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Abstract: SARS-CoV-2 is highly homologous to SARS-CoV. To date, the main protease (Mpro) of
SARS-CoV-2 is regarded as an important drug target for the treatment of Coronavirus Disease 2019
(COVID-19). Some experiments confirmed that several HIV protease inhibitors present the inhibitory
effects on the replication of SARS-CoV-2 by inhibiting Mpro. However, the mechanism of action
has still not been studied very clearly. In this work, the interaction mechanism of four HIV protease
inhibitors Darunavir (DRV), Lopinavir (LPV), Nelfinavir (NFV), and Ritonavire (RTV) targeting
SARS-CoV-2 Mpro was explored by applying docking, molecular dynamics (MD) simulations, and
MM–GBSA methods using the broad-spectrum antiviral drug Ribavirin (RBV) as the negative and
nonspecific control. Our results revealed that LPV, RTV, and NFV have higher binding affinities with
Mpro, and they all interact with catalytic residues His41 and the other two key amino acids Met49
and Met165. Pharmacophore model analysis further revealed that the aromatic ring, hydrogen bond
donor, and hydrophobic group are the essential infrastructure of Mpro inhibitors. Overall, this study
applied computational simulation methods to study the interaction mechanism of HIV-1 protease
inhibitors with SARS-CoV-2 Mpro, and the findings provide useful insights for the development of
novel anti-SARS-CoV-2 agents for the treatment of COVID-19.

Keywords: COVID-19; SARS-CoV-2; main protease (Mpro); HIV protease inhibitor; docking; molec-
ular dynamics (MD) simulation

1. Introduction

Currently, Coronavirus Disease 2019 (COVID-19) caused by a new type of coronavirus
(SARS-CoV-2) infection is spreading globally and has posed a significant threat to the
human health and economic stability over the world [1,2]. SARS-CoV-2 and SARS-CoV
have a very high homology, with the ability of spreading from person to person through
respiratory droplet transmission and contact transmission. After infection, they can attack
vascular endothelial cells, epithelial cells, and immune cells, resulting in severe acute
respiratory syndrome. It can take months or even years to develop new specific treatments.
Based on data from the World Health Organization, at least 24 novel vaccines and at least
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10 neutralizing antibody cocktail drugs have entered the clinical research phase, while
several COVID19 vaccines have been approved for emergency use in several countries
across continents. In November 2021, the UK took the lead in announcing the approval
to use the COVID-19 drug Molnupiravir developed by Merck, as a ribonucleotide analog,
which replaces normal ribonucleotides when the virus replicates, thereby preventing virus
replication. In addition, there are many drugs in the clinical and preclinical stages around
the world. The development of new drugs against SARS-CoV-2 or SARS-CoV at the same
time will still be a significant challenge for mankind for a long period of time in the future.

The main protease (Mpro) of SARS-CoV-2 as a protease is one of the most attractive
targets, which is involved in the virus replication process [3,4]. Mpro is a homodimer of
two protomers, and each protomer is composed of three domains (I, II, and III), as shown
in Figure 1 (PDB: 6LU7). It has atypical Cys-His doublets (His41 and Cys145) in the gap
between domain I and II, which are two catalytical sites of Mpro [5,6]. The maturation
process of the virus is highly dependent on Mpro, in which it can cleave the polyprotein
body produced by the transcription of viral genomic RNA in host cells to produce key
proteins required for virus replication, such as RNA-dependent RNA polymerase (RdRp,
Nsp12) and helicase (Nsp13) [7]. Thus, the inhibition of Mpro can prevent the replication
of the virus [8–10]. Therefore, Mpro is an ideal drug target for the treatment of COVID-19.
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and the linker region (in blue). Protease inhibitor N3 is represented in the green stick model.

It was found that the protease activity of HIV is similar between SARS-CoV and
SARS-CoV-2 [11], and HIV protease inhibitors could hinder the replication of SARS-CoV
virus [12–15]. In attempts to screen anti-SARS-CoV drugs, it was revealed that many
potential drugs identified by molecular simulation or other experimental methods were
HIV protease inhibitors in spite of the structures of Mpro and HIV protease being different.
In addition, the SARS-CoV-2 and SARS-CoV are closely related, with an amino acid
sequence similarity of 96% [16], and their activity pockets are very similar. Therefore, it
can be speculated that HIV protease inhibitors may be equally effective against both SARS-
CoV-2 and SARS-CoV. Actually, in vitro activity data have indicated the virus suppression
abilities of HIV protease inhibitors, although these inhibitors may not be used as inhibitors
for SARS-CoV-2 Mpro, but laid an important foundation for the development of new
anti-SARS-CoV-2 small-molecule inhibitor drugs for clinical applications [17].

Some reports have revealed that Nelfinavir (NFV), Lopinavir (LPV), Darunavir (DRV),
and Ritonavir (RTV) as routine medicines for the treatment of HIV-1 infection [11,18–20]
may be effective against COVID-19 [21–23]. In fact, RTV and LPV have been attempted
in clinic use, and the therapeutic effect is under further clinical observation. Due to the
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ongoing pandemic of the COVID-19 outbreak, there is an urgent need to advance our
understanding of the binding effects of common HIV protease inhibitors with SARS-CoV-2,
but the mode of the molecular interaction between these drugs and SARS-CoV-2 is still
unclear. According to the previous experimental data, in this work, docking calculation,
molecular dynamics (MD) simulation, molecular mechanics–generalized Born surface
area (MM–GBSA), and computational alanine scanning (CAS) methods were applied
in combination to study the interaction mechanisms between four inhibitors and the
main protease (Mpro) of SARS-CoV-2. Meanwhile, the broad-spectrum antiviral drug
Ribavirin (RBV) was included in the simulation process as a control (Figure 2). Finally, the
pharmacophore model was used to analyze the structural commonality and mechanism of
action for Mpro small-molecule inhibitors.
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Our study might be beneficial for the molecular design for the development of new
small-molecule drugs as lead compounds as specific treatments for COVID-19.

2. Results and Discussion
2.1. Complex Formation by Docking

The crystal structure of SARS-CoV-2 Mpro in complex with ligand N3 (PDB: 6LU7)
was retrieved from the RCSB PDB database and used in the docking process [24]. The
binding site was assigned according to the location of ligand N3, and the redocked pose
of N3 with SARS-CoV-2 Mpro was in a manner consistent with the crystallographic pose
(PDB: 6LU7), with the RMSD (root-mean-square deviation) value being less than 0.200 nm.
The successful redocking of N3 confirmed that the docking process is reliable and able
to emulate the binding poses of Nelfinavir (NFV), Lopinavir (LPV), Darunavir (DRV),
Ritonavir (RTV), and Ribavirin (RBV). Subsequently, the assemble-based docking was
performed, and the docking results are summarized in Figures 3 and 4. Note that in-
teraction energy (Eint) refers to the receptor–ligand interaction energy, and total energy
(Etotal) includes Eint and the internal ligand strain energy. It was found that LPV, RTV,
and NFV are candidates, with Etotal values being smaller than −141.17 kJ/mol. The Etotal
of DRV with SARS-CoV-2 Mpro is calculated to be −122.21 kJ/mol, while the binding
of RBV is generally mismatched (Etotal = −44.14 kJ/mol), and the value of ligand N3 is
−331.08 kJ/mol. Though the interaction energies of LPV, RTV, and NFV are comparable to
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each other, ulteriorly hinting to the binding pattern, their binding properties are different
(Figure 4). Hence, we separately extracted the docked complex structure of the last frame
of each 100 ns MD simulation to analyze the similarities and differences of the five binding
modes (Figure 3).
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Figure 3. Electrostatic potential surfaces of different inhibitors with substrate-binding pocket of
SARS-CoV-2 Mpro: SARS-CoV-2 Mpro-DRV (a), SARS-CoV-2 Mpro-LPV (b), SARS-CoV-2 Mpro-NFV
(c), SARS-CoV-2 Mpro-RBV (d), and SARS-CoV-2 Mpro-RTV (e). Red shows negative charge and
blue shows positive charge. Most of the substrate-binding pocket is net neutral and facilitates the
inhibitor binding. However, in the SARS-CoV-2 Mpro-RBV complex, the substrate-binding pocket
shows negative charge. The Connolly surface of the protein was created using the Discovery Studio
scripts with surface electrostatic potential.
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2.2. Hydrogen Bond and Salt Bridge Interactions

The three-dimensional structure of SARS-CoV-2 Mpro in complex with ligand N3
indicated that the catalytic residues His41 and Cys145 should play important roles in the
binding processes of substrates, and the interaction between ligands and residues His41 or
Cys145 may induce the inhibiting effects. According to our simulation results (Table 1), in
the SARS-CoV-2 Mpro-DRV complex, there are four hydrogen-bond interactions (Gln192
(0.230 nm), Met165 (0.240 nm), Thr26 (0.041 nm, 0.040 nm)). The two hydrogen bonds
formed by DRV and Thr26 are relatively stable with the distances approximating 0.041



Molecules 2021, 26, 7385 5 of 17

and 0.040 nm, respectively. In addition, residues His41, Cys145, Pro168, and Met49 have
hydrophobic interactions with DRV. In the SARS-CoV-2 Mpro-LPV complex (Table 1), there
exist 1 salt bridge (Glu166), 4 hydrogen bonds (Ser46 (0.290 nm), Glu166 (0.260 nm), Asn142
(0.310 nm), Gly143 (0.260 nm)), and 1 hydrophobic interaction (His41). Within the SARS-
CoV-2 Mpro-NFV complex (Table 1), there are 1 salt bond (Glu166), 3 hydrogen bonds
(Thr190 (0.250 nm), Met49 (0.260 nm), His164 (0.180 nm)) and 1 hydrophobic interaction
(His41). There are 7 hydrogen bonds in the SARS-CoV-2 Mpro-RBV complex (Gln192
(0.280 nm), Thr190 (0.220 nm), His164 (0.230 nm), Met49 (0.290 nm), Arg188 (0.290, 0.250,
and 0.240 nm)) (Table 1). Meanwhile, RTV has 1 salt bond (His41), 3 hydrogen bonds (Thr25
(0.280 nm), Gln189 (0.220 nm), His41 (0.230 nm)), and 2 hydrophobic interactions (His41
and Met49) with SARS-CoV-2 Mpro (Table 1). It is not hard to see some common points of
these 5 binding poses: (1) LPV, NFV, RTV, and DRV all exhibit hydrophobic interactions
with at least one of the catalytic residues His41 and Cys145, while RTV further forms salt
bridge and hydrogen bonding interactions with residue His41; (2) in addition to the two
key residues of His41 and Cys145, several other active-site residues of Mpro also take part
in the hydrogen bond interactions, such as Thr25, Met49, Met165, Glu166, and Gln189;
(3) in the SARS-CoV-2 Mpro-LPV and SARS-CoV-2 Mpro-NFV complexes, the ligands LPV
and NFV all have the salt bridge interactions with residues Glu166 of Mpro, while RTV
forms a salt bridge with residue His41. The formation of salt bonds facilitates the stable
binding of ligands and receptors.

Table 1. Hydrogen bond and salt bridge interactions in the five selected docked complexes.

Complex Donor and Acceptor Category

SARS-CoV-2 Mpro-DRV

GLN192:H–DRV:O26 Hydrogen Bond
MET165:HA–DRV:O10 Hydrogen Bond

DRV:H39–THR26:O Hydrogen Bond
DRV:H40–THR26:O Hydrogen Bond

HIS41:Pi-Orbitals–DRV:Alkyl Hydrophobic
DRV:Pi-Orbitals–CYS145:Alkyl Hydrophobic
DRV:Pi-Orbitals–PRO168:Alkyl Hydrophobic

DRV:C15–MET49:Alkyl Hydrophobic

SARS-CoV-2 Mpro-LPV

GLU166:OE1–LPV:C42 Electrostatic
SER46:HG–LPV:O12 Hydrogen Bond
GLU166:H–LPV:O38 Hydrogen Bond

LPV:H78–ASN142:OD1 Hydrogen Bond
GLY143:HA2–LPV:O20 Hydrogen Bond

HIS41:Pi-Orbitals–LPV:Alkyl Hydrophobic

SARS-CoV-2 Mpro-NFV

NFV:N7–GLU166:OE1 Electrostatic
NFV:H56–THR190:O Hydrogen Bond
NFV:H71–MET49:SD Hydrogen Bond
NFV:H77–HIS164:O Hydrogen Bond

HIS41:Pi-Orbitals–NFV:Pi-Orbitals Hydrophobic
NFV:C33–CYS145:Alkyl Hydrophobic

HIS41:Pi-Orbitals–NFV:C33 Hydrophobic
NFV:Pi-Orbitals–LEU167:Alkyl Hydrophobic
NFV:Pi-Orbitals–MET49:Alkyl Hydrophobic

SARS-CoV-2 Mpro-RBV

GLN192:HE21–RBV:O5 Hydrogen Bond
RBV:H18–THR190:O Hydrogen Bond
RBV:H25–HIS164:O Hydrogen Bond
RBV:H29–MET49:SD Hydrogen Bond
RBV:H6–ARG188:O Hydrogen Bond
RBV:H7–ARG188:O Hydrogen Bond
RBV:H14–ARG188:O Hydrogen Bond
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Table 1. Cont.

Complex Donor and Acceptor Category

SARS-CoV-2 Mpro-RTV

RTV:N39–HIS41:Pi-Orbitals Electrostatic
THR25:HG1–RTV:O41 Hydrogen Bond

GLN189:HE21–RTV:O22 Hydrogen Bond
RTV:H77–HIS41:Pi-Orbitals Hydrogen Bond
RTV:C50–HIS41:Pi-Orbitals Hydrophobic

RTV:Pi-Orbitals–MET49:Alkyl Hydrophobic

2.3. Binding Pocket Analysis

The substrate binding pocket of Mpro is located inside the cleft between domain I and
domain II. In particular, the sub-binding sites S1, S2, and S4 of Mpro are highly conserved
among all coronaviruses (Figure 4). Therefore, small molecules targeting these regions are
supposed to have the broad-spectrum curative effect. As shown in Figures 5 and 6, the
binding location of DRV is distributed in the sub-binding site S4. The dimethylphenoxy
group of LPV extends into the hydrophobic pocket of S1 and the two benzene rings of
the side chains extend into the hydrophobic pocket of S4. At the same time, its diazacy-
clohexanone forms a hydrogen bond with residue Met49 in the S2 site. The N-tert-butyl
decahydroisoquinoline of NFV binds well to the hydrophobic pocket of S4.
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Figure 5. The key interactions at the active sites of the representative conformations of SARS-CoV-
2 Mpro-DRV/LPV/NFV/RBV/RTV complexes with equilibrium stabilization. The interactions
derived from the representative conformation of SARS-CoV-2 Mpro-DRV complex (a), SARS-CoV-2
Mpro-LPV complex (b), SARS-CoV-2 Mpro-NFV complex (c), SARS-CoV-2 Mpro-RBV complex (d),
and SARS-CoV-2 Mpro-RTV complex (e) obtained from the MD trajectories. Many critical residues,
e.g., Gln 192, Cys145, His41, His164, and Met49, are involved in the binding interactions. Residue
interactions with ligand are colored in silver.
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Figure 6. The interactions of SARS-CoV-2 Mpro-DRV/LPV/NFV/RBV/RTV complexes displayed
as 2D image. In SARS-CoV-2 Mpro-DRV complex (a), Met49 with DRV forms a Pi–sulfur interaction
and Thr26 with DRV forms two hydrogen bonds; in SARS-CoV-2 Mpro-LPV complex (b), the side
chain of Glu366 with LPV forms a Pi–anion interaction, and Asn142, Ser46, and Glu166 are involved
in three hydrogen bond interactions; in SARS-CoV-2 Mpro-NFV complex (c), the catalytic site His41
with NFV has a stable Pi–Pi stacked; in SARS-CoV-2 Mpro-RBV complex (d), two Van der Waals
forces were produced in Gln189 and Thr190 with RBV, and four Hydrogen bonds were formed
between His164, Gln192, Met49, Arg188, and RBV; in SARS-CoV-2 Mpro-RTV complex (e), we can
see two Pi–anion interactions and hydrogen bonds. DRV/LPV/NFV/RBV/RTV are shown as the
stick models. C, O, and N atoms are colored by gray, red, and blue, respectively. Hydrogen bonds
and electrostatic interactions that help to lock the inhibitor are shown in green and orange dashed
lines, respectively.

2.4. Stability Analysis of Docked Complexes

A 100 ns MD simulation was performed on DRV-Mpro, LPV-Mpro, NFV-Mpro, RBV-
Mpro, and RTV-Mpro complexes and a Mpro-Apo protein not bound to small-molecule
drugs. Preliminary analysis of the MD trajectory was carried out to check the structural
stability and fluctuation of these small molecules and the protease Mpro complex according
to the RMSD and RMSF results. The RMSD values of the DRV-Mpro, LPV-Mpro, NFV-
Mpro, and RTV-Mpro complexes remained almost unchanged at 0.210 nm, which clearly
shows that the complex structures of these four complexes are stable. The RMSD curve of
the Mpro-apo and RBV-Mpro complexes deviated from the other four complexes at 50 ns,
and gradually converged at 80 ns, but the RMSD value was much higher than the other
complexes. In general, the structure of the complex with the small-molecule group is stable
compared to that of the unbound molecule group. The combination of LPV, NFV, and RTV
makes the Mpro more stable. At the same time, the RMSD values of small molecules in
the complexes were also analyzed and compared. As shown in Figure 7, all five small
molecules begin to converge and reach a stable value at 20 ns, indicating that the small
molecules are stably fixed in the pocket, which bind to the Mpro from 20 ns. Due to the
relatively small structure of small ligand molecules NFV and RBV, the RMSD value is at a
small value. In addition, the RBV molecule appears to converge, as shown in Figure 7a,
but the RBV-Mpro complex continues to elevate in Figure 7b. We suspect that domain III of
Mpro is responsible for the conformational change, as indicated by the superimposition
of the 90 ns conformation with the initial (0 ns) conformation from the MD trajectories
of RBV-Mpro (RMSD = 0.180 nm). The differences of two conformations mainly occur in
domain III of Mpro, which is far from the catalytic active site of Mpro.



Molecules 2021, 26, 7385 8 of 17Molecules 2021, 26, x 8 of 17 
 

 

 
Figure 7. Variation in ligand positional RMSD (a) and backbone-atom RMSD (b) and docked 
complexes during the 100 ns MD simulations. 

As shown in Figure 8, all six systems (Mpro-apo, DRV-Mpro, LPV-Mpro, NFV-Mpro, 
RBV-Mpro, and RTV-Mpro) exhibit similar fluctuation patterns indicated by the time 
evolutions of RMSF. In the other five systems, the RMSF values of the two catalytically 
active sites and surrounding residues of Mpro are lower than the case of apo Mpro, and 
the same motion can be seen at other residues of the Mpro binding site. These results 
indicate that the combination of small molecules further stabilized the conformation of 
protease Mpro, especially the conformation of the catalytic center (Table 2 and Figure 8), 
although the RMSF fluctuation patterns show small differences between the two active 
sites. 

 

Figure 7. Variation in ligand positional RMSD (a) and backbone-atom RMSD (b) and docked
complexes during the 100 ns MD simulations.

As shown in Figure 8, all six systems (Mpro-apo, DRV-Mpro, LPV-Mpro, NFV-Mpro,
RBV-Mpro, and RTV-Mpro) exhibit similar fluctuation patterns indicated by the time
evolutions of RMSF. In the other five systems, the RMSF values of the two catalytically
active sites and surrounding residues of Mpro are lower than the case of apo Mpro, and the
same motion can be seen at other residues of the Mpro binding site. These results indicate
that the combination of small molecules further stabilized the conformation of protease
Mpro, especially the conformation of the catalytic center (Table 2 and Figure 8), although
the RMSF fluctuation patterns show small differences between the two active sites.

Table 2. The RMSF value of the catalytic center of the Mpro-DRV/LPV/NFV/RBV/RTV complex
and Mpro_apo.

Complex His41 (nm) Gly145 (nm)

Mpro_apo 0.128 ± 0.009 0.090 ± 0.007
Darunavir 0.070 ± 0.010 0.056 ± 0.007
Lopinavir 0.067 ± 0.012 0.063 ± 0.010
Nelfinavir 0.057 ± 0.008 0.057 ± 0.012
Ribavirin 0.072 ± 0.009 0.067 ± 0.009
Ritonavire 0.113 ± 0.013 0.066 ± 0.011
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2.5. MM–GBSA and Energy Decomposition

To gain insight into the inhibitory potential of five small-molecule drugs on Mpro,
their binding free energy was calculated from the 100 ns MD trajectory by the MM/GBSA
method. The MM–GBSA free energy values of DRV-Mpro, LPV-Mpro, NFV-Mpro, RBV-
Mpro, and RTV-Mpro are 14.22 ± 49.00, −116.72 ± 32.90, −96.86 ± 63.66, 45.69 ± 49.64,
and −103.55 ± 55.82 kJ/mol, respectively. It can be clearly seen that the LPV-Mpro, NFV-
Mpro, and RTV-Mpro complexes show a higher binding free energy than the DRV-Mpro
and RBV-Mpro complexes (Table 3), consistent with the interaction energy results observed
in Section 2.1. Hydrogen-bonding or hydrophobic interactions between the ligands and
the catalytic active site, as well as the salt bridge effect with other key sites, may be the key
factors for the higher MM–GBSA value of the three complex systems, especially the salt
bridge interaction. In accordance with our simulations, the binding free energies of the
five compounds with Mpro decrease in the order of LPV > RTV > NFV > DRV > RBV. On
the whole, the sorting is consistent with the reported in vitro enzymatic analysis and cell-
based assay [25,26], except for the overmuch estimated value of LPV, which might come
down to the inaccuracies of force fields and the polarity of the studied compounds [27].
Judging from the contribution of the four energies (∆Evdw, ∆Eele, ∆GGB, and ∆GSA), Van
der Waals components (∆Evdw + ∆GSA) play a positive role in maintaining the stability of
the complexes.

In order to estimate the specific contribution of a single residue to the binding free
energy, we made overlaps of the binding pockets of protease Mpro in the five systems
and calculated the free energy contribution of the overlapping residues. As shown in
Figure 9, the contributions of residues Thr25, Leu27, Met49, and Cys145 in the DRV-Mpro,
LPV-Mpro, NFV-Mpro, and RTV-Mpro complexes are better than −5.0 kJ/mol, which is
conducive to the combination of small molecules and protease Mpro, and in the RBV-Mpro
system, the energy decomposition value of these residues is greater than −5.0 kJ/mol.
This difference may be the reason for the weak binding of RBV to Mpro. In addition,
the contributions of the three residues His41, Met165, and Gln189 in the five systems
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are all less than the cutoff value, which may play a positive role in the stability of the
complex structure.

Table 3. The binding energies (∆E), entropies (∆S), and free energies (∆G) for the Mpro-DRV/LPV/NFV/RBV/RTV
complexes (unit in kJ/mol).

Complex ∆Evdw ∆Eele ∆GGB ∆GSA T∆S a ∆GS b

Darunavir
(DRV) −276.98 ± 17.49 −337.44 ± 36.65 558.19 ± 35.31 −27.03 ± 1.34 −97.48 ± 14.94 14.22 ± 49.00

Lopinavir
(LPV) −260.66 ± 12.51 −75.65 ± 15.94 134.10 ± 14.64 −30.63 ± 1.42 −116.12 ± 16.42 −116.72 ± 32.90

Nelfinavir
(NFV) −318.70 ± 35.94 −382.42 ± 56.90 542.03 ± 62.51 −26.61 ± 2.85 −88.83 ± 25.89 −96.86 ± 63.66

Ribavirin
(RBV) −122.93 ± 15.10 −75.65 ± 32.34 172.46 ± 27.15 −16.28 ± 1.30 −88.07 ± 21.02 45.69 ± 49.64

Ritonavire
(RTV) −311.54 ± 42.89 −13.97 ± 35.69 151.96 ± 33.18 −31.34 ± 2.22 −101.34 ± 29.29 −103.55 ± 55.82

a The entropic energies are calculated with a generalized−Born solvent model (nmode_igb = 1); b The entropic contributions are included
in the binding free energies (∆GS).
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Figure 9. Binding free energy (∆Gbind) contributions of Mpro-DRV/LPV/NFV/RBV/RTV complexes
superposed residues in binding pockets. The residues contribution exceeding −5.0 kJ/mol to the
binding free energy are marked with red baseline.

2.6. Computational Alanine Scanning (CAS)

Key amino acid analysis can be analyzed by computational alanine scanning (CAS).
CAS can evaluate the importance of the amino acid in the interaction process by calculating
the energy change between the receptor and the ligand caused by the replacement of a
specific amino acid with alanine. If this energy change (∆∆Gmut) > 2.0 kJ/mol, it indicates
that this amino acid plays an important role in promoting the binding of the receptor and
the ligand.

According to the results of the residue contribution analysis in the MM–GBSA, for the
three systems of LPV, NFV, and RTV, we selected five key points, including His41, Met49,
Cys145, Met165, and Glu166 for CAS research, among which His41 and Cys145 are Mpro
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catalytic residues (Figure 10). Detailed parameters of CAS are displayed in our previous
work [28].
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and gray bar charts, respectively.

In the Mpro-LPV system, we found three key points (His41 > Ala, Met49 > Ala, and
Met165 > Ala). The mutation energy change can reach 10.5, 4.4, and 4.4 kJ/mol. Similarly,
in the Mpro-NFV system, the energy changes of these three key point mutations were
6.7, 4.1, and 3.9 kJ/mol, respectively. The observed energy changes may be attributed to
the damage of the hydrophobic pocket composed of His41, Met49, and Met165 of Mpro,
which is crucial to provide a hydrophobic environment for the alkyl of LPV in the initial
Mpro-LPV complex (Figure 5b). In the initial Mpro-NFV complex, His 41 is involved in
forming a π–π interaction with NFV. The other hydrogen bond is formed by Met49 of
Mpro with H71 of NFV (Figure 5c), which are critical to enhance ligands binding. These
interactions are disrupted in this region upon the mutation of residues. This shows that
these three key points play a key role in the interaction of these two small molecules with
Mpro. However, in the Mpro-LPV system, we found that, in addition to the above three
key points, the Glu166 > Ala mutation also had a greater impact on the combination of
LPV. In this system, the GluA166 side chain forms a salt bridge with C42 of LPV; a salt
bridge between amino acid residues of a single locus plays an important role in complex
interaction. The salt bridge is absent in the Glu166>Ala mutation system, which may be
attributed to the energy change (∆∆Gmut) > 2.0 kJ/mol, indicating that Glu166 played a
certain role in the process of combining LPV and Mpro, which is consistent with the above
analysis of hydrogen bond formation and amino acid contribution.

Furthermore, we found that the binding mechanisms of HIV protease inhibitors DRV,
LPV, NFV, and RTV with Mpro are different from those mentioned in recent works [29,30].
For example, the natural product compounds SN00293542 and SN00382835 have compara-
tively different binding profiles, except the similar interactions with His41 and Met49 of
Mpro [29]. Overall, the modes of action mentioned in our simulations show some differ-
ences between these HIV protease inhibitors and other compounds, and this difference in
mechanism may provide a new direction for anti-SARS-CoV-2 drug design [30].
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2.7. Pharmacophore Model Analysis

By analyzing the pharmacophore properties of DRV, LPV, NFV, and RTV and the
relationship between structure and Mpro interaction energy, we found that inhibitors with
a better protein binding capacity should have two aromatic rings (ring aromatic group,
brown), three hydrogen bond donors (hydrogen bond donor, magenta), and a hydrophobic
group (hydrophobic group, light-blue), see Figure 11. According to this pharmacophore
model, LPV should have a tolerable protease binding ability, which is consistent with
the interaction and MM–GBSA analysis results. Due to of the lack of hydrogen bond
donors, the binding affinity of NFV and RTV to Mpro protease is weak. Although DRV
is relatively matched with this pharmacophore, its furan ring causes the poor matching
of DRV. Meanwhile, RBV has the lowest matching with Mpro’s active cavity, which lacks
an aromatic ring, hydrogen bond donor, and hydrophobic group. Based on the structure,
electrostatic, hydrophilic, and hydrophobic properties of this pharmacophore and the active
cavity of Mpro, for the rational drug design of anti-SARS-CoV-2 Mpro agents, groups might
be suggested with both positive and hydrophobic properties, such as N-acetamido. In
addition, considering the combination of aromatic rings, adding hydrogen bond donors
and hydrophobic groups is the direction of COVID-19 drug design.
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Figure 11. Pharmacophore features of the selected Mpro protease inhibitor. Hydrophobic group,
hydrogen-bond donor, and aromatic ring are colored in light-blue, magenta, and brown, respectively.
LPV is shown in stick model without H atoms. The five selected ligands were used to derive the
common feature pharmacophore by using the “creating and validating a common feature pharma-
cophore” protocol of the Discovery studio (DS) software package, with the validating alignments of
LPV and RBV.

3. Materials and Methods
3.1. Structure Preparation

The crystal structure of the SARS-CoV2 main protease in complex with inhibitor N3
(PDB: 6LU7) was retrieved from the RCSB PDB database [31]. All the hetero-atoms of the
nonprotein part were suppressed. At physiological pH, missing hydrogen atoms were
added based on the expected charge distributions of amino acids [24]. Then, the charmm27
force field was used in the Generalized Born with a simple Switching (GBSW) solvent model.
The energy minimizations were performed by a 1000-step steepest descent minimization,
followed by conjugate gradient minimization, until converging to 0.40 kJ·mol−1·nm−1. All
of the above processes were performed on the Discovery studio (DS) Charmm module [32].
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The geometries of four commercial HIV protease inhibitors (RBV, LPV, NFV, and
RTV) were obtained from 3BVB, 1MUI, 2PYM, and 1RL8, respectively. The broad-spectrum
antiviral drug RBV was obtained from the crystal structure of RNA polymerase with mouse
Norwalk virus (PDB: 5AXD). The atom structures and partial atomic charges of the five
ligands were then handled by the “Minimize Ligands” tools in Discovery Studio software
using the CHARMM force field, with a convergence criterion of 0.40 kJ·mol−1·nm−1 [32].

3.2. Docking and MD Simulations

In accordance to the previous reports [33–35], the docking process was performed
using the cDocker algorithm [36], with the features for its grid-based method that the
residues are held rigid and the ligands are free to move. The CHARMm-based molecular
dynamics (MD) scheme was used to dock ligands into a receptor binding site. The binding
site sphere was assigned with a radius 1.0 nm sphere. Combining random rotations and
the simulated annealing method, all the poses of the docked complexes were scored to
evaluate the docking results. The optimal orientation of each ligand within Mpro was
probed on the basis of interaction energies and geometrical matching qualities [37,38]. The
more negative the interaction energies of the docking complex, the higher the degree of the
match between the receptor and the ligand. Energy minimizations were performed, using
the conjugated gradient method, until converging to 0.40 kJ·mol−1·nm−1. The topology
file of a small-molecule ligand in complex was generated by executing the python script
for further molecular dynamics simulation.

The energy-minimized docked complexes were sufficiently equilibrated by 100.0 ns
MD simulations, using the GROMACS5.1.2 program [39,40] and Amber-99sb force field.
Each system was placed in a box (size 7.2 nm × 10.0 nm × 7.2 nm), and the box was
filled with TIP3P water molecules. Na+ and Cl− counter-anions were placed to maintain
electrical neutrality for the whole system (0.15 M of NaCl) [41]. These five systems were
minimized with a Steepest Decent (SD) method to remove wrong contacts. The NPT and
NVP ensemble was applied. The pressure and temperature were coupled at 1 bar and 310 K
by using Parrinello–Rahman barostats and the V-rescale thermostat, respectively [42]. The
particle-mesh Ewald (PME) method was applied to handle the long-range electrostatics [43].
The cutoff distances for long-range electrostatic and van der Waals interactions were set to
0.8 and 1.0 nm, respectively. The Linear Constraint Solver (LINCS) method was applied to
constrain the covalent bonds involving hydrogen atoms [44]. Each MD trajectory contained
1000 conformations. The coordinates were saved every 10.0 ps, with a time step of 2.0 fs.

3.3. Binding Energy Calculation by MM–GBSA

The MD trace was also used to calculate the binding free energy using the molecular
mechanics–generalized Born surface area (MM–GBSA) approach [45,46]. The MM–GBSA
module, implemented in Amber Tools16, is a common method to evaluate the binding
strength of ligands and receptors [47,48]. The basic principle is shown in the formula [49]:

∆Gbind = ∆EMM + ∆∆Gsol − T∆S

= ∆EMM + ∆GGB + ∆GSA − T∆S

= ∆Evdw + ∆Eele + ∆GGB + ∆GSA − T∆S

where ∆Gbind is the binding free energy, ∆EMM is the energy difference in the molecule
under vacuum, including electrostatic (∆Eele) and van der Waals (∆Evdw) interactions, and
∆∆Gsol is the solvation free energy difference, including polar solvation energy (∆GGB)
and non-Polar solvation energy (∆GSA). The entropic contribution (T∆S) is evaluated with
the normal-mode method [45,46]. The dielectric constants of the solvent and solute are
80 and 1, respectively [24,50]. Each residue contribution for the binding affinity was also
decomposed by the MM–GBSA method. The energy decomposition value of these residues
more than −5.0 kJ/mol could be regarded as key contributors for binding.
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3.4. Computational Alanine Scanning (CAS)

Alanine scanning analysis refers to replacing specific amino acids of protein molecules
with alanine to study the importance of amino acids. As alanine has only one methyl group
and does not affect the chiral structure of the protein, alanine scanning is often used to
calculate the importance of replaced amino acids in protein–protein/ligand interactions.
Computational alanine scanning (CAS) was used to perform alanine substitution operations
on the molecular model of the protein, and then calculate the energy change of the protein–
protein/ligand system caused by the substitution to study the importance of the target
amino acid.

We used the Calculate Mutation Energy (Binding) module under the DS platform to
perform CAS calculations [51]. The basic principle is shown in the formula:

∆∆Gmut = ∆Gbind (mutant) − ∆Gbind (wild-type)

Among them, ∆Gbind (mutant) and ∆Gbind (wild-type) refer to the binding energy in mu-
tant and wild-type systems, respectively. ∆∆Gmut is the difference in binding energy
between wild-type and mutant.

The GBSW solvent model was adopted to consider the solvation effect, and the
electrostatic terms were approximated by the sum of coulombic interactions and polar
contributions to solvation energy. The van der Waals interaction energy, side-chain entropy
term, and nonpolar surface-dependent term were also included in the energy function of
the GBSW model.

4. Conclusions

This study used molecular docking calculations, MD simulations, MM–GBSA, and
pharmacophore analysis to carefully study the interaction of these small molecules with
SARS-CoV-2 Mpro. Our results have revealed that four HIV protease inhibitors DRV, LPV,
NFV, and RTV can stabilize the structure of Mpro through the interactions with catalytic
residues His41 and the other two key amino acids Met49 and Met165. In contrast, no
such interaction was found in the broad-spectrum antiviral agent RBV with the lowest
binding capacity to Mpro. The results of residual energy decomposition and the interaction
between small molecules and Mpro showed that the formation of hydrogen and salt bonds
plays a key role in the ligand binding processes. In addition to the interaction of LPV, NFV,
and RTV with catalytic sites His41 of protease Mpro, residues at other active sites around
the catalytic sites, such as Thr25, Leu27, Met49, Met165, Glu166, and Gln189, also play
important roles in the stabilization of complex structures. At the same time, the results of
these theoretical analyses are consistent with the existing experimental analysis results.

In summary, among the four HIV protease inhibitors, LPV, RTV, and NFV have more
interactions among multiple elements of SARS-CoV-2 Mpro, because of their aromatic rings
and hydrogen bond donors. Our results provide information for the interactions of HIV-1
protease inhibitors with SARS-CoV-2 Mpro, and a promising reference for the development
of novel anti-SARS-CoV-2 agents. This research also provides inspiration to researchers and
proposes a new direction for the molecular design of COVID-19 drugs. Based on this, and
then using experimental verification to develop small-molecule drugs with real application
value, it will contribute to the prevention and control of the COVID-19 epidemic.
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