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HematoPorphyrin Monomethyl 
Ether polymer contrast agent 
for ultrasound/photoacoustic 
dual-modality imaging-guided 
synergistic high intensity focused 
ultrasound (HIFU) therapy
Sijing Yan1,*, Min LU2,*, Xiaoya Ding1, Fei Chen1, Xuemei He3, Chunyan Xu4, Hang Zhou3, 
Qi Wang1, Lan Hao4 & Jianzhong Zou1

This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic 
acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent 
for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity 
focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA 
microcapsules with the double emulsion evaporation method. After characterization, the cell-killing 
and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells 
were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated 
both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical 
morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading 
efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules 
remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA  
imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the 
HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a 
potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel 
strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by 
SDT in clinic.

In recent years, rapidly developed high intensity focused ultrasound (HIFU) has been regarded to be a new 
technique for non-invasive ablation of local tumors, focusing low-energy ultrasound (US) on the target areas in 
a certain way, which treats the lesion via cell necrosis1 caused by the instant heat effect, cavitation effect, mechan-
ical effect, and so on. Over the past few decades, HIFU has gained wide recognition for its safety and efficiency 
in treating solid tumors and non-tumor diseases2–4. However, the therapeutic efficiency of HIFU is relatively 
unsatisfactory for large and/or deep lesions, due to the exponentially attenuated US energy with increased depth 
and the reduced energy for the areas adjacent to high-speed blood flow5,6. Therefore, increased output power 
and extended treatment duration are always required, which would cause damages to the normal tissue along 
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the US propagation path, leading to severe side effects7–9. For these reasons, synergistic agents have emerged to 
maintain the advantage of non-invasive HIFU treatment, which increase the energy deposition in the target area 
by affecting the acoustic environment. Ever since the discovery of the microbubble contrast agents with various 
formulations, numerous studies have been focusing on exploring novel synergistic agents for HIFU10. It has been 
shown that, lipid microbubbles and polymer microspheres can produce a synergistic effect in HIFU ablation, 
which efficiently enhance the therapeutic outcome of HIFU. However, the application of these lipid microbub-
bles is limited due to the instability, friability, and short blood circulation time. Moreover, the size of traditional 
lipid microbubbles (ranging from several to hundreds micrometers) is usually too large to penetrate through the 
barrier between vascular endothelial cells and tumor cells. On the other hand, inorganic nanoparticles are always 
difficult to use in clinical practice because of the toxicity, low biocompatibility, and biodegradability.

Sono-dynamic chemistry therapy (SDT), in which US irradiation is combined with sonosensitizers, could 
cause irreversible damages to tumor cells with US irradiation in certain frequency and intensity to activate the 
internal accumulated sonosensitizers. Hematoporphyrin monomethyl ether (HMME), a porphyrin sonosen-
sitizer amphiphilic to lipid phase and aqueous phase, is characterized by its single form, high yield of singlet 
oxygen, high selectivity, and low toxicity, which has been widely used in the diagnosis and treatment of various 
tumors, including lung cancer, bladder cancer, and nevus flammeus and brain glioma11,12. However, the hydro-
phobicity of HMME makes it easy to assemble in water, leading to low bioavailability and light absorption, which 
limits its application in clinic. On the other hand, poly (lactic-co-glycolic acid) (PLGA) is one of the preferential 
candidates for drug delivery, molecular imaging, and tissue engineering in clinic, which is featured by high stabil-
ity, biocompatibility, biodegradability, and long blood circulation time in vivo. Due to its excellent acoustic prop-
erty, PLGA is commonly used in the preparation of US imaging agents13–15, which has been accredited by FDA 
and formally listed as pharmaceutical excipient into the United States Pharmacopeia. Combination of HMME 
and PLGA would not only overcome the disadvantages of HMME, but also exert synergistic effect to make an 
ideal SDT agent.

As one of the representative biomedical imaging technologies in the 21st century, photoacoustic (PA) imaging16 
provides the tomographic or three-dimensional images of biological tissues or materials with the photoacoustic 
effect. PA imaging could not only achieve high imaging contrast, sensitive to tissue functional properties as opti-
cal imaging, but also create high-resolution images of deep tissues as acoustic imaging. Therefore, PA imaging has 
a good application prospect in the high-resolution imaging of tumor tissues and functions in clinic17. Previous 
studies have shown that, porphyrins can be applied in the photo- and acoustic-dynamic treatment on tumors. In 
comparison with other contrast agents for PA imaging (such as gold and carbon nanomaterials), porphyrins are 
associated with less toxic effects, better biocompatibility, and easy structural modification18,19. Numerous studies 
have demonstrated that the combination of US and sonosensitizers is able to generate free radicals and reactive 
oxygen species (ROS) to destroy tumor cells20,21, exerting potent anti-tumor effect.

Along with the rapid development of molecular imaging technology, imaging contrast agents with single func-
tion and single imaging modality could not meet the increasing demands for diversification and personalization 
in healthcare. In this study, using HMME with excellent imaging and SDT properties together with PLGA as 
film-forming material with great biocompatibility, a multifunctional microcapsule was established. The micro-
capsule integrated the inexpensive, real-time US imaging with excellent PA imaging properties, to offer better 
images for HIFU diagnosis, and to effectively intensify the HIFU treatment as well. Schematic illustration of this 
article is shown in Fig. 1.

Figure 1. Schematic illustration of the microstructure of HMME/PLGA microcapsules and the progress of 
introduction of these microcapsules into HIFU cancer surgery. 
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Results
Characterization of HMME/PLGA microcapsules. SEM imaging indicated that the microcapsules 
exhibited a smooth and uniform spherical morphology (Fig. 2a). TEM indicated the presence of HMME in 
the shells of these microcapsules (Fig. 2b).The HMME/PLGA microcapsules exhibited strong red florescence 

Figure 2. (a) SEM image of HMME/PLGA microcapsule. (b) TEM image of HMME/PLGA microcapsule. 
(c) CLSM image of HMME/PLGA microcapsule. (d,e) Size distributions and zeta potential of HMME/PLGA 
microcapsule. (f) Ultraviolet visible spectrum of HMME and HMME/PLGA microcapsule.
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(Fig. 2c) as detected with CLSM. Moreover, DLS showed that, the average diameter of the HMME/PLGA micro-
capsules was 357 ±  0.72 nm (PDI =  0.932) (Fig. 2d), and the microcapsule surface was negatively charged (zeta 
potential: − 7.89 mV) (Fig. 2e). Furthermore, UV spectrometry showed that the HMME/PLGA microcapsules 
covered a wide absorption wavelength range in the UV visible region, with a strong absorption band at 418 nm 
and four absorption peaks between 500–700 nm (Fig. 2f).

Encapsulation efficiency and drug-loading efficiency of HMME/PLGA microcapsules. Our 
results showed that, the encapsulation efficiency of the HMME/PLGA microcapsules was 58.33 ±  0.95%, and the 
drug-loading efficiency was 4.73 ±  0.15% (w/w).

HMME/PLGA microcapsules in cell toxicity-proliferation test. According previously published find-
ings22, the cell toxicity and proliferation were assessed with the selected parameters (the US irradiation intensity 
of 0.50 w/cm2 and frequency of 1 MHz). The HMME concentration for Groups IV and V was 20 μ g/ml. In the cell 
toxicity experiment, the cell survival rate was significantly decreased along with the prolonging duration of US 
irradiation (Table 1). Meanwhile, at the same time points (Fig. 3a), Group I had the highest cell viability, while 
the cell viability was decreased from Group II to Group V, among which Group V reported the largest reduction, 
followed by Group IV. Groups II and III had no significant difference, and compared with Group I, the difference 
was not significant.

Given that US irradiation would inevitably induce damages in normal cells while killing tumor cells, the cell 
proliferation test was performed with the parameters of 0.50 w/cm2 and 10 s. Optical density (OD) reflects the 
cell proliferation activity. As shown in Fig. 3b, the OD value showed the fastest increasing in Group I, while more 
slowly increasing OD values were observed for Groups II-V. Among these groups, the slowest OD increasing 
value was noted for Group V (P <  0.05), followed by Group IV, while Groups II and III did not show any signifi-
cant difference (P >  0.05).

In vitro and in vivo US and PA dual-modality imaging. The US imaging signals of PBS, PLGA, HMME, 
and HMME/PLGA microcapsules were gradually increased, as indicated by the mean echo intensities (mean DB) 
of the samples. At the same concentration, the HMME/PLGA microcapsules had the strongest echo intensity, 

Time N OD value Survival rate (%)

0 s 10 0.6115 ±  0.0225 100%

10 s 10 0.4190 ±  0.0192* 60.1%

30 s 10 0.3973 ±  0.0132* 55.6%

60 s 10 0.3210 ±  0.0191*,# 39.7%

90 s 10 0.3155 ±  0.0070*,# 38.6%

Table 1.  The effect of ultrasound irradiation on the survival rate of SKOV3 cell at different duration of 
Group V. Values are mean ±  SD. * p <  0.05 vs 0 s. #p <  0.05 vs other groups.

Figure 3. (a) The ultrasound irradiation effect of Groups I-V on the survival rate of SKVO3 cell at 10 s. 
★P <  0.05 vs the other groups, ☆P <  0.05 vs US, US+ PLGA, and control groups. (b) Proliferating activity of 
SKOV3 cells of Groups I-V after the treatment at 12, 24, 36 and 48 h, respectively.
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while PBS had the weakest. The PLGA and HMME did not exhibit significant difference (Fig. 4a). Meanwhile, the 
US signals were increased obviously with the increasing HMME concentrations, and the mean echo intensities had 
significant difference (P <  0.05) (Fig. 4b,c). Next, PA properties of these samples were evaluated. At the same con-
centration, the PA signal of HMME/PLGA microcapsules was stronger than HMME, while PBS and PLGA almost 
had no PA signals (Fig. 4a). Moreover, an obvious linear correlation was observed between the HMME/PLGA  
microcapsule concentration and PA signal (Fig. 4d). Especially, the maximum concentration was associated with 
the strongest PA signal.

Based on the outstanding in vitro PA/US imaging performance, the in vivo imaging performance of HMME/PLGA  
microcapsules was then investigated. The tumor accumulation of the HMME/PLGA microcapsules (total 
dose =  0.2 ml, CHMME =  1.5 mg/ml) after systemic intravenous injection was clearly manifested by US/PA imag-
ing. As shown in Fig. 5c,d, the PA signal intensity was gradually increased at the tumor sites for all the time points, 
while there was very little change in the US signal in the tumor region (Fig. 5a,b).

In vitro and in vivo HIFU exposure. High echoes were acquired in the coagulative necrosis tissues after 
HIFU irradiation. When all the groups were set with the same irradiation parameters (i.e., concentration, acoustic 
power, and irradiation duration), the coagulative necrosis volume and gray scale variation value in the target area 
of the HMME/PLGA microcapsule group (Group IV) were increased greater than all the other groups (P <  0.05) 
(Fig. 6a,b), while the EEF value of Group IV was much smaller than the other groups (see Supplementary Fig. S1).  
For these indicators, Group III ranked between Groups I and II, and no significant difference was observed 
between Groups I and II (P >  0.05).

According to the experimental results and previous studies23, the relatively smaller therapeutic power of 120 w 
and irradiation duration of 5 s were selected. After HIFU irradiation, the tumor tissues in the control group 
(Group I) had no significant gray scale alteration, while different degrees of gray level changes in tumor were 
observed for Groups II to V (Fig. 7a). In comparison with Groups II to IV, Group V reported the greatest gray 
scale change (P <  0.05). Moreover, compared with Groups II and III, Group IV exhibited the greater gray scale 
change (P <  0.05). No significant difference was observed between Groups II and III (P >  0.05). When the abla-
tion volume was compared among these groups (Fig. 7b1–b5), the greatest coagulative necrosis volume was 
observed for Group V, followed by Group IV. No significant difference was observed between Groups II and III, 
and the smallest volume was noted for Group I. The EEF value variation of these groups was similar with the  
in vitro experiment (Fig. 7c).

For the microscopic examination, the tumor cells were neatly arranged, with intact cellular morphology in 
Group I. Severe damages (i.e., nuclear pyknosis, fragmentation, and lysis) were observed, and a mass of substance 
was stained red uniformly, with scattering cell fragments, in Groups V and IV. The damages in Group IV were 

Figure 4. (a) In vitro US/ PA images of the different samples: PBS, PLGA (0.50 mg/ml), HMME (0.50 mg/ml), 
HMME/PLGA microcapsules (CHMME: 0.50 mg/ml). (b) US /PA images and merged images of HMME/PLGA 
microcapsules with different concentrations of HMME. (c,d) The Gray (c) and PA (d) values of the HMME/
PLGA microcapsules with different concentrations of HMME. * P <  0.05 vs the other groups; #P <  0.05 vs the 
0.25 mg/ml group.
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slighter than Group V. In the Groups II and III, injuries with various extents were observed (without qualita-
tive differences), and the tumor tissue damages were slighter and weaker than Groups V and IV (Fig. 8a1–5). 
Immunohistochemical results displayed that, after the HIFU irritation, the expression of PCNA was reduced 
or even absent in the necrotic region, while positive expression was observed in the surrounding normal tis-
sues (Fig. 8b1–5). The results showed that, the PI for the tumors in Group V was significantly lower than the 
other groups (P <  0.05). Significant differences in PI were observed between these groups, besides Groups II and 
III (P <  0.05). The tumor tissue expression in Group I was the highest among these groups (P <  0.05) (Fig. 8e). 
Furthermore, the TUNEL assay was performed to evaluate cellular apoptosis. Similarly to the proliferation exper-
iment, apoptotic cells were observed in all these groups. As shown in Fig. 8c1–5, the AI for the tumor tissue in 
Group V was far higher than the other groups (P <  0.05). Significant AI differences were observed between these 
groups, besides Groups II and III. The tumor tissue expression for Group I was the lowest among all these groups 
(P <  0.05) (Fig. 8f). As visualized by TEM (Fig. 8d1–5), in Group I, the cell structures were normal and clear, 
with intact cell membrane and nuclear membrane and slightly distended mitochondria and endoplasmic retic-
ulum. Cells suffered from the heaviest damages in Group V, where cell structures were destroyed, with broken 
cell membrane and nuclear membrane, cytoplasm loss, decomposed nucleus substance, and missing organelles. 
Damages in Group IV were less severe than Group V, and more severe than Groups II and III. Similar damages 
were observed for Groups II and III, where fractured cell membrane, a small amount of vacuoles in cytoplasm, 
and swelled mitochondria were observed. The outcomes of TEM were consistent with the HE staining.

Discussion
SEM and TEM revealed the basic morphology of the HMME/PLGA microcapsules, as a large number of black 
HMME particles embedded in the PLGA spherical shell. CLSM indicated the HMME/PLGA microcapsules made 
by ourselves have the potential to be used as fluorescent contrast agents, which will be evidenced in subsequent 
experiments. DLS demonstrated that most of the microcapsules were on nanometer grade, which is easy to cross 
the vascular endothelium to enter the tumor tissue. The UV spectrometry suggested that, when embedded in the 
polymer shell, the absorption spectrum of HMME was not significantly changed11. Meanwhile, the absorption 
spectrum of HMME/PLGA microcapsules provided the basis for the calculation of encapsulation efficiency and 
drug-loading efficiency, as well as the choice of excitation wavelength in the following PA imaging. The results 
showed that self-made microcapsules have better encapsulation efficiency and drug-loading efficiency.

In the cell toxicity experiment, the cell survival rate was significantly decreased along with the prolonging 
duration of US irradiation, indicating that the cell viability had a dose-dependent effect with the US irradia-
tion duration under certain conditions. These results suggested that the HMME/PLGA microcapsules showed 
the strongest tumor cell-killing effect. The cell proliferation test results indicated that the HMME/PLGA micro-
capsules performed the best in restraining the proliferation of tumor cells. Compared with HMME alone, the 
HMME/PLGA microcapsules were more capable of killing tumor cells and inhibiting cell proliferation. One 
of the reasons might be that, HMME is associated with better dispersion when wrapped in the microcapsule, 
while HMME alone has worse diffusion, The molecular superposition decreases the molecule activities and 

Figure 5. (a/c) In vivo US/ PA images of tumor tissues at 0, 30, 60, 90,120, and 150 min, respectively, after the 
injection the HMME/PLGA microcapsules. (b,d) The corresponding Gray (b) and PA (d) values of tumor 
tissues after the injection of the HMME/PLGA microcapsules.
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consequently declines the sono-dynamic chemistry effect24. Cavitation effect25 caused by the gas core inside the 
HMME/PLGA microcapsules might be another reason.

In the in vitro experiments, compared with PBS and PLGA, the HMME and HMME/PLGA microcapsules 
were both capable of US/PA imaging. Compared with HMME alone, HMME/PLGA microcapsules performed 
better in the imaging. There would be several reasons for this phenomenon. Firstly, HMME is prone to agglom-
erate in water due to the weak hydrophilicity, which affects its reflectivity to US and absorption of laser energy, 
while the HMME/PLGA microcapsules have better dispersion, leading to better imaging results. Secondly, the gas 
core inside the HMME/PLGA microcapsule can increase the backscattering26,27, thus enhancing the US imaging. 
Thirdly, as previously reported, polymer shell may play a role in intensifying the US imaging of microcapsules28.

The HMME/PLGA microcapsules had excellent PA properties, which could also accumulate in the tumor for 
a long time, providing the possibility that the HIFU treatment for tumor in a more efficient imaging-guided way. 
In comparison, the US imaging of HMME/PLGA microcapsules was not so obvious, which may be related to the 
limited gas cores within the microcapsules. Another explanation might be that, after the intravenous injection 
of the HMME/PLGA microcapsules into the nude mice, the microcapsule shell would be gradually degraded 
to induce collapse. Therefore, only limited intact microcapsules may reach the tumor region, while the released 
HMME would continuously migrate to the tumor region, leading to obvious PA signal while inapparent US signal 
within the tumor. This would be a limitation of this experiment. Further investigations are still needed to improve 
the preparation process of these microcapsules.

Figure 6. (a) The coagulative volume of bovine liver tissue ablated by HIFU with different power (120, 150, and 
180 w, respectively) by injection of PBS, PLGA, HMME, and HMME/PLGA, with the exposure duration of 10 s. 
(b) The gray-scale value change of bovine liver tissue by injection of PBS, PLGA, HMME, and HMME/PLGA.  
* P <  0.05 vs the other groups; #P <  0.05 vs PBS and PLGA groups.
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In the part of the synergism experiment, the synergistic effects of HMME/PLGA microcapsules in the HIFU 
treatment were investigated, concerning the coagulative necrosis volume, the gray scale variation, and EEF value. 
Compared with the control group, under the same condition, the HMME/PLGA microcapsules, together with 
HIFU irradiation, achieved the largest volume of coagulative necrosis in the target area and the greatest gray scale 
alteration, exhibiting the most potent synergistic effect. This phenomenon could be explained by the following 
reason: as previously proven, the combination of US and sonosensitizers exerts great anti-tumor effect in SDT. It 
has been believed by some investigators that the biological function of SDT is based on the cavitation effect25,29. 
In the US irradiation, the sonosensitizer (HMME herein) wrapped in the microcapsules were released and effec-
tively activated, which generates singlet oxygen and other substance with strong oxidative resistance20,21, causing 
tumor cell death or inhibiting tumor cell growth, and increasing the energy deposition by affecting the acoustic 
environment. Moreover, other scholars believe that the tumor cell-killing or inhibiting effects of sonosensitizers 
in SDT are mediated by the thermal effect of US30. Tumor tissues are associated with abundant blood supply 
and slow blood flow. Under US irradiation, HMME/PLGA microcapsules accumulated within the tumor take in 
the ultrasonic energy to heat up tumors. When the temperature reached a certain level, tumor cells or vascular 
endothelial cell would suffer from structural and functional damages, which can lead to thrombosis and eventu-
ally block the blood vessels, contributing to the deposition of HIFU energy. The examinations showed that the 
tumor cells in the target area were damaged with different levels, which strongly supported the conclusion above. 
EEF represents the US energy required to damage the unit volume of tumor tissue. In this study, the smallest EEF 
value was observed for the HMME/PLGA microcapsule group, indicating that the HMME/PLGA microcapsules 
would need the least ultrasonic energy to treat unit lesion volume, with the least possible damage to the organism. 
These findings were consistent to the non-invasive principle of the HIFU treatment, and proved the effectiveness 
of SDT for the HIFU treatment.

In this study, the HMME/PLGA microcapsules were prepared and used as the contrast agent for efficient 
US and PA dual-modality imaging. Sonosensitizer HMME was wrapped in the microcapsules as the synergistic 
agents for HIFU treatment for tumors. The HMME/PLGA microcapsules exhibited excellent contrast-enhanced 
imaging capability for US and PA dual-modality biological imaging, as demonstrated by the in vitro results and 
the results using in vivo tumor models. Importantly, the HMME/PLGA microcapsules had been introduced into 
the non-invasive HIFU treatment for tumors as the synergistic agent to improve the HIFU therapeutic efficiency. 
Therefore, administration of microcapsules containing sonosensitizers might be a potential technique to enhance 
the imaging-guided HIFU treatment for tumors in clinic.

Methods
Preparation of the HMME/PLGA nanocapsules. PLGA microcapsules encapsulating HMME (i.e., 
HMME/PLGA microcapsules) were prepared by the double emulsion (water/oil/water) evaporation method31. 
Briefly, 2 mg HMME (Shanghai D B Chemical Technology Co., Ltd., China) was added into 25 mg PLGA (lac-
tide:glycolide =  50:50; MW =  12000; Daigang, China) dissolved in 2 ml CHCl3. After adding 0.2 ml ddH2O, the 
mixture was emulsified using an ultrasonic probe (Sonics & Materials, Inc., USA) at 80 w for 45 s (w/o). Then, the 
above emulsified solution was poured into 2.5 ml poly(vinyl alcohol) (PVA, MW =  25000, Sigma, USA) solution 

Figure 7. (a) In vivo ultrasound imaging of tumor tissue (red circles) before/ after HIFU ablation: HIFU, 
PBS +  HIFU, PLGA +  HIFU, HMME +  HIFU, and HMME/PLGA +  HIFU. (b1–b5) Ovarian tumors exposed 
to HIFU after TTC staining (yellow arrows): (b1) HIFU, (b2) PBS, (b3) PLGA, (b4) HMME, and (b5) HMME/
PLGA. The necrotic tissues appeared gray, and the non-ablated tumors were stained red. (c) The EEF value of 
the five groups after HIFU ablation in vivo. * P <  0.05.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:31833 | DOI: 10.1038/srep31833

(5% w/v) and homogenized (FJ300-SH, China) within 45 s for the second emulsion (w/o/w). The final emulsion 
was mixed mechanically for 2 h to extract CHCl3. After centrifugation at 5000 rpm for 5 min, the supernatant 
was discarded, and the precipitate was washed with ddH2O. After centrifugation and washing was repeated three 
times, the microcapsules were freeze-dried for 48 h, and the dry samples were filled with perfluorocarbon gas 
(C3F8) and stored. The freeze-dried power would be used after dissolved in ddH2O in the following experiments. 
Blank PLGA microcapsules were prepared using the same procedures, only in absence of HMME.

Characterization of HMME/PLGA microcapsules. Microcapsule morphology and structure were 
characterized with the scanning electron microscopy (SEM, Hitachi S-3400N, Japan) and transmission electron 
microscopy (TEM, Hitachi H-7600, Japan), respectively. Fluorescence was detected with confocal laser scanning 
microscopy (CLSM, Leica TCS‐SP2, German), and the size distribution and zeta potential were determined using 
a Malvern Zetasizer Nano ZS (Malvern Instruments, UK). Absorption spectrum of microcapsules was detected 
with a Lambda 950 ultraviolet spectrophotometer (PerkinElmer Lambda 950, USA).

Encapsulation efficiency and drug-loading efficiency of HMME/PLGA microcapsules.  
Encapsulation efficiency and drug-loading efficiency of the HMME/PLGA microcapsules were determined using 

Figure 8. (a1–a5) HE staining of the tumor tissues (400×  magnification). (b1–b5, c1–c5) PCNA and TUNEL 
staining of the tumor tissues (400 ×  magnification). (d1–d5) TEM analysis of the tumor tissues [4000 ×  (d1,d3), 
6000 ×  (d2,d5), and 8000 ×  (d4) magnification]. (e,f) PI of PCNA and AI of TUNEL in different groups after 
HIFU ablation. * P <  0.05.
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the ultraviolet (UV) spectrophotometric method. The encapsulation efficiency and drug-loading efficiency were 
calculated using the following formulations32–35: Encapsulation efficiency (EE):(EE%) =  (Wi/Ct) ×  100%, and 
Loading efficiency (LE):(LE%) =  (Wi/WT) ×  100%, where Wi was the total drug amount in the HMME/PLGA 
microcapsules, Ct was the total weight of HMME used in the microcapsule preparation, and WT was the total 
weight of HMME/PLGA microcapsules.

Cell line and cell culture. Ovarian cancer cell line SKOV3 was obtained from the Chongqing Key Laboratory 
of Ultrasound Molecular Imaging of Chongqing Medical University. Cells were cultured with complete RPMI 
medium (Shanghai source leaf Biological Technology Co., Ltd., China), supplemented with 100 mg/ml penicillin 
(Nanjing Oddo foni Biology Technology Co. Ltd., China), 100 mg/ml streptomycin (North China Pharmaceutical 
Limited by Share Ltd., China), and 10% fetal bovine serum (Shanghai Chuan Xiang Biological Technology Co., 
Ltd., China) in a 37 °C, 5% CO2 incubator.

Animals and model establishment. Totally 60 Female BALB/c nude mice (strain nu/nu), 4–6 weeks old, 
weighing 15–22 g, were purchased from the Experimental Animal Center of Chongqing Medical University. All 
animal experimental protocols were reviewed and approved by the Chongqing Medical University Animal Care 
Committee. The methods were carried out in accordance with the approved guidelines. The mice were housed 
under a constant temperature and humidity condition. For the tumor model establishment, each nude mouse was 
subcutaneously inoculated with 1 ×  106 SKOV3 cells in 100 μ l serum-free RPMI-1640 medium, in the right flank.

Cell toxicity-proliferation test. SKOV3 cells in the logarithmic phase were used to make cell suspension 
of 5 ×  104 cells/ml. These cells were randomly divided into the following groups: the control group (Group I), the 
group subjected to US (US; Group II), the group treated with PLGA subjected to US (PLGA+ US; Group III),  
the group treated with 20 μ g/ml HMME subjected to US (HMME+ US; Group IV), and the group treated with 
HMME (20 μ g/ml)/PLGA microcapsules subjected to US (HMME/PLGA+ US; Group V). 2 ml cell suspension 
from Groups II-V, respectively, was added into a 50-ml centrifuge tube with an acoustic passing film bottom. 
These cells were subjected to irradiation with the CGZZ US gene transfection apparatus (Chongqing Haifu 
Medical Technology Co., Ltd., China) from the bottom, at the intensity of 0.50 w/cm2 and frequency of 1 MHz, 
for 10, 30, 60, and 90 s, respectively. The control group (Group I) received no treatment. After the US irradiation, 
100 μ l cell suspension was planted onto a 96-well culture plate. 10 μ l CCK-8 reagent (Yiyuan Biotechnology Co., 
Ltd., China) was added into each well to incubate the cells at 37 °C for 3–4 h. The optical density (OD) at 490 nm 
was read with the EL ×  800 Universal Microplate Reader (Bio-Tek Instrument Inc., USA). Experiments were 
repeated three times. Cell viability rate was calculated according to the following formation: Cell viability rate 
(%) =  (ODtreatment− ODblank/ODcontrol− ODblank) ×  100%.

Based on results from the above experiments, irradiation duration was set as 10 s, with the same US irradia-
tion parameters and HMME concentrations. After treatments, cell suspension was planted onto another 96-well 
culture plate, and incubated for 12, 24, 36, and 48 h, respectively. After incubated with the CCK-8 reagent, OD at 
490 nm was read. Experiments were repeated three times.

In vitro US and PA dual-modality imaging. US imaging was assessed with the gel mold having holes 
(2 cm in depth) on the edge. The holes were filled with PBS, PLGA, HMME, and HMME/PLGA microcapsules 
with different HMME concentrations (0.25, 0.50, and 1.00 mg/ml) to obtain the US imaging results of these sam-
ples. All images were acquired using a 21 MHz linear-array ultrasound transducer (VIVO 2100; FUJIFILM Visual 
Sonics, Inc., Canada) with the conventional B mode, with the same instrument parameters. Mean echo intensity 
(Mean DB) was calculated by the DFY software (Institute of Ultrasound Imaging of Chongqing Medical Sciences, 
China). For the in vitro PA imaging, PBS, PLGA, HMME, and HMME/PLGA microcapsules were subjected to 
the laser exposure at 690 nm for about 3 min, and the PA intensity variation was observed using the VEVO LASR 
PA imaging system. Experiments were repeated three times.

In vivo US and PA dual-modality imaging. In vivo US and PA dual-modality imaging was performed 
about one month after cell inoculation, when the tumor sizes reached 8–10 mm. To investigate the enhancing 
effect of HMME/PLGA microcapsules on US and PA imaging, totally 10 mice with detectable ovarian cancer 
were anesthetized, and intravenously injected with 0.2 ml HMME/PLGA microcapsule solution (the HMME 
concentration was 1.50 mg/ml), followed by the laser exposure at 690 nm. For 5 mice, PA imaging for tumors 
was performed at 0, 30, 60, 90, 120, and 150 min after irradiation. Corresponding US images were recorded 
at corresponding time points for the other 5 mice. PA average value and US average gray scale of the tumors 
were detected using the VEVO LASR PA imaging system and the DFY software, respectively. Experiments were 
repeated three times.

In vitro HIFU exposure. In vitro HIFU exposure was performed according to following protocols. Fresh 
bovine (Chongqing Jiangbei cattle and sheep Muslim Market, China) (10 cm ×  10 cm ×  8 cm) was placed in 
a container immersed in degassed water after warming. The sample was divided into the following groups: 
PBS (Group I), PLGA (Group II), HMME (Group III), and HMME/PLGA microcapsule (Group IV) groups 
(CHMME =  1.50 mg/ml). HIFU ablation was performed with single irradiation, with output acoustic powers of 
120, 150, and 180 w, respectively. For each output acoustic power, the treatment duration was set as 3, 5, and 10 s, 
respectively. Gray scale values were recorded in the ablation areas before and after ablation, using the Gray Val 
1.0 software (Chongqing Haifu Medical Technology Co., Ltd., China). After irradiation, the coagulative necro-
sis volume (V) and energy efficiency factor (EEF) were calculated according to the following formulations: V 
(mm3) =  (π /6) ×  length ×  width ×  depth; EEF (J/mm3) =  η Pt/V36, where η  was the focusing coefficient of HIFU 
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transducer (in this instrument η  was set as 0.7), P (W) was the total acoustic power of HIFU, and t (s) was the 
total treatment time. EEF represents the US energy required to damage the unit volume of tumor or other lesions.

In vivo HIFU exposure. About 30 days after the tumor inoculation, 50 nude mice bearing xenograft tumors 
were randomly divided into the control (Group I), PBS (Group II), PLGA (Group III), HMME (Group IV), and 
HMME/PLGA microcapsule (Group V) groups. Nude mice were anesthetized just before ablation. Group I only 
received HIFU ablation. For Groups II-V, the nude mice received injection of 200 μ l PBS, PLGA, HMME, and 
HMME/PLGA microcapsule (CHMME =  1.50 mg/ml), respectively, at the tumor sites, which were massaged for 
3 min before HIFU exposure. The nude mice were placed on the HIFU treatment bed in a prone position, with 
the tumor sites completely immersed in degassed water. For all the five groups, each tumor was destroyed by 
one single exposure37, with the acoustic power at 120 w and exposure duration for 5 s. During HIFU treatment, 
the ablation effects were assessed using diagnostic ultrasonic imaging in real time. The gray scale values of the 
targeted areas before and after ablation were recorded and compared by the Gray Val 1.0 software affiliated to the 
HIFU equipment.

Histopathological detection. At 1 h after treatment and detection, the nude mice were anesthetized and 
the tumors were removed immediately. After sectioned into slices, the maximal section of necrotic tumor tissue 
was selected for staining with TTC solution for 30 min. Histopathological analysis was performed for the ablated 
and the surrounding tissues from each tumor with the hematoxylin and eosin (HE) staining.

Immunohistochemisty. Cell proliferation and apoptosis process in the target tissue were detected with 
the proliferating cell nuclear antigen (PCNA) and TdT-mediated dUTP nick end labeling (TUNEL) methods. 
Proliferating index (PI) and apoptotic index (AI) were expressed as the ratio of positively stained tumor cells out 
of the total cells, which were determined from 5 random fields at 400×  magnification. Target tissues were sam-
pled by glutaraldehyde to observe the ultrastructural changes with TEM. The volume of coagulative necrosis and 
EEF in the target area were calculated as mentioned above.

Statistical analysis. Data were expressed as mean ±  SD. One way ANOVA was performed for multiple 
comparison, and student’s t-test were used for intergroup comparison. P <  0.05 was considered as statistically 
significant.
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