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Remembering features of past feeding experience can refine foraging and food choice.
Insects can learn to associate sensory cues with components of food, such as sugars,
amino acids, water, salt, alcohol, toxins and pathogens. In the fruit fly Drosophila
some food components activate unique subsets of dopaminergic neurons (DANs) that
innervate distinct functional zones on the mushroom bodies (MBs). This architecture
suggests that the overall dopaminergic neuron population could provide a potential
cellular substrate through which the fly might learn to value a variety of food components.
In addition, such an arrangement predicts that individual component memories reside in
unique locations. DANs are also critical for food memory consolidation and deprivation-
state dependent motivational control of the expression of food-relevant memories.
Here, we review our current knowledge of how nutrient-specific memories are formed,
consolidated and specifically retrieved in insects, with a particular emphasis on
Drosophila.
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INTRODUCTION

All foraging animals have to obtain an optimal balance of nutrients from a variety of available
food sources. In addition, nutrient demands change as animals age, reproduce, migrate, face
predators and overcome immune challenges. Animals must therefore constantly adjust their
foraging strategies to meet these nutritional needs. Remembering details of prior successful feeding
experience can aid foraging so that the useful food sources can be found and appropriate nutrients
consumed when required. Avoiding toxic and potentially harmful sources is also important. Insects
can learn to associate food-related smells, tastes, colors and textures as predictors of potentially
nutritious or harmful food (Papaj and Prokopy, 1989; Dukas, 2008; Hollis and Guillette, 2011).
Learning improves the efficiency of foraging and evolutionary fitness (Dukas and Bernays, 2000;
Dukas and Duan, 2000; Raine and Chittka, 2008). It therefore seems likely that natural selection
has honed mechanisms that produce efficient foraging strategies.

In Drosophila the neurobiology of food and water-reinforced memory can be studied using
simple associative learning paradigms where groups of hungry or thirsty flies associate an
odor with consumption of food or water (Tempel et al., 1983; Krashes and Waddell, 2008;
Colomb et al., 2009; Lin et al., 2014). Hunger and thirst preferentially promote efficient
expression of either the sugar or water memories. These assays combined with genetic control
in Drosophila permit an investigation of neural mechanisms through which learning influences
efficient foraging behavior. In this review, we provide examples of food-driven behavior
from a variety of insects, but mostly focus on recent studies in Drosophila. Work in the fruit
fly supports a provocative model that the anatomical segregation of dopaminergic neurons
(DANs) might provide a neural substrate across which specific food component memories
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can be formed and deprivation state-dependent memory
expression might be controlled.

DOPAMINERGIC NEURONS REINFORCE
FOOD COMPONENT MEMORIES

Insect mushroom bodies (MBs) are large ensembles of parallel
projecting neurons (ranging from approximately 500,000 in the
honeybee to 5000 in fruit flies) that appear to function as a
multimodal association network in which memories are formed
and stored, and behaviors are controlled (Vowles, 1964; Menzel
et al., 1974; Heisenberg, 1980; Heisenberg et al., 1985; de Belle
and Heisenberg, 1994; Mizunami et al., 1998; Strausfeld et al.,
1998; Ikeda et al., 2005; Vogt et al., 2014; Kirkhart and Scott,
2015; Figure 1). Individual MB neurons, or Kenyon cells (KCs),
receive input in the calyx and surrounding areas from olfactory,
visual, gustatory and tactile streams from the periphery (Ito et al.,
1998; Strausfeld et al., 1998). Individual odors are represented as
activity in relatively sparse subsets of the overall population of
KCs (Perez-Orive et al., 2002; Ito et al., 2008; Honegger et al.,
2011).

Dopaminergic neurons (DANs) innervating the MB are
critical for learning the value of beneficial and harmful
food components. Anatomically discrete DANs provide
valence-specific learning signals to different regions on the
mushroom body lobes (Riemensperger et al., 2005; Claridge-
Chang et al., 2009; Aso et al., 2012, 2014a; Burke et al.,
2012; Liu et al., 2012; Waddell, 2013; Figure 1). There,
dopamine release is believed to modify output synapses of
coincident odor-activated KCs (Heisenberg, 2003; Owald
and Waddell, 2015). This organization, taken with the
large number and anatomical diversity of rewarding DANs,
is supportive of a general model that nutrient-specific
associative memories may be formed within different MB
zones that are innervated by the relevant DANs (Aso et al.,
2014a; Lin et al., 2014; Huetteroth et al., 2015; Yamagata
et al., 2015). With this model in mind, we will discuss the
fields’ current knowledge of learning with specific food
components.

Carbohydrate Learning
Carbohydrates are an essential source of energy and many
insects including bees, ants, cockroaches, crickets and fruit
flies can be trained to associate sensory cues with sugar
consumption (Kuwabara, 1957; Takeda, 1961; Nelson, 1971;
Fukushi, 1973; McGuire and Hirsch, 1977; Bitterman et al.,
1983; Tempel et al., 1983; Yuval and Galun, 1987; Sakura
and Mizunami, 2001; Scherer et al., 2003; Neuser et al.,
2005; Gerber and Stocker, 2007; Krashes and Waddell, 2008;
Schipanski et al., 2008; Colomb et al., 2009; Josens et al.,
2009; Menzel, 2012; Rohwedder et al., 2012; Apostolopoulou
et al., 2013). Following a 2 min pairing of odor and sucrose,
adult Drosophila form memories that can be immediately
expressed and last for days (Krashes and Waddell, 2008;
Colomb et al., 2009). Both the sweet taste and nutrient value
of a sugar contribute to memory reinforcement (Burke and

Waddell, 2011; Fujita and Tanimura, 2011). Training with
arabinose or xylose, sugars that taste sweet but that fruit flies
cannot metabolize, only forms short-term memory. However, if
arabinose or xylose is supplemented with nutritious but tasteless
sorbitol flies form long-term memory (Burke and Waddell,
2011).

The segregation of sweet taste and nutrient value
reinforcement is evident at the level of the DANs (Figure 1).
Two distinct subsets of DANs convey sweet taste and nutrient
value reinforcement (Huetteroth et al., 2015; Yamagata et al.,
2015). Sweet-taste DANs are activated by octopamine through
the OAMB α-adrenergic like receptor (Burke et al., 2012;
Huetteroth et al., 2015). Consequently, flies that cannot
synthesize or release octopamine are unable to reinforce short-
term memories but they show normal long-term memory when
conditioned with sucrose (Schwaerzel et al., 2003; Das et al.,
2014). Furthermore, pairing odor presentation with artificial
activation of the OAMB-expressing DANs implants only a short-
term memory (Huetteroth et al., 2015; Yamagata et al., 2015).
A similar pairing of odor-presentation with artificial activation
of octopaminergic neurons forms an appetitive short-term
memory in larvae and adult flies (Schroll et al., 2006; Burke et al.,
2012).

In the honeybee the octopaminergic VUMmx1 neuron
responds to sucrose and electrical stimulation of VUMmx1
can substitute for sugar-reward in olfactory learning (Hammer,
1993). It seems possible that VUMmx1-released octopamine
might also provide sweet-taste reinforcement via subsets of
DANs in the bee.

Blocking nutrient value DANs during sucrose learning
specifically impairs long-term memory (Huetteroth et al., 2015;
Yamagata et al., 2015). In addition, pairing direct activation
of the nutrient value DANs with odor can implant a long-
term memory. Although nutrient information is available to
direct behavior minutes after training, work suggests that
a delayed post-ingestive signal is also required to drive
long-term memory consolidation (Burke and Waddell, 2011).
Pharmacological block of the intestinal glucose transporter
specifically impairs D-glucose reinforced LTM (Musso et al.,
2015). Interestingly, the activity of aversive DANs that were
known to signal satiety (Krashes et al., 2009) is increased
following ingestion of nutritious sugar, and forcing their
activity after training can facilitate long-term memory (Musso
et al., 2015). Memory consolidation also requires activity after
training in a plausible recurrent network loop from MB
neurons to glutamatergic MB output neurons (MBONs) to
rewarding DANs. Blocking any of the contributing neurons
after training impaired long-term sugar-reinforced memory
(Ichinose et al., 2015). Taken together these experiments
suggest ongoing activity in a distributed set of DANs may
provide post-ingestive nutrient value information to reinforce
long-term memory. It will be important to establish how
the two reported mechanisms relate and whether they are
triggered together. Neurons in the brain expressing the GR43a
fructose receptor have been suggested to provide nutrient
value input to DANs (Miyamoto et al., 2012; Yamagata et al.,
2015).
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FIGURE 1 | Dopaminergic neurons (DANs) innervating the mushroom bodies (MBs) provide reinforcement and motivational control. DANs innervating
unique zones of the MB lobes may represent the reinforcing properties of individual food components. Reinforcement from the sweet taste and energetic value of
sugars are segregated in rewarding DANs. A unique water reinforcement zone may exist on the horizontal MB lobe. The taste and energetic elements of other
nutrients may involve different subsets of DANs. Aversive DANs provide the reinforcing properties of bad taste. They also control nutrient-dependent consolidation,
and hunger-dependent expression, of carbohydrate memories. It is currently unclear if similar processes represent other deprivation states. Dashed boxes denote
food components and dashed arrows, neuronal pathways that remain be delineated in fruit flies. Cell body colors correspond to their relevant innervation zones on
the MB. The diagram is not intended to be anatomically accurate.

Amino Acid Learning
Amino acids are essential building blocks of proteins for
growth, development and reproduction. For some insects, such
as tsetse flies, Colorado beetles and blowflies, amino acids can
provide energy to fuel flight (Bursell, 1963; Sacktor and Childress,
1967; de Kort et al., 1973). Proteins and specific amino acids
are also critical in the diet for egg production and fertility in
blowflies, and other species of fruit flies including Drosophila
(Grandison et al., 2009; Harwood et al., 2013).

Ample evidence suggests that amino acids are discretely
valued from sugars in the insect brain. Honeybees and butterflies
show a preference for nectars that contain certain amino acids
(Inouye and Waller, 1984; Hendriksma et al., 2014). Female
blowflies consume more proteins than males after eclosion and
furthermore, mated females show peaks of protein consumption
following each bout of egg production (Strangways-Dixon, 1959,
1961; Dethier, 1961, 1976). Mated female Drosophila shows a
similar preference for protein-rich food over sugar, compared to
males and virgin females, after a period of protein deprivation
(Ribeiro and Dickson, 2010; Vargas et al., 2010). However
this switch in preference after mating is independent of egg
production and is mediated instead by sex peptide, which is
transferred with the male seminal fluid to the female during
copulation (Ribeiro and Dickson, 2010). Adult fruit flies also
prefer to eat amino acids rather than glucose when protein-
deprived (Toshima and Tanimura, 2012). Work in Drosophila

larvae suggests that DANs are involved in amino acid evaluation.
Larvae avoid eating food that lacks essential amino acids and this
behavior requires the GCN2 amino acid sensor in three larval
DANs (Bjordal et al., 2014).

Amino acids can also reinforce learning. Locusts and
cockroaches can be trained to associate odors or colors with
protein-rich food (Raubenheimer and Tucker, 1997; Gadd and
Raubenheimer, 2000) and honeybees can be trained with odors
reinforced with sugar containing an amino acid (Simcock et al.,
2014). Although Drosophila larvae can be reward-conditioned
using non-essential aspartic acid (Schleyer et al., 2015) such a
phenomenon remains to be demonstrated in adult flies.

Water Learning
Water is essential for cell function and is perhaps the most
critical nutrient for a small insect that can easily desiccate.
Water-deprived insects, show robust approach behavior to water
vapor and water-associated sensory cues (Raubenheimer and
Blackshaw, 1994; Matsumoto andMizunami, 2002a; Unoki et al.,
2006; Lin et al., 2014). In adult Drosophila, learning to associate
an odor with drinking water requires the action of DANs
that are different to those that are required for reinforcement
with nutritious sugar (Lin et al., 2014). At present the water
DANs have not been functionally segregated from those that
reinforce the sweet taste of sugar. However, water learning does
not require octopamine suggesting that water and sweet-taste
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DANs may also innervate separate zones on the MB lobes.
Water-associated memory persists for 6–10 weeks in the cricket
(Matsumoto and Mizunami, 2002b). In Drosophila perdurance
of water memory appears to correlate with the amount of water
ingested during training. Drinking more leads to a longer lasting
memory and under certain conditions 24 h water memory was
observed (Lin et al., 2014).

Bad Tastes and Toxins
Avoiding consumption of harmful food also provides an obvious
survival advantage. Many toxins are repellents by virtue of
their bad taste, which allows insects to reject toxin-laden food
using multiple layers of taste detection (recently reviewed in
Freeman and Dahanukar, 2015; Joseph and Carlson, 2015).
In addition, honeybees can learn to avoid odors or visual
stimuli associated with toxic compounds that they can taste
(Wright et al., 2010; Wright, 2011). Learned bitter taste
aversion in the honeybee requires dopamine (Wright et al.,
2010).

Drosophila larvae can be conditioned to associate an odor
with aversive bitter-tasting quinine (Gerber and Hendel, 2006;
Schleyer et al., 2011; Apostolopoulou et al., 2014). Hungry adult
flies can be coaxed to consume bitter-tasting compounds if they
are mixed with a high enough concentration of sugar (Das et al.,
2014). Flies trained with a bitter-sugar mixture show immediate
avoidance of the conditioned odor, which later switches to
conditioned odor approach. This suggests the flies form a labile
aversive memory and a lasting approach memory that compete
to guide behavior (Das et al., 2014). The bitter-sugar mixture
activates the aversive and rewarding DANs together (Das et al.,
2014; Harris et al., 2015). Although it is not known whether all
aversive compounds engage the same DANs, those activated by
bitter-taste are also required for aversive learning with electric
shock and high heat (Schwaerzel et al., 2003; Claridge-Chang
et al., 2009; Aso et al., 2010, 2012; Galili et al., 2014). Therefore
the aversive DANs may only code the magnitude of an aversive
stimulus and not its quality (Das et al., 2014; Galili et al., 2014).

Grasshoppers, desert locusts and honeybees can also learn the
post-ingestive consequences of consuming toxic food (Behmer
et al., 1999; Wright et al., 2010; Simoes et al., 2012). In honeybees
memory of post-ingestive malaise develops over time and
requires serotonin, 5-HT (Wright, 2011). Adult Drosophila can
also learn to avoid an odor that was associated with pathogen-
tainted food (Babin et al., 2014). Since the flies could not taste the
intestinal pathogen in this study, it is possible that the learned
aversion is reinforced by post-ingestive malaise (Hurst et al.,
2014).

Salt Learning
Salt is essential for osmotic balance and many physiological
processes and insects actively regulate their salt intake
(Trumper and Simpson, 1993; Simpson et al., 2006;
Simpson and Raubenheimer, 2012). Mated female
Drosophila exhibit an enhanced gustatory response
for salt and increase salt consumption. This increased
salt appetite, like the learning-independent change

in protein preference (Ribeiro and Dickson, 2010),
is driven by male sex peptide transferred to the female during
copulation (Walker et al., 2015).

Insects such as locusts and crickets can learn to associate
specific sensory cues with salt or salt infused food. Interestingly,
whereas locusts were shown to approach the salty food associated
cue, crickets showed learned avoidance of a salt reinforced cue
(Trumper and Simpson, 1994; Unoki et al., 2006). Studies of
salt learning in larval Drosophilamay provide an explanation for
this apparent conundrum. Larvae are attracted to odors paired
with low salt concentrations but avoid odors previously paired
with higher salt concentrations (Niewalda et al., 2008; Russell
et al., 2011). Assuming adult fruit flies can be conditioned with
salt, one might predict that high salt learning would activate
aversive DANs while lower concentrations might preferentially
recruit rewarding DANs. This could simply reflect the different
gustatory neurons that are activated by low and high salt
concentrations (Hiroi et al., 2004; Zhang et al., 2013).

Alcohol Learning
Insects encounter low levels of ethanol in rotting fruits and it
has been reported that consuming ethanol enhances fitness of
larvae and adult fruit flies (Geer et al., 1993; Bokor and Pecsenye,
2000; Devineni and Heberlein, 2013). Female fruit flies also have
a preference for laying eggs on ethanol-containing food (Azanchi
et al., 2013).

Adult fruit flies can also be conditioned with odors
reinforced with ethanol vapor. Their performance after
training shows a similar profile to flies conditioned with
bitter-tainted sugar (Das et al., 2014); early aversion later
switches to approach (Kaun et al., 2011) consistent with a
model that alcohol also reinforces parallel appetitive and
aversive memories (Aso et al., 2014b). Surprisingly, broad
manipulation of DANs suggested that they are dispensable
for alcohol to reinforce learned aversion and approach,
but are required for expression of longer-term alcohol-
conditioned approach (Kaun et al., 2011). It therefore
remains unclear whether specific DANs contribute to alcohol
reinforcement.

SPECIFIC DEFICIT PROMOTES
APPROPRIATE MEMORY EXPRESSION

Efficient foraging requires insects to utilize their learned
behaviors at the appropriate time. Studies of locusts and
cockroaches suggest that insects possess a sophisticated level
of control that permits nutrient-specific deficits to select the
relevant procurement behaviors. Following training to associate
colors or odors paired with synthetic foods that are either
rich in carbohydrate or protein, they chose the cue predicting
carbohydrate if sugar deprived, but the cue predicting protein
if protein deprived (Raubenheimer and Tucker, 1997; Gadd
and Raubenheimer, 2000). Work in the fruit fly again suggests
possible mechanisms to accomplish this level of nutrient-deficit
dependent control based on reward expectation.
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Sugar-conditioned Drosophila most efficiently approach
the previously rewarded odor only when they are hungry
(Krashes and Waddell, 2008; Krashes et al., 2009). The state
of hunger is broadcast throughout the brain by multiple
monoamine and neuropeptide signals to control feeding,
energy expenditure, the gain of sensory neurons, nutritional
homeostasis and sugar memory expression (reviewed in Audsley
and Weaver, 2009; Nässel and Winther, 2010; Pool and Scott,
2014). Drosophila Neuropeptide F (dNPF), an orthologue of
mammalian neuropeptide Y (Brown et al., 1999) mediates
hunger-dependent control of sugar memory expression by
modulating the activity of a subset of aversive DANs that
innervate the MB (Krashes et al., 2009; Figure 1). A model
suggests that in the food-satiated state, the tonic activity of
aversive DANs on the MB inhibits the expression of sugar
memory. When flies are starved, dNPF release inhibits the
aversive DANs, releasing sugar memory expression (Krashes
et al., 2009).

Artificial activation of a subset of 5-HT expressing neurons in
satiated flies also releases sugar memory expression in addition
to promoting general feeding behaviors (Albin et al., 2015).
Therefore 5-HT neurons may be upstream of dNPF neurons
in signaling nutritional status mediating motivational control of
sugar memory expression.

Expression of sugar memory can also be suppressed by
ingestion of a high osmolarity nutritious or non-nutritious
solution (Gruber et al., 2013). This reported lack of nutrient-
specificity seems somewhat counter-intuitive and the adaptive
relevance of such a non-specific suppression of food-related
memory expression is currently unclear.

Importantly, thirst and hunger states provide independent
control over memory expression. Whereas thirsty flies most
efficiently express water memory, hungry flies preferentially
express sugar memory (Lin et al., 2014). It therefore seems
possible that the expression of other nutrient-specific memories
will be controlled by independent, perhaps DAN-dependent,
neural mechanisms in the fly.

Interesting work with salt in rats provides a more extreme
example of how predictive evaluation can be robustly changed
by internal nutrient deficit. Rats taught to avoid a metal lever

paired with high aversive concentrations of salt, avidly approach
the same lever when they are deprived of sodium (Robinson and
Berridge, 2013). Establishing a similar paradigm in Drosophila
could be informative.

CONCLUSION

In summary, work suggests that foraging insects learn about
multiple components of their food. Subsequently their behavior
can be directed by their knowledge towards a specific goal
of neutralizing a particular nutrient deficit. We propose that
nutrient components might be differentially represented in
subsets of reinforcing DANs so that carbohydrate, protein, lipid
(Toshima and Tanimura, 2012; Masek and Keene, 2013), water
and salt memories can be independently coded (Figure 1).
In addition, other combinations of DANs might promote the
expression of these nutrient-specific memories by increasing
the valuation of the predictive cues, through gating of the
relevant parts of the MBON network (Owald and Waddell,
2015). Rigorously testing these models in Drosophila may
uncover general organizational principles of how a dopaminergic
evaluation system operates.
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