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Abstract

Transparency is increasingly promoted to instill trust in nonrandomized studies using

real-world data. Graphics and data visualizations support transparency by aiding

communication and understanding, and can inform study design and analysis deci-

sions. However, other than graphical representation of a study design and flow dia-

grams (e.g., a Consolidated Standards of Reporting Trials [CONSORT] like diagram),

specific standards on how to maximize validity and transparency with visualization

are needed. This paper provides guidance on how to use visualizations throughout

the life cycle of a pharmacoepidemiology study—from initial study design to final

report—to facilitate rationalized and transparent decision-making about study design

and implementation, and clear communication of study findings. Our intent is to help

researchers align their practices with current consensus statements on transparency.
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Key points

• Graphics and data visualizations can support transparency and confidence in real-world evi-

dence by clearly communicating various aspects in protocol development, implementation,

and results dissemination.

• This paper provides guidance on using visualizations throughout the life cycle of a compara-

tive pharmacoepidemiology study.

• Traditional examples, such as directed acyclic graphs and forest plots, as well as lesser known

data visualizations and the future role of interactive visualization are discussed.

• Recommendations for the visualization of results are provided.

1 | INTRODUCTION

The generation of real-world evidence (RWE) for regulatory, payer,

and clinical decision-making constitutes a series of complex choices
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surrounding methodology and interpretation. Increasing promotion of

transparency is intended to instill trust in nonrandomized studies

using real-world data.1–3 Effective graphics and data visualizations

support transparency by demystifying decisions about study design

choices and interpretation of findings. A precise graph tells a story.4

Good figures are intuitive, reader-friendly and illuminating.

Although the title of the classic 1984 Weiner article “How to dis-

play data badly,” is tongue-in-cheek, the sincere purpose is to pro-

mote good graphics, those which “display data accurately and

clearly.”5 Weiner classifies distinct purposes for data visualization

including (among others): data exploration where the data contain a

message that visualization can help uncover; communication to illus-

trate a finding for ease of understanding by others; and decoration to

enliven what might otherwise be dull content.

We share the goal of accurate and clear display of data visualiza-

tion in pharmacoepidemiology research, but we believe good visuali-

zation extends beyond reporting results. Visualizations can aid

communication during the entire study lifecycle, and reduce the risks

of using data inappropriately, implementing a poor study design,

misinterpreting results, and losing the reader's attention. Visualization

and graphical representation facilitate reproducibility and transpar-

ency, enabling trust by clearly communicating operational decisions,

rationale, and study findings.

A number of well-accepted pharmacoepidemiology guidelines,

templates and tools exist that, used together, facilitate the planning,

conduct, interpretation and transparency of research.6–10 However,

specific standards on how to make and document decisions with visu-

alizations are needed.

This paper aims to provide guidance on how to use visualiza-

tions throughout the life cycle of a pharmacoepidemiology study,

from initial study design to final report, to facilitate rapid, evidence-

based and transparent decision-making (and therefore, credible

RWE generation) (Figure 1). Our paper aligns with existing recom-

mendations for transparent reporting of the conduct and reporting

of pharmacoepidemiologic studies. While we focus on comparative

hypothesis testing pharmacoepidemiology studies designed to facili-

tate a causal conclusion about the effects of a therapeutic product,

many of these visualization tools can aid descriptive analyses and

other types of studies (e.g., refer to Schachterle et al., Aakjær et al.,

and Zhou et al.).11–13

F IGURE 1 Visualizations throughout the life cycle of a pharmacoepidemiology study. Visualizations included in Figure 1 are simple illustrative
examples of visualizations included in the paper and Appendix S1.
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2 | PROTOCOL DEVELOPMENT

For studies that use real world data to evaluate the causal effect of

treatments, development of a protocol is an iterative process. Visuali-

zation at the protocol development stage can be used to help clarify

thinking about design and data issues, avoid biases, and assist proto-

col reviewers in quickly grasping decisions made. In this section, we

will discuss three visualization frameworks that can facilitate rational-

ized and transparent decision-making in protocol development: causal

structures, graphical depiction of study design, and identifying fit-for-

purpose data (i.e., data reliability and relevancy which are defined by

FDA as “data accuracy, completeness, provenance, and traceability”
and “the availability of key data elements [exposure, outcome, covari-

ates] and sufficient numbers of representative patients of study,”
respectively).

2.1 | Visualizing causal structures

In the absence of randomization, identifying variables that

contribute to confounding and require measurement and control is

key to valid study design, as well as assessing data fitness (i.e.,

systematically assessing whether data are fit for a particular pur-

pose/research question). Visualization of the hypothesized causal

relationships for the primary treatment-comparator-outcome

objective—and often for other key relationships specified in second-

ary objectives—helps the researcher identify variables that should be

controlled (e.g., a common cause of treatment and outcome) and

those that should not (e.g., a mediating variable). Directed acyclic

graphs (DAGs) are visualizations of these theorized causal relation-

ships with rules about which variables should be controlled.14–16

These graphs allow researchers to distinguish the relationships

between the exposure, outcome, and potential confounders, inter-

mediate causes, and colliders. For example, to conceptualize the

causal structure of prenatal selective serotonin reuptake inhibitor

(SSRI) medication (exposure) and attention deficit/hyperactivity

disorder (ADHD) (outcome), Wood et al.17 identified potential con-

founders warranting conditioning, such as “other psychiatric illness”
(Figure S1A). The authors also identified other factors including ges-

tational age (mediator) and live birth (collider) to avoid introducing

bias by inadvertently controlling for these factors. In DAG construc-

tion, variable identification and potential relationship with the treat-

ment and outcome are typically based on literature review and

input from clinical subject-matter experts. One limitation of the

DAGs is the potentially subjective and speculative identification of

variables based on background knowledge. In a systematic review of

DAGs, Tennant et al. also observed variability, including oversimplifi-

cation, of DAG reporting in the literature. Despite this, DAG con-

struction is an important first step and following these rules enables

identification of the minimally sufficient set of covariates, avoids

model overfitting, and targets the assessment of whether a particu-

lar dataset is fit-for-purpose. While these diagrams can be quite

complicated (e.g., see Reference [18]; Figure S1B) this critical step

can be simplified by using tools such as DAGitty (http://www.

dagitty.net), a free web- or R-based tool for creating and analyzing

causal diagrams.

2.2 | Visualizing study design

The role of time in a pharmacoepidemiology study is most clearly

communicated through visualization. Following the target trial

framework,19database studies are carried out as closely as possible to

a randomized trial, with the index date (i.e., “time zero”) defined by

treatment initiation rather than set by a randomized intervention. As

such, clear definitions of time zero, patient history, and follow-up are

critical to understanding the database study design, and visualization

can greatly improve understanding of these concepts. Visualization

can also clarify the relationship between calendar time and patient

event time, which is time relative to a specific event, such as the first

prescription of a drug of interest (Figure 2A). Importantly, visualizing

the study design and aligning patient eligibility and treatment initia-

tion to the start of follow-up avoids introducing biases, such as

immortal time bias.20

2.2.1 | Visualizing time anchors and time windows
with study design diagrams

A recent framework for graphical depiction of study design summa-

rizes the temporality of key study parameters implemented to cre-

ate an analytic dataset anchored on patient event time.21,22 This

graphical framework defines several types of study time anchors.

Base anchors are defined in calendar time and describe the source

database. Primary anchors are defined in patient event time and are

used to specify time zero and other key anchor points. Second

order anchors, such as windows to measure inclusion–exclusion,

covariates, washout or follow up are defined relative to the primary

anchor(s).

The study design diagram is intended to be read from top to bot-

tom, showing the sequence of actions taken to create the analytic

study population (Figure 2B). A vertical gray arrow is used to repre-

sent time zero, the point at which the study entry defining criterion is

met and the patient enters the cohort. The size and location of the

horizontal bars visually show the assessment windows for inclusion–

exclusion criteria, covariates and follow up relative to time zero. In

addition to the visual representation, bracketed numbers within each

bar specify the exact window length. Schneeweiss et al. provide

examples of diagrams using different study designs, which are avail-

able in the appendices of their article.21This graphical framework for

study design has recently been expanded to include visual representa-

tion of data observability – an issue that is particularly salient for stud-

ies that make use of EHR data within a fragmented healthcare

system.22 Open-source PowerPoint templates21 and an R shiny appli-

cation can be used to develop study design diagrams for protocols

and publications.
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2.2.2 | Visualizing study measurements

Measurement is the identification of specific events, dates, or other

values of interest in a longitudinal dataset in order to generate time

anchors, covariates, outcomes, and other components of an analytic

dataset. Although measurements require precise definitions in order

to preserve transparency and reproducibility, textual definitions of

measurements are often ambiguous or do not consider nuances of the

underlying data. For example, a time anchor measurement defined as

“follow-up starting after the first usage of an ACE-inhibitor” is ambig-

uous, as it is unclear if follow-up starts on the first or last or other day

relative to the use of a drug, and it is unclear if “usage” refers to a

(A)

(B)

F IGURE 2 Calendar time, patient event time, and study design diagrams. A, Patient events for four different patients are visualized, arranged
according to calendar time (left) or patient event time (right). Patient event time is defined relative to an index date, in this case the first
prescription of an ACE-inhibitor (ACEI) or angiotensin receptor blocker (ARB). Events recorded as spanning intervals of time (e.g., hospitalizations
and drug prescriptions) are represented as boxes, while events recorded in a single moment of time (e.g., outpatient visits) are represented as
lines. B, An example study design diagram. Source: Adapted from www.repeatinitiative.org/projects.html
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single dispensing of a drug or a complete course of treatment includ-

ing multiple dispensings. Furthermore, if a “course of treatment” is

being measured, it is unclear how that is defined, such as with respect

to how overlapping drug dispensings or gaps between drug dispens-

ings are handled. To gain insight into improving measurement defini-

tions, it can be helpful to visualize case examples of patient events

and how measurement is applied to those cases. For example, visualiz-

ing how time anchor measurement aligns against drug usage patterns

in the data highlights the need to more explicitly define the choice of

which day to anchor on (Figure 3).

2.3 | Visualizing data fitness

Rationalizing a chosen data source for a given comparative observa-

tional study is crucial to ensure actual and perceived objectivity.

F IGURE 3 Measurement visualization. Definitions of study measurements such as time anchors may be made ambiguous by insufficiently
detailed textual descriptions or may be complicated by nuances of underlying data. For example, consider the definition “Follow-up starts after
the first use of an ACE-inhibitor (ACE-I).” Such a definition is ambiguous because “after the first usage” is not well-defined, as shown here.
Furthermore, periods of drug usage recorded in the data may overlap in time or have gaps between them, requiring the researcher to make
assumptions about how a drug is used by a patient. Examples of this are shown here, depicting drug data for a single patient and how different
interpretations of the follow-up start date may be applied to it. Illustration of case examples of patient data and how a measurement definition
accommodates them can help the researcher be more precise and take into account data nuances during protocol development
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Visualization can help stakeholders understand the researcher's

decision-making process, and why a particular data source meets or

does not meet the needs of the study. In September 2021, the FDA

issued draft guidance on assessing real-world data for regulatory

decision-making which discusses considerations for using data derived

from existing electronic health records and administrative claims data,

including data reliability and data relevance.23 Assessing whether the

data are fit-for-purpose is contextual and contingent on the study's

research question.23 Following the steps laid out in Gatto et al.24 for

identifying fit-for-purpose data, a CONSORT-like diagram25,26 can

show considered data sources, those included/excluded based on pre-

specified criteria (evaluated without assessing associations among

treatments and outcomes of interest), and those chosen for more

detailed feasibility assessment.

To summarize the assessment findings, a heat map can demon-

strate how each dataset performed on key study elements and visu-

ally communicate the datasets' fitness-for-purpose or lack thereof.24

The heat map is made by ranking each element assessed for each data

source using colors to indicate if the data, for example, “fully meets”,
“partially meets,” or “does not meet” the needs of the study

(Figure S2). A quick visual scan then allows the reader to see where

“fully meets” assessments are concentrated, and judge if a data source

is sufficiently fit. A table containing the underlying information can be

supplied for further detail.

3 | IMPLEMENTATION: DIAGNOSTICS

The implementation stage of a study can be segmented into diag-

nostic and inferential phases. The diagnostic phase refers to the

checks performed to evaluate key assumptions and fitness of the

proposed study design, while the inferential phase refers to the

conduct of planned analyses following locking of the dataset and

protocol. Visualizations of diagnostic checks can help researchers

refine study design decisions prior to conducting any inferential

analysis and demonstrate the fitness of the design to stakeholders.

This section provides examples of graphical diagnostic checks to

evaluate these assumptions, as well as assumptions underlying sta-

tistical models.

3.1 | Visualizations to check positivity and
confounder balance in studies of causal effects

The positivity assumption—the assumption that each person under

study is eligible for each treatment of interest—requires that there be

a non-zero probability of treatment receipt within all confounder

strata.27–30 One practical way to check this assumption across the

range of confounders is to inspect propensity score distributions by

treatment group; propensity scores close to zero or one suggest possi-

ble violations or near violations of positivity (Figure 4A). Trimming

(excluding) patients with nonoverlapping propensity scores in the tails

of the distribution helps address violations of the positivity assump-

tion. Trimming of patients with extreme propensity scores would be

prespecified in the protocol and transparently reported. For example,

in a study of mortality and corticosteroid versus non-corticosteroid

use among hospitalized COVID-19 patients, this check of positivity

was pre-specified in the protocol and performed before implementing

any inferential analysis (study protocol is available on ClinicalTrials.

gov, NCT04926571).

(A) (B)

F IGURE 4 Visualizations to assess for positivity and confounder balance. A, A propensity score density plot, adapted from Webster-Clark
et al.25 B, A plot of standardized differences, adapted from Austin PC27
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The conditional exchangeability assumption requires that, condi-

tional on confounders, the counterfactual outcome risk in treated indi-

viduals, had they not received the treatment, would have been the

same as the outcome risk in the untreated/comparator group and vice

versa. In other words, potential outcomes and treatment status are

independent conditional on the confounders. A typical check of this

assumption is the examination, after weighting, matching or other

methods, of absolute standardized differences between treatment

groups in the distribution of potential confounding variables measured

at baseline. As a rule of thumb, an absolute standardized mean differ-

ence of 0.1 or less suggests adequate balance between comparison

groups.31 Residual imbalance may indicate that confounding control

and/or model specification is insufficient. Plotting standardized differ-

ences is a useful visualization tool to evaluate and demonstrate covar-

iate balance (Figure 4B). Additional visualizations may be used to

assess the robustness of confounding control. Tarzare et al.32 summa-

rize helpful visualization tools when using high-dimensional propen-

sity score (HdPS), which use automated methods to select covariates.

Rassen et al.33 suggest sequentially plotting treatment effect esti-

mates with increasing number of empirically identified variables con-

trolled to determine if controlling more variables helped with

confounding control or if a parsimonious model was equally effective.

3.2 | Visualizations to check statistical
assumptions

Depending on the statistical methods employed, the model's assump-

tions and goodness-of-fit can be graphically displayed. For example,

the Cox proportional hazard regression model used for time-to-event

data requires that the hazard functions for different groups are pro-

portional over time. Testing for proportionality is often based on

visual inspections of Schoenfeld's residuals (Figure S3).34,35 Violation

of the proportional hazard assumptions will lead to invalid inference

(i.e., the standard errors will be incorrect). This limitation can be

addressed by computing confidence intervals using bootstrapping

techniques.36 As with any analytic diagnostics, whether for models or

other statistical approaches, reporting these visual diagnostics helps

the investigator to justify their final choices.

4 | RESULTS DISSEMINATION

Pharmacoepidemiology reporting standards mainly focus on the tex-

tual information required in study reports and manuscripts.7,9,10,37

Tables are foundational since interpretation and decision-making

require exact numerical estimates and confidence intervals. However,

representing results graphically can convey distinct ideas or patterns,

facilitating quicker comprehension by readers. Results readily lend

themselves to both tabular and visual presentation. In this section, we

discuss common practices for creating these visualizations. We also

provide general recommendations and considerations for developing

such reporting visuals (Table S1).

4.1 | Cohort attrition: Flow diagrams

A core element of most reporting guidelines, flow diagrams are used

to describe cohort attrition, which is the movement of patients in and

out of the study (Figure S4).9,25,26,38–40 These diagrams are intended

F IGURE 5 Example and recommendations for forest plots
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to convey the total number of patients included in the study, the num-

ber of patients removed at each exclusion step, the number of

patients lost to follow-up, and the final number of patients available

for analysis, with information reported separately for each treatment

arm as applicable. This information is a key element supporting study

transparency, as it can help reveal potential sources of bias or general-

izability limitations.

4.2 | Effect estimates: Forest plots

Forest plots are used to illustrate effect estimates (e.g., odds ratios,

hazard ratios, or mean differences) when more than one estimate is

being reported. This allows effect estimates derived from different

cohorts, subgroups, or statistical models to be visualized and com-

pared in a single plot. Core elements of these plots include point esti-

mates and their confidence intervals, and a vertical reference line

indicating null effect (Figure 5). Ratio results should be plotted on a

log scale so that, for example, risk ratios of 0.5 and 2.0 (half and dou-

ble the risk, respectively) appear at an equal distance from the null.

4.3 | Time-to-event analysis: Kaplan–Meier plots

Kaplan–Meier plots are used to visualize time-to-event analyses,

where the event is the outcome of interest such as death, disease

occurrence, or disease recovery. The vertical axis of these plots typ-

ically shows either survival probability (with curves starting at 1 and

descending as time progresses) or its converse, the cumulative inci-

dence (with curves starting at 0 and ascending), while the horizontal

axis shows time (Figure 6A). In general, including zero on axes helps

ground the reader in the magnitude of the effect being plotted;

however, in survival plots of rare outcomes, including zero may

mask differences of effect between the groups (since most values

will be close to the maximum of 100%) (Figure 6B). In such cases, it

may be preferable to plot cumulative incidence, or include both a

(A)

(B)

F IGURE 6 Example and recommendations for Kaplan–Meier plots

GATTO ET AL. 1147



survival plot with zero (to indicate the rarity of the outcome) and a

“zoomed in” plot clearly showing any difference between the sur-

vival curves.

A limitation of Kaplan–Meier curves is that they can only depict

unadjusted survival probabilities. Alternatively, survival probabilities

can be derived and plotted from an adjusted Cox Proportional Haz-

ards Model. This approach requires specifying values for all the covari-

ates used in the model. Therefore, the shape of the survival curves

will be a function of the values assigned to each of the covariates.

Methods such as the corrected group prognosis method have been

developed to address this limitation.41

4.4 | Repeated measures: Line charts and bar
charts

Pharmacoepidemiology studies may include outcomes of repeated mea-

sures, such as lab values or numerical disease scores measured at differ-

ent points in time. As such data naturally capture trends over time, they

lend themselves well to visualization through multiple chart options,

including line charts, bar charts, box plots, or spaghetti plots

(Figure S5A). Although such plots are generally straight-forward, consid-

eration must be given to issues such as representing multiple dimensions

in a single plot, or dealing with overlapping plot elements (Figure S5B).

(A)

(B)

F IGURE 7 Sankey plots. A,
An example of a Sankey plot,
with colors representing
transitions between all groups. B,
The same plot but simplified,
where colors are used only to
highlight specific transitions of
interest. In this case, transitions
from Drug A to any other drug

are highlighted. Other options to
focus the presentation are also
possible, such as highlighting
transitions to higher lines of
therapy (e.g., Drug A to B, B to C,
A to C, etc.)
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(A)

(B)

(C)

(D)

F IGURE 8 Improving the visual style of figures. A, Plots can be Simplified by removing design elements that do not contribute to
understanding of the data, such as superfluous shading or line borders, as shown here. B, Redundant information should be removed from plots,
such as repeated percentage signs on axis labels, or over-abundant tick mark labels. C, Careful consideration should be given to the use of space
in a plot. In this example of a forest plot, there is an over-abundant amount of spacing between rows, columns, and the scale of the X-axis on the
forest plot. D, An example of the same plot but with improved use of space
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4.5 | Changes of state: Sankey diagrams

Changes of the state of a patient over time, such as medication switch-

ing, disease stage progression, or movement through treatment path-

ways, can be visualized using Sankey diagrams.42 These diagrams

involve nodes arranged along the vertical axis, and another dimension

(typically study time or a designation of a phase, such as line of ther-

apy) arranged on the horizontal axis, with node height proportional to

the number of patients at that node, and flows that depict state transi-

tion probabilities (Figure 7). State transition probabilities should be esti-

mated using appropriate methods for censored data to account for

disenrollment and other forms of censoring. Given the highly combina-

torial nature of these types of analyses, Sankey plots can be an efficient

way to represent data that otherwise might be difficult to interpret in

tabular format. Sunburst diagrams can also represent some of the same

information, with an inner ring showing the first phase and outer rings

showing consecutively later phases but are less common.

5 | FUTURE OF VISUALIZATION

5.1 | Animated and interactive visualizations

In recent years, there has been rapid development and dissemination

of easy-to-use tools for creating web-based, interactive visualizations

and tables. These technologies allow a tremendous amount of infor-

mation to be displayed and efficiently explored. Interactive output can

be created by most modern statistical analysis systems, including

open-source software such as R.

There are many potentially valuable applications of these technol-

ogies in pharmacoepidemiology. For example, many comparative effec-

tiveness studies involve multiple treatment contrasts, different cohorts,

multiple outcomes, many subgroups of interest, and associated sensi-

tivity analyses. Each analysis may involve estimation of cumulative inci-

dence functions in addition to the previously mentioned diagnostics,

such as inverse probability of treatment weighted table 1 information,

and propensity score histograms. Frequently these results end up being

included in online supplementary material or discussed in the paper but

not presented. However, interactive data visualization tools can allow

the user to easily browse a large volume of results from the many com-

binations of analyses that are performed. For example, in a negative

control outcome study of lipid-lowering therapies,43 results from multi-

ple outcomes, cohorts, and subgroups are easily explored using simple

interactive graphs and tables.44 Similarly, the Observational Health

Data Science Initiative has created R packages to allow results from

pharmacoepidemiologic studies to be explored via R/Shiny applica-

tions.45 In addition, the US FDA Sentinel Initiative will be releasing Sen-

tinel Views, a dashboard with interactive visualizations, to help

increase transparency and aid interpretation of post-marketing safety

data (https://views.sentinelsystem.org).

It is also becoming increasingly feasible to create a wide range of ani-

mated visualizations. These can be used to help convey movement and

dynamism. Animation can also help a presenter tell a story to

communicate findings. For example, in a classic TED Talk, animations

were used to effectively convey information about country-level changes

in health and economic development from 1960 to the present day.46

6 | CONSIDERATIONS

6.1 | Cautionary considerations

Pharmacoepidemiology visualizations—whether traditional static or

more novel interactive visuals—seek to explain the why and how a

given study was performed, aid interpretation of results, and provide

full transparency to support RWE credibility. However, unintended

adverse consequences may result from graphics for several reasons.

First, the best way to display multidimensional data in a clear and

unambiguous manner may not always be obvious. Developing visuali-

zations is often an iterative process; trying various techniques and

soliciting feedback are important to ensure the reader will accurately

interpret the visual as intended by the authors. Poorly constructed

graphs can inadvertently confuse or mislead the reader. Overly com-

plicated diagrams run the risk of subjective interpretation. Second,

with interactivity, the use of the visualization may require careful con-

sideration of how the user can interface with the tool to ensure visual-

ization does not lead to varied interpretation. Third, while well-

crafted, easy-to-interpret visualizations can aid in transparency, a

potential pitfall is critical information loss from attempts to simplify

the graphs for readability; researchers must ensure visualizations

appropriately balance reader-friendliness with the amount of informa-

tion needed for correct interpretation. Lastly, certain visualizations

may require a reader to fully understand underlying assumptions to

accurately interpret complex information; the researcher must be

careful to articulate these assumptions.

6.2 | General style recommendations

While some choices in plot design, such as whether to include 0 on

graph axes, are purely functional, in general, a focus on design can

improve a figure's visual appeal, attract and retain reader interest, and

communicate ideas more clearly (Figure 8 and Figure S6).47,48 The

default graphical output provided by SAS, R, and Excel tends to be

lackluster and seen as “unformatted,” so adjusting colors, weights and

fills, and text is often time well-spent. Inspiration for visually compel-

ling content can be found in many sources, such as medical journals

with dedicated graphics departments like the New England Journal of

Medicine and JAMA, more general publications like The Economist, or

digital publications like FiveThirtyEight or the online New York Times.

7 | CONCLUSION

Increased use of visualizations can improve the efficiency and under-

standing of non-randomized pharmacoepidemiology study design and
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results by clinicians, treatment guideline committees, regulators,

industry, and payers. We have described a series of visualizations that

serve decision-making and transparency throughout the study life-

cycle, focused on study design, study implementation, analytic strat-

egy, study population, and findings and aligned with current

consensus statements on transparency.1–3,6,10,49
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