<0.01).

Impact of cisplatin exposure interval on cell survival

Based on the benefit of the combination of 24 hour exposure to low dose cisplatin prior to 

freezing to −15°C, we investigated the impact of shortening the cisplatin exposure interval 

from 24 hours to 30 minutes prior to freezing. As with 24 hour exposure, 30 minute 

exposure to cisplatin alone resulted in minimal cell death for both SCaBER and UMUC3 

samples (Figures 3A and 3B; 30 min). The 30 minute exposure interval followed by −15°C 

freezing in SCaBER samples yielded similar survival to freeze alone samples (17.9% (±1.8) 

vs. 16% (±1.1), P>0.05) which represented an increase in day 1 survival compared to 24 

hour pretreatment samples (17.9% (±1.8) vs. 10.7% (±0.8); P=0.008). Analysis over the 7 

day recovery interval revealed that while the initial survival of the 30 min cisplatin exposure 

samples was greater than the 24 hour exposure, a decrease in sample viability was noted 

over the 7 day interval in the 30 min exposure/−15°C samples (D1: 17.9% (±1.8) vs. D7: 

9.3% (±2.6); P<0.01; Figure 3A). This differed significantly from the 24 hour exposure/

−15°C samples which were found to repopulate over the 7 day recovery interval. Analysis of 

the impact of a 30 minute cisplatin exposure followed by repeat freezing at −15°C revealed 

minimal cell survival and no recovery over the 7 day assessment interval. This was similar 

to the 24 hour cisplatin/−15°C repeat freeze condition yet differed from the −15°C alone 

samples.

Analysis of the 30 minute cisplatin exposure prior to −15°C freezing in UMUC3 samples 

revealed similar results as SCaBER samples. Exposure to 1 μM cisplatin for 30 minutes 

followed by freezing resulted in a similar day 1 survival as in the freeze alone and 24 hour 

cisplatin/−15°C samples (25.2% (±1.3) vs. 22.8% (±0.3) and 20.1% (±0.5), respectively) 
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(Figure 3B). Analysis over the 7 day recovery interval revealed that, as in the SCaBER 

samples, UMUC3 samples exposed to cisplatin for 30 minutes and then frozen to −15°C 

yielded a plateau in cell survival (D7: 31.5% (±2.7) vs. D1: 25.2% (±1.3), P<0.01; Figure 

3B). Increasing the cisplatin concentration to 1.75 μM with a 30 min exposure and then 

freezing resulted in a similar day 1 survival as the 1 μM samples (25.0% (±1.4) vs. 25.28% 

(±1.3), respectively). However a decline in sample viability was noted in the 1.75 μM 

cisplatin/−15°C samples over the 7 day assessment interval which differed from the plateau 

in the 1 μM combination samples. The plateau/decline in survival during the recovery 

interval in the 1 μM and 1.75 μM 30 minute cisplatin / −15°C freeze samples differed 

significantly from the 24 hour cisplatin/−15°C combination or 15°C alone samples which 

were both found to regrow.

Assessment of modes of cell death following freezing

With the identification of increased SCaBER cell death following the combination of −15°C 

and cisplatin pre-treatment coupled with the observed decline in sample viability over the 

5 day recovery period, analysis of the modes and timing of cell death was assessed via 
fluorescence image analysis. To this end, SCaBER samples were frozen to −15°C freeze 

with and without cisplatin pretreatment and analyzed at 4 hours, 1, 3 and 5 days post-freeze 

with Cell Event Green (apoptosis) and Sytox Red (necrosis) (Figure 4). Quantitative image 

analysis revealed a low level of necrosis and minimal apoptosis in both untreated controls 

and cisplatin control populations over the entire assessment interval (Figure 4B). Analysis 

of −15°C samples 4 hours post-thaw revealed minimal necrosis and apoptosis (4.1% (±1.6) 

and 2.4% (±0.7), respectively). Analysis at day 1 revealed a significant increase in the 

necrotic population to 40.8% (±13.7) compared to both 4 hour and non-treated controls 

(P<0.01). The necrotic population was found to continue to increase and peak at 3 days 

post treatment at 85% (±5.4) and then declined to 54.8% (±17.0) by day 5. No significant 

change in apoptotic activity was observed at any of the time points analyzed in the −15°C 

freeze alone samples. Analysis of cisplatin/−15°C combination samples revealed similar 

levels of necrosis and apoptosis as in −15°C only samples at 4 hours and 1 day post-freeze. 

While similar at 4 hours and day 1 post-freeze, analysis at 3 days post freeze revealed an 

increase in necrosis in the combination samples compared to freeze alone. Importantly, at 

day 5 combination samples were found to maintain a high level of necrosis (81.9% (±13.4)) 

whereas in the freeze only samples necrotic samples had decreased significantly (54.8% 

(±17.0) (P<0.01).

Discussion and Conclusion

This study investigated the survival response of two bladder cancer cell lines following a 

freezing insult in an effort to identify the minimal lethal temperature (dose) necessary for 

complete cell destruction as well as the impact of double freeze exposure. These studies 

were conducted as cryoablation is often applied in a repeat (double) freeze procedure for 

the treatment of many cancers including prostate, renal and liver [11–14,16,27]. This dosing 

information could play an important guidance role for the future application of cryoablation 

to treat bladder cancer enabling expanded application while reducing the risk of negative 

side effects associated with over freezing. Further, investigation into the impact of low-dose 
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(sub-clinical) cisplatin pre-treatment in combination with mild freezing (−15°C) were also 

conducted as a number of studies have detailed the benefit of adjunctive drug/freezing in 

enhancing cancer kill (elevating the minimal lethal temperature) under conditions which 

when applied as a monotherapy (freeze or drug alone) are non-lethal [16,22–25,28–38].

Investigations were conducted using two different molecular variant bladder cancer cell lines 

(SCaBER and UMUC3). The SCaBER cell line is derived from a squamous cell carcinoma 

and represents an aggressive basal Muscle Invasive Bladder Cancer (MIBC) whereas the 

UMUC3 cell line represents a Transitional Cell Carcinoma (TCC) which is an intermediate 

to high risk cancer. Previous studies have shown that different molecular variants of cancer 

from the same tissue can have a differential response to mild freezing thereby impacting 

the minimal lethal temperature [16,21,27]. For instance, in prostate cancer, studies have 

shown that the loss of androgen receptor expression (shift from hormone responsive to 

unresponsive cancer) or increase in integrin expression can result in increased tolerance 

to freezing shifting the minimal lethal temperature from −25°C to −40°C [21,39]. Further, 

studies have shown that cancer cells in general have a higher tolerance to freezing compared 

to non-cancerous counterparts [27,40]. As such, the SCaBER and UMUC3 cell lines were 

employed to determine if a difference in freeze response was observed in bladder cancer.

Initial freeze dose response studies examined bladder cancer cell survival following 

exposure to temperatures ranging from −10°C to −25°C. These studies revealed that both 

SCaBER (SCC) and UMUC3 (TCC) cells were completely destroyed following a single 5 

minute freeze at −25°C whereas exposure to −10°C resulted in minimal to no cell death 

(Figures 1A and 1B). Single freeze exposure to the intermediate temperatures of −15°C and 

−20°C resulted in a significant level of cell death at 1 day post-freeze. However, both cell 

types were found to recover from this treatment over the 7 days post treatment assessment 

interval. As cryoablation is often applied using a double freeze protocol clinically, freeze 

response studies using a repeat freeze protocol, double 5 min freeze with an intermediate 10 

min thaw (5/10/5), were conducted. These studies revealed that the application of a double 

freeze resulted in an increase in cell death and a reduction in sample repopulation following 

exposure to −15°C (Figure 2). Importantly, the application of a double freeze protocol 

resulted in complete cell death at −20°C (elevation of the minimal lethal temperature). This 

5°C elevation in the minimal lethal temperature is significant as when correlated with the 

published isothermal distribution within a typical ice ball produced by a argon-based JT 

cryosystem represents a shift in the destructive volume from ~36% of the frozen mass to 

~48%, a ~25% increase in the destructive volume [41–43].

Numerous studies have detailed the benefit of adjunctive treatment involving cryoablation 

with the pre-treatment of low-dose chemotherapy, nutraceuticals or other agents in a number 

of cancers including prostate, breast, lung and liver among others [24,25,28–36]. In vitro and 

in vivo studies involving prostate cancer have shown the ability to elevate the minimal lethal 

temperature for hormone refractory prostate cancer from −40°C to −20°C via pre-treatment 

with sub-clinical (non-toxic) doses of 5-fluorocil, taxotere and Cisplatin [24,28,33]. Other 

studies have demonstrated that combinatorial approaches using the active nutraceutical 

Calcitriol (Vitamin D3) can result in the elevation of the minimal lethal temperature for 

prostate cancer to the −10 to −15°C range [22, 23,37,38]. Based on these reports and the 
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current usage of cisplatin as a primary treatment for bladder cancer, we investigated the 

potential of combining low dose cisplatin pre-treatment with mild freezing.

Cisplatin elicits its antitumor effects by damaging DNA through intra- and inter-strand 

cross links. These DNA adducts interfere with DNA replication and transcription, activating 

various DNA repair mechanisms within the cell. When repair cannot be executed the cellular 

stress induced by DNA damage activates the intrinsic mitochondrial mediated apoptotic 

pathway [44]. Freezing cells to temperatures reflective of the periphery of a cryogenic 

lesion, −10°C to −25°C, has also been shown to induce the intrinsic apoptotic pathway 

[45,46]. As such, we hypothesized that the combination of freezing and cisplatin would 

amplify cell death signaling resulting in increased destruction. Given that chemotherapy 

is typically administered locally to the bladder when feasible, the combination of low 

dose cisplatin and cryoablation could be a powerful strategy to improve outcomes, even in 

patients with more aggressive cancer types. Exposure times of 30 mins and 24 hours prior 

to freezing were selected as these represent clinically relevant, convenient, short exposure 

times to further reduce the exposure interval. In this study we investigated cisplatin doses of 

11 and 19 mg/m2 (1 and 1.75 μM) which represents ~1/3 to 1/8 the typical clinical dosage 

range (35–100 mg/m2) for bladder cancer [8]. Subclinical doses were studied in an effort to 

increase cancer susceptibility to freezing injury while reducing or eliminating the negative 

toxic side effects associated with chemotherapy.

Pretreatment of SCaBER and UMUC3 populations with cisplatin 24 hours prior to freezing 

to −15°C resulted in a decrease in cell survival at Day 1 post-freeze compared to freeze 

alone. Yet these populations began to repopulate over the 7 day recovery interval (Figures 

3A and 3B). The combination of 24 hour pre-treatment and a double freeze at −15°C 

resulted in complete cell destruction (Figure 3A), shortening the exposure time to 30 

minutes prior to freezing at −15°C resulted in a shift in SCaBER and UMUC3 cell response 

from initial death followed by recovery, as observed in the −15°C alone and 24 hour 

cisplatin/−15°C samples, to a high degree of initial death and no repopulation (Figures 3A 

and 3B). Interestingly, in the case of the 30 minute 1 μM cisplatin/−15°C SCaBER and 

1.75 μM/−15°C UMUC3 samples, a continued decline in viability was observed over the 7 

days recovery interval. This differed from any of the other conditions where either minimal 

death (cisplatin alone) or initial death followed by recovery (−15°C, 24 hr. cisplatin/−15°C) 

was observed. Fluorescence image analysis of −15°C and cisplatin/−15°C samples revealed 

that the combination treatment resulted in a significant increase in necrotic activity, which 

was sustained over the entire 5 day assessment period (Figure 4A). Importantly, analysis at 

day 5 revealed a 50% increase in necrotic activity in the cisplatin/−15°C samples over the 

−15°C freeze only samples (Figure 4B). We hypothesize that the application of cisplatin 

immediately (30 mins) prior to freezing likely prevented the initiation of cellular repair 

mechanisms necessary for survival, resulting in the observed delayed onset cell death 

whereas 24 hour cisplatin treatment prior to freezing allowed enough time for the execution 

of signaling pathways necessary for DNA repair, and as such the synergistic effect is lost. 

This shift in the minimal lethal temperature to −15°C through the combination of 30 minute 

cisplatin pretreatment followed by freezing at −15°C is significant, as when correlated with 

the published isothermal distribution within a typical iceball produced by a argon-based 
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JT cryosystem, represents a shift in the destructive volume from ~36% of the frozen mass 

(−25°C isotherm) to ~58%, a ~59% increase in the destructive volume [41–43,47].

In conclusion, our findings suggest that the minimal lethal temperature for bladder cancer is 

−25°C for a single freeze event. Application of a repeat freeze protocol results in an increase 

of the minimal lethal temperature to −20°C. These temperatures were found to be lethal 

to both squamous cell (SCaBER) and transitional cell (UMUC3) carcinoma cells in vitro. 

Pretreatment with low dose cisplatin in combination with freezing resulted in an increase 

in the level of cell death and inhibition of repopulation of surviving cells. Importantly, 

the combination of low dose cisplatin pre-treatment for 30 minutes followed by freezing 

resulted in a high degree of destruction at −15°C. The data suggest that the combination 

resulted in a shift of the minimum lethal temperature for bladder cancer from −25°C to 

the −15°C range. Extrapolating these in vitro findings to an in vivo scenario, the data 

suggest that both freezing alone and in combination with cisplatin may provide benefit in 

the treatment of bladder cancer. This in turn has the potential to improve outcome while 

reducing co-morbidities associated with freezing (bladder wall perforation, positive freeze 

margins) and chemotherapy (nausea, fatigue, increased susceptibility to infection, etc.) while 

providing for an effective minimally invasive treatment strategy for bladder cancer. In 

combination with previous in vitro and in vivo reports, these data suggest cryoablation 

alone or in combination with low dose chemotherapy may provide an improved path for the 

treatment of bladder cancer.
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Figure 1A: 
Assessment of bladder cancer cell viability and recovery following a single freeze event.

SCaBER (A) cells were subjected to a 5 minute freeze at −10, −15, −20, and −25°C 

and survival was assessed over seven days post-treatment. Data suggest that complete cell 

death with no recovery is attained following exposure to −25°C whereas −15°C and −20°C 

exposure results in a substantial level of cell death followed by recovery in culture.
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Figure 1B: 
Assessment of bladder cancer cell viability and recovery following a single freeze event.

UMUC3 (B) cells were subjected to a 5 minute freeze at −10, −15, −20, and −25°C 

and survival was assessed over seven days post-treatment. Data suggest that complete cell 

death with no recovery is attained following exposure to −25°C whereas −15°C and −20°C 

exposure results in a substantial level of cell death followed by recovery in culture.
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Figure 2: 
Impact of repeat freeze on bladder cancer cell viability and recovery. SCaBER and UMUC3 

cells were subjected to a double 5 minute freeze (5/10/5) at −10, −15, −20, and −25°C 

and survival was assessed over seven days post-treatment. Data suggest that a double freeze 

at −20°C results in complete bladder cancer cell death with no recovery. Double freeze to 

−15°C resulted in a significant decrease in cell survival. However a low level of recovery 

was noted over the 7 day assessment interval.
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Figure 3A: 
Effect of adjunctive low dose cisplatin pretreatment in combination with freezing on bladder 

cancer cell survival. SCaBER (A) and UMUC3 (B) cells were subjected to 30 minutes 

of 24 hours pretreatment with a sub-clinical dose (1μM or 1.75μM) cisplatin followed 

by a 5 minute freeze at −15°C. Cell survival and recovery was assessed over seven days 

post-treatment. Data suggest that the combination of a cisplatin 30 minute pretreatment and 

−15°C freezing results in complete bladder cancer cell death. While not as effect as a 30 

minute pretreatment, a 24 hour cisplatin pretreatment revealed a decline in cell recovery 

post-freeze compared to freeze alone samples.
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Figure 3B: 
Effect of adjunctive low dose cisplatin pretreatment in combination with freezing on bladder 

cancer cell survival. SCaBER (A) and UMUC3 (B) cells were subjected to 30 minutes 

of 24 hours pretreatment with a sub-clinical dose (1μM or 1.75μM) cisplatin followed 

by a 5 minute freeze at −15°C. Cell survival and recovery was assessed over seven days 

post-treatment. Data suggest that the combination of a cisplatin 30 minute pretreatment and 

−15°C freezing results in complete bladder cancer cell death. While not as effect as a 30 

minute pretreatment, a 24 hour cisplatin pretreatment revealed a decline in cell recovery 

post-freeze compared to freeze alone samples.
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Figure 4: 
Analysis of the modes of cell death following freezing to −15°C with and without cisplatin 

pre-treatment. SCaBer cells were exposed to −15°C freezing for 5 mins with or without a 

30 pre-treatment with Cisplatin (1μM) and then assessed for apoptotic, necrotic and living 

populations using CellEvent Green, SytoxRed and Hoechest, respectively (A). Quantitative 

image analysis revealed a significant increase in necrosis at days 1–3 post freeze in both 

samples. Importantly, necrotic levels were found to be higher and sustained longer in the 

cisplatin/−15°C samples resulting in increased cell death (B).
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