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Abstract

Quantifying motor and cortical responses to perturbations during seated locomotor tasks such as 

recumbent stepping and cycling will expand and improve the understanding of locomotor 

adaptation processes beyond just perturbed gait. Using a perturbed recumbent stepping protocol, 

we hypothesized motor errors and anterior cingulate activity would decrease with time, and 

perturbation timing would influence electrocortical elicitation. Young adults (n = 17) completed 

four 10-minute arms and legs stepping tasks, with perturbations applied at every left or right leg 

extension-onset or mid-extension. A random no-perturbation “catch” stride occurred in every five 

perturbed strides. We instructed subjects to follow a pacing cue and to step smoothly, and we 

quantified temporal and spatial motor errors. We used high-density electroencephalographyto 

estimate sources of electrocortical fluctuations shared among >70% of subjects. Temporal and 

spatial errors did not decrease from early to late for either perturbed or catch strides. Interestingly, 

spatial errors post-perturbation did not return to pre-perturbation levels, suggesting use-dependent 

learning occurred. Theta (3–8 Hz) synchronization in the anterior cingulate cortex and left and 

right supplementary motor areas (SMA) emerged near the perturbation event, and extension-onset 

perturbations elicited greater theta-band power than mid-extension perturbations. Even though 

motor errors did not adapt, anterior cingulate theta synchronization decreased from early to late 

perturbed strides, but only during the right-side tasks. Additionally, SMA mainly demonstrated 

specialized, not contralateral, lateralization. Overall, seated locomotor perturbations produced 

differential theta-band responses in the anterior cingulate and SMAs, suggesting that tuning 

perturbation parameters, e.g., timing, can potentially modify electrocortical responses.
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I. Introduction

PERTURBING locomotion often produces error-driven adaptation where subjects adjust 

their locomotor patterns to reduce errors, but these adjustments revert to the unperturbed 

patterns after the perturbations are removed (i.e. wash-out) [1]. When subjects are re-

exposed to the same perturbations or exposed to new perturbations, they adapt faster and 

may also modify unperturbed locomotor patterns [2]. However, these modifications may not 

transfer across lower limbs according to a split-belt walking study [3]. Despite the wash-out 

often seen with error-driven adaptation, split-crank cycling and split-belt walking can result 

in retained post-perturbation modifications if the modifications were not the direct task goals 

[4], [5]. For example, after cycling with different crank angles, subjects had perturbation-

specific muscle activation patterns which did not wash-out post-perturbation [4]. These 

locomotor behaviors indicate that perturbations indeed modify locomotor responses beyond 

the perturbation period and that tuning perturbation features could modulate locomotor 

responses. Determining motor and cortical responses to different perturbations during a 

variety of locomotor tasks, beyond just walking, could greatly improve the understanding of 

locomotor adaptation processes.

Advancements in brain imaging technologies such as high-density electroencephalography 

(EEG), functional magnetic resonance imaging, and positron emission tomography have 

helped researchers identify supra-spinal correlates of locomotion [6]–[8]. The anterior 

cingulate cortex theta (3–8 Hz) power increases significantly during double-support in 

walking and during extension-onset in recumbent stepping [9], [10]. These studies suggest 

that the anterior cingulate activity may be monitoring more demanding locomotion phases. 

The supplementary motor area (SMA) has similar theta power fluctuations during walking, 

cycling, and recumbent stepping [6], [10], [11]. In general, the SMA and the motor cortex 

exhibit substantial alpha-beta (8–30 Hz) fluctuations during walking, with decreased alpha-

beta power indicating active processing in the motor cortex [12].

The anterior cingulate cortex and SMA also both strongly respond to perturbations during 

walking and standing. Previous studies on split-belt walking, perturbed beam walking, 

walking over obstacles, and perturbed stepping reported perturbation-elicited activity of 

anterior cingulate, SMA, or in both areas [8], [9], [13]–[16]. The anterior cingulate cortex 

(or the equivalent mid-prefrontal cortex in the EEG channel studies) activity is often 

associated with error monitoring or motor learning, while SMA activity is associated with 

sensorimotor integration [15], [17], [18]. If the anterior cingulate cortex has an error 

monitoring function, we expect that the activity would scale with the error size [19]. If the 

anterior cingulate has a role in motor learning, we expect the activity would decrease with 

more perturbation experience. Previous studies on walking over obstacles and perturbed 

standing did not observe decreased anterior cingulate activity with more experience [13], 

[20]. On the other hand, a recent study reported scaling of central midline EEG signals at the 
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Cz electrode with balance performance during a perturbed standing task [21]. However, all 

three studies had insufficient spatial resolution to determine confidently whether the 

electrocortical dynamics were from a single functional cortical area.

The purpose of this study was to determine the electrocortical signatures of motor responses 

to perturbations during a seated locomotor task. Adding perturbations during seated 

locomotor tasks such as recumbent stepping, which likely shares neural control with walking 

[22], [23] could provide an alternative option for gait rehabilitation since subjects do not 

need to maintain their balance. Using our motorized recumbent stepper [24], we applied 

discrete mechanical perturbations during each stride and also had intermittent no-

perturbation “catch” strides. The catch strides could probe whether subjects were updating 

anticipatory motor control strategies.

We had four hypotheses. The first hypothesis was that perturbations would initially create 

motor errors and increase anterior cingulate theta power near the perturbation event. As 

subjects gained more experience with perturbations, motor errors, and anterior cingulate 

theta power would decrease. The second hypothesis was that motor errors during the no-

perturbation catch strides would increase the more subjects expected to encounter 

perturbations and that anterior cingulate spectral fluctuations would decrease in the later 

catches. The third hypothesis was that mid-extension perturbations, when the limbs were 

moving the fastest, would produce more significant errors and anterior cingulate theta power 

than extension-onset perturbations. We also expected to identify activity of the left and right 

motor cortices [10], [11] and hypothesized that spectral power fluctuations of the left and 

right motor cortices in response to the perturbations would be lateralized.

II. Methods

Subjects (n = 17, 11 females, age 25 ± 4.9 years) performed perturbed arm-leg stepping on a 

one degree-of-freedom recumbent stepper (TRS 4000; NuStep, Inc., Ann Arbor, MI) 

integrated with a servomotor (Kollmorgen, Radford, VA), described in [24] (Figure 1a). The 

mechanically coupled left handle and right pedal move together out of phase with the 

mechanically coupled right handle and left pedal. As such, subjects could use any 

combination of their arms and legs to drive the stepper.

A. Experiment Procedure and Motor Errors

The Institutional Review Board of the University of Central Florida approved the protocol 

and consent form, and the study was conducted per the principles stated in the Declaration 

of Helsinki. All subjects gave their written informed consent before starting the experiment. 

Subjects were all right-handed, based on the hand they would use to pick an object from the 

floor. Subjects self-reported no prior neurological or musculoskeletal problems in the past 

two years before the data collection date.

We recorded EEG using a 128-electrode EEG system (ActiveTwo, BioSemi B.V., 

Amsterdam, the Netherlands). After placing the EEG cap on the subject’s head according to 

the BioSemi guidelines, we digitized the electrodes and fiducial locations using an infrared 

3D scanner (Structure Sensor, Occipital Inc., Boulder, CO). We ensured that the resistance 
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between the scalp and each electrode was <20 Ohms, indicating good contact between the 

electrodes and the scalp. We restrained cable movement using a cable holder behind the 

subject’s head and instructed subjects to keep their head steady to reduce EEG cable sway 

artifacts [25]. We strapped subjects’ feet to the pedals after they sat on the stepper seat. We 

also adjusted the handles to ensure that subjects were comfortable using the handles to drive 

the stepper.

The stepper’s servomotor perturbed the stepping motion with brief 200 ms increases in 

resistance at either the onset or middle of extension of the target (left or right) leg during the 

stepping stride (Figure 1b). The increased resistance magnitude during a perturbation 

required 3x the torque to maintain the stepping pace of 60 steps per minute. In total, there 

were four perturbation types (left/right leg * mid-extension/extension onset). A pacing cue 

equal to 60 steps per minute (=30 strides per minute) was provided on a visual display to 

help subjects maintain similar stepping speeds during and across tasks.

EEG was recorded at 512 Hz using the BioSemi software program, and the stepping 

kinematics were recorded using the servomotor’s encoder at 100 Hz in the stepper program. 

When the stepper program began and ended, a trigger signal was sent to start and stop the 

EEG recording to synchronize the data.

1) Data Collection: The data collection began with two minutes of quiet sitting, during 

which the pacing cues were shown as EEG was recorded. After completing this quiet sitting 

portion, subjects completed four 10-minute perturbed stepping tasks in a pseudo-randomized 

order. Each task only included one perturbation type. For each task, there were three ordered 

blocks: 1) pre: two minutes of unperturbed stepping, 2) perturbed stepping: six minutes of 

a single perturbation timing, and 3) post: two minutes of unperturbed stepping (Figure 1c). 

There were no pauses between blocks. In addition to perturbed strides, the perturbed 

stepping block included random one-in-five “catch” strides where no perturbation was 

applied. In this paper, we use pre and pre-perturbation and post and post-perturbation 

interchangeably. There was two minutes of quiet sitting at the end of the data collection.

Before starting each task, we instructed subjects to A) step smoothly as if they were 

walking, B) use both their arms and legs to drive the stepping motion, and C) follow the 

pacing cues that were projected in front of them (Figure 1a). We did not instruct subjects on 

how to follow the pacing cues as there are several options, such as having a leg be at full 

extension when the rectangle on the same side as the leg was black. Subjects also received 

no explicit feedback on whether they were stepping faster or slower than the pacing cue. 

Subjects were given at least two minutes of practice with the pacing cues before starting the 

data collection.

2) Stride Events: After importing stepping data into MATLAB (R2018b, MathWorks 

Inc., Natick, MA), we separated each task into blocks and strides. We defined the strides as 

the time from one extension-onset of the perturbed leg to the next extension-onset of the 

perturbed leg. We excluded any incomplete strides. For each stride, we identified the 

following events: perturbed-step extension onset, perturbation (start time), recovery-step 

extension onset, and the end of the stride. We artificially added perturbation events to the 
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unperturbed strides (i.e., pre, post, and catch strides), equal to the average latency of the 

perturbation events.

3) Motor Errors: We quantified a temporal (pacing) error and a spatial (stepping) error, 

from the stepping kinematics (Figure 2). In our tasks, subjects should have completed a 

stride in two seconds based on the 60 steps-per-minute pacing cues. We defined temporal 

error as the stepping duration error, which was the difference between each stride duration 

and the two seconds (Figure 2a). Since we instructed subjects to step smoothly, we expected 

the stepping profiles to be smooth and rhythmic during the pre-perturbation block. We 

defined spatial error as a stepping position error, which was the maximum difference 

between the time-normalized stepper position profile during each stride and the averaged 

pre-perturbation stepping profile (Figure 2b). We used the servomotor encoder data to 

quantify the angular stepping position around the stepper’s common rotating axis (Figure 

1a).

B. EEG Processing

EEG data were analyzed in MATLAB (R2018b, MathWorks Inc., Natick, MA) using a 

customized pipeline based on EEGLAB (version 2019.0) functions [26] (Figure 3). We used 

a high-pass filter at 1 Hz and a 60 Hz line-noise filter (CleanLine) to minimally clean the 

raw data [27], [28]. We imported stride events from the synchronized stepping data and 

concatenated data from all tasks into a single file. We then used a template correlation 

rejection method to identify and exclude channels with large cyclic artifacts [29].

We developed and used a novel step-wise channel and frame rejection algorithm to reject 

channels and data frames that still contained considerable noise (Figure 3). We removed the 

researcher’s need to set single thresholds for the channel and frame rejection steps. Instead, 

the step-wise algorithm identified a suite of thresholds, from lenient to conservative, that 

created 32 separate datasets with different rejection levels for each participant (8 steps for 

channel rejection * 4 steps for data-frame rejection = 32 datasets). Channel rejection metrics 

were the signal range, standard deviation, kurtosis, and correlation to the other channels. 

Frame rejection involved finding periods of the EEG data with a significantly higher signal 

variability than the overall median of signal variability. While the number of the rejected 

channels and frames varied for each participant and increment, we set the rejection 

thresholds such that the most conservative increment always retained > 85 channels and > 

80% of data.

We used independent component analysis (ICA), the dipolar source estimation technique 

(DIPFIT), and a multi-variate source classifier (ICLabel) on each step-wise dataset to 

identify and locate the sources that contributed to the EEG signals. We specifically used the 

adaptive mixture independent component analysis (AMICA) to separate the EEG into 

temporally independent components [30]. To select the best increment from the 32 step-wise 

datasets, we first estimated the source locations for each dataset’s independent components 

using EEGLAB’s DIPFIT version 3.0. We then excluded any source located outside the 

brain or with the residual variance > 15%. We then used EEGLAB’s ICLabel toolbox to 

classify the source types as “brain” or “non-brain” [31] and selected the step-wise dataset 
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with the topmost “brain” sources as the representative dataset for each subject. We visually 

checked the results of the ICLabel for the selected dataset to confirm the classification of the 

sources as “brain” (or “non-brain”).

We then clustered the sources across all subjects based on the source location, power 

spectrum, and scalp map. We divided the power spectrum and scalp map into ten bins. The 

binned power spectrum was from 3 to 25 Hz. The Laplacian of the scalp map was used for 

clustering [32]. We developed and used a novel optimal k-means approach to determine the 

number of clusters from a range of possible numbers of clusters provided to the algorithm 

(here, from 15 to 30 clusters). The optimal k-means approach uses MATLAB’s “evalcluster” 

function to find the specific number of clusters that maximize the similarity of the sources 

within each cluster. We kept and analyzed only the clusters that contained components from 

more than 70% of the subjects. If a subject had multiple sources in a cluster, we only kept 

the source with the largest channel data variance. We identified Brodmann Areas and 

cortical cortices of the sources and cluster centroids using Talairach coordinates and 

talairach.org [33], [34].

We computed the time-frequency spectral power of each source in the cluster across the 

stride epochs, known as event-related spectral perturbations (ERSP) [35]. For hypotheses 1, 

2, and 4, each epoch was a stride, and for hypothesis 3, each epoch was −400 ms to +400 ms 

of the perturbation event. We padded the epochs by 700 ms to avoid possible edge effects. 

Next, we baseline-normalized the spectral power based on the pre-perturbation block’s 

average spectral power and computed the ensembled average ERSPs across subjects. We 

determined the significant event-related synchronization and event-related desynchronization 

across the ERSPs using EEGLAB’s bootstrapping method with alpha set at 0.05 [36]. ERSP 

images only show significant spectral fluctuations.

C. Statistical Analysis

1) Identification of Motor Responses: We tested the temporal and spatial errors to 

determine the error behavior. For each subject, we divided their strides into 20% batches in 

the pre and post blocks and 10% batches in the perturbed-stepping block [37]. We compared 

the average of the first and last batches of perturbed strides, catch strides, and post-

perturbations strides, as well as the last batch of pre-perturbation strides using repeated-

measure analysis of variance (rANOVA) for each error and task. If the rANOVA was 

significant, we performed a priori Fisher’s Least Significant Difference (LSD) tests for the 

following pairs: 1) late pre vs. late post (for sustained post modifications and wash-out), 2) 

early vs. late post (for wash-out), 3) early vs. late catch (for adaptation), and 4) early vs. late 

perturbed (for adaptation). The significance level for all statistical tests was 0.05.

2) Tests for Hypotheses 1 and 2: Adaptation of Motor and Cortical 
Responses: We compared motor errors and electrocortical dynamics between the early 

(first 33% of the strides) and late (last 33% of the strides) in the perturbed stepping block. 

Here, we used 33% of the strides as early or late to retain at least 10 strides per subject (total 

perturbed strides≈140–150, total catch strides≈30–40) for EEG group-level analyses [35], 

[36]. We tested motor errors for the perturbed and catch strides separately and used 
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rANOVA with three factors: 1) adaptation with two levels: early and late, 2) task side with 

two levels: left and right, and 3) perturbation timing also with two levels: mid-extension and 

extension-onset. We performed post-hoc Student paired t-tests only if the adaptation had a 

significant main effect because adaptation was the only factor pertinent to our first two 

hypotheses. To compare the electrocortical responses between early and late perturbed 

strides and early and late catch strides, we computed the spectral fluctuations and averaged 

the spectral powers to derive the theta-band (3–8 Hz) ERSP waveform [36], [38]. We 

compared the early and late theta-band average ERSP waveforms using bootstrapped paired 

t-tests and false discovery rate corrections for multiple comparisons with EEGLAB’s 

“statcond” and “fdr” functions. We also determined meaningful spectral-power increases or 

decreases of the theta-band by determining when the power confidence interval was greater 

or less than zero. We excluded other frequency bands because preliminary analyses showed 

the main spectral fluctuations were limited to theta. The significance level for all statistical 

tests was 0.05.

3) Tests for Hypothesis 3: Effect of Perturbation Timing: We included all 

perturbed strides to quantify possible motor and electrocortical differences between 

perturbation timings, i.e., mid-extension and extension onset. For each motor error, we used 

rANOVA with two factors: 1) perturbation timing with two levels: mid-extension and 

extension-onset, and 2) task side also with two levels: left and right. We only performed a 

post-hoc Student paired t-test between the same side tasks if there was a significant 

perturbation timing effect. We compared the ERSPs centered around the perturbation event 

for left-side tasks (i.e., left mid-extension and left extension-onset) and right-side tasks 

separately. Similar to the tests for hypotheses 1 and 2, we used bootstrapped paired t-tests 

with corrections for multiple comparisons to compare the theta-band average ERSP between 

the tasks and determined meaningful spectral-power increases or decreases when the power 

confidence interval cleared zero. All statistical tests had 0.05 significance level.

4) Tests for Hypothesis 4, Motor Cortex Lateralization: We compared spectral 

fluctuations of the cortical clusters during the left and right-side tasks to investigate 

contralateral and specialized lateralization of the motor cortex. Hemispheric activity that 

corresponds to contralateral limb movements is contralateral lateralization whereas 

hemispheric activity that corresponds with ipsilateral limb movements is specialized 

lateralization [39]. All perturbed and catch strides were included in this analysis.

III. Results

A. Motor Error Responses and Cortical Clusters

Temporal (pacing) and spatial (stepping) errors did not decrease with more exposure to 

perturbations, and spatial errors did not wash-out (Figure 4). Perturbed-stride temporal 

errors were ~50 ms but catch-stride temporal errors were ~200 ms (Figure 4a). The 

rANOVAs indicated significant temporal error differences in each task (F’s(6,96)>40, 

p’s<0.0005). Post-hoc LSD showed a slight temporal error increase during left and right 

extension-onset perturbed strides and a temporal error decrease during right extension-onset 

strides post-perturbation. Spatial errors of perturbed strides were steady, ~12° for mid-
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extension and ~16° for the extension-onset (Figure 4b). During the mid-extension tasks, 

catch-stride spatial errors seemed a continuation of pre-perturbation errors at ~5° but trended 

to ~10° by the end of the catch strides. rANOVAs were significant for the spatial errors 

across all tasks (F’s(6,96)>29, p’s<0.0005). Spatial errors did not wash-out (i.e., return to 

pre) during post-perturbation (post-hoc LSD p’s<0.05). However, post-perturbation spatial 

errors in the right-side tasks decreased from the first to last batch (LSD p’s<0.05).

The optimal k-means identified five cortical clusters (Figure 5). We focused on three clusters 

located at the anterior cingulate cortex (14 subjects), left SMA (13 subjects), and right SMA 

(13 subjects). Cluster locations were assigned to the nearest Brodmann areas based on the 

Talairach coordinates of the cluster centroid [34]. As the SMA and premotor cortex share 

Brodmann area 6, we further confirmed the SMA cluster locations from a previous fMRI 

and PET meta-analysis [40]. The left and right SMA were determined based on the cluster’s 

centroid location and the individual source locations.

B. Anterior Cingulate Theta-Band Adaptation Occurred Without Motor Error Adaptation in 
Perturbed Strides

Motor errors of the perturbed strides did not decrease from early to late, but anterior 

cingulate theta-band spectral power decreased in the right-side tasks (Figure 6a–c). Neither 

adaptation nor task side had a significant effect on the perturbed strides (rANOVA, temporal 

adaptation: F(1,16) = 0.74, p = 0.789, temporal side: F(1,16) = 0.74, p = 0.789, spatial 

adaptation: F(1,16) = 2.98, p = 0.104, spatial side: F(1,16) 0.71, p = 0.413). Mid-extension 

perturbed strides had significantly greater average temporal errors (71 vs. 39 ms) but smaller 

spatial errors (12° vs. 16°) than the extension-onset perturbed strides (rANOVA, temporal: 

F(1,16) = 461, p<0.0005, spatial: F(1,16) = 30.6, p<0.0005). Perturbations elicited anterior 

cingulate theta synchronization during all tasks (Figure 6b). Theta spectral power decreased 

from early to late for right-side perturbed strides. The left-side perturbed strides, however, 

had similar and sometimes stronger theta synchronization during late strides than the early 

strides. The anterior cingulate cortex also showed theta desynchronization in the recovery 

steps (i.e., the unperturbed steps after perturbed steps), specifically for the early right-side 

and late left-side perturbations. The theta-band average ERSP bootstrap t-tests revealed that 

spectral power had a decreasing trend from early to late for the right-side tasks, which was 

significant for right mid-extension perturbations (Figure 6c). In the left-side perturbed 

strides, late synchronizations during the recovery steps were statistically different from the 

non-significant spectral fluctuations during early recovery steps.

C. Anterior Cingulate Theta-Band Adaptation Occurred Without Motor Error Adaptation in 
Catch Strides

Motor errors did not increase from early to late catch strides, but early catch strides still 

elicited theta synchronization in the anterior cingulate cortex (Figure 6d–f). Similar to the 

perturbed strides, neither adaptation nor task side had a significant effect on the temporal or 

spatial motor errors (rANOVA, temporal-adaptation: F(1,16) = 3.76, p = 0.070, temporal-side: 

F(1,16) = 1.65, p = 0.217, spatial-adaptation: F(1,16) = 1.43, p = 0.25, spatial-side: F(1,16) = 

0.70, p = 0.415). Mid-extension catch strides had significantly greater average temporal (250 

vs. 153 ms) and spatial errors (8° vs. 6°) than the extension-onset catch strides (rANOVA, 
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temporal: F(1,16) = 31.9, p<0.0005, spatial: F(1,16) = 24.4, p<0.0005). Early catch steps 

elicited anterior cingulate theta synchronization (Figure 6e). This synchronization occurred 

before completion of the catch-step extension for the mid-extension tasks but was near the 

start of the catch step for just the right extension-onset catch strides. The left mid-extension 

and right extension-onset elicited theta desynchronization in the recovery steps (Figure 6e–

f). For right extension-onset, the recovery steps of the late catch strides elicited significantly 

greater spectral power than the early catch strides.

D. Perturbations at Extension-Onset had Greater Theta-Band ERSP in Motor Cortices 
Than at Mid-Extension

Group analyses including all perturbed strides revealed differential motor error and cortical 

responses based on perturbation timing (Figure 7). Comparing motor errors across all 

perturbed strides revealed that perturbation timing, and not the task side, was a significant 

factor (rANOVA, temporal timing: F(1,16) = 30.5, p<0.0005, temporal side: F(1,16) = 2.24, p 

= 0.15, spatial timing: F(1,16) = 27.5, p<0.0005, spatial side: F(1,16) = 0.25, p = 0.62) (Figure 

7a–b). For each side, temporal error was significantly greater during mid-extension than 

extension-onset and the spatial error was smaller during mid-extension than extension onset 

(post-hoc paired t-test, temporal right: p<0.0005, temporal left: p = 0.001, spatial right: 

p<0.0005, spatial left: p = 0.001). The extension-onset perturbations elicited a significant 

increase in theta-band ERSP before the perturbation event across the anterior cingulate and 

ipsilateral SMA (Figure 7c). The increased theta-band ERSP for mid-extension perturbations 

was delayed, occurring after the perturbation event in the anterior cingulate and left SMA 

but was about −100 ms before the perturbation event in the right SMA. Only the ipsilateral 

left SMA showed greater extension-onset theta-band ERSP than mid-extension for more 

than 100 ms after the perturbation onset.

E. Cortical Lateralization and Specialization

The left and right SMAs demonstrated both contralateral and task-specific lateralization with 

respect to lower limb extension (Figure 8). The recovery-step desynchronization during the 

perturbed strides was most prominent in the right SMA for extension-onset tasks and in the 

left SMA for the mid-extension tasks, indicating presence of task-specific lateralization 

(Figure 8a, red rectangles). Mid-extension tasks also involved theta desynchronization 

before the perturbation event in both left and right SMAs (Figure 8a, red dashed rectangles). 

Similar recovery-step desynchronization was present in the catch strides but were limited to 

the ipsilateral SMA of the recovery-step leg during extension-onset tasks and to the right 

SMA for mid-extension tasks (Figure 8b, black and red rectangles). Strong theta 

synchronization only occurred in the right SMA for mid-extension catch strides just before 

the end of the catch step (Figure 8b, red dashed rectangles).

IV. Discussion

We quantified motor and electrocortical responses to frequent mechanical perturbations 

during recumbent stepping to gain insight on the electrocortical dynamics of locomotor 

adaptation. We did not observe typical motor error adaptation. Temporal errors were 

consistently ~50ms of the desired pace during perturbed strides and returned to pre-
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perturbation levels in the post block. Spatial errors did not adapt (decrease) with more 

exposure to the perturbations and did not return to pre-perturbation levels in the post block. 

The lack of error-based adaptation behavior coupled with small temporal errors and 

sustained spatial errors in the post block are indicative of use-dependent learning [41]. 

Electrocortical sources in the anterior cingulate cortex and supplementary motor areas 

showed that perturbations elicited theta synchronization, as expected. Despite the lack of 

motor error adaptation, anterior cingulate theta synchronization showed a decreasing trend 

during late perturbed strides in the right-side tasks. Interestingly, theta-band ERSP during 

extension-onset tasks started before the perturbation event, resulting in greater theta 

synchronization in the anterior cingulate and SMAs preceding the perturbation event 

compared to mid-extension tasks. Motor cortex lateralization was mostly task-specific, 

where theta desynchronization occurred during the recovery-step in the right SMA for 

extension-onset tasks but in the left SMA for the mid-extension tasks. These results 

highlight that electrocortical and motor responses are not necessarily coupled and that 

perturbation features such as timing could be tuned to elicit greater involvement of specific 

brain areas.

The perturbed recumbent stepping protocol did not produce the typical error reduction and 

rapid wash-out associated with motor adaptation, but instead, revealed sustained errors 

during the post-perturbation block (Figure 4), suggesting use-dependent learning occurred. 

In preliminary analyses, we compared multiple definitions of early and late to determine the 

robustness of the lack of error-based adaptation in our study. Statistical tests consistently 

showed no significant difference between early and late, except when early was defined as 

just the first stride. When perturbations do not directly hinder achieving the task goal, use-

dependent learning emerges more than error-based adaptation [41]. With use-dependent 

learning, motor behaviors are modified in the direction of perturbation and sustained longer 

after removing the perturbations. Here, we did not provide subjects with any visual feedback 

of their errors or task performance, so, matching the stepping pace with the pacing cues was 

the more explicit task goal. Because subjects matched the pacing cues well with temporal 

errors of ~50 ms, which might be imperceptible for active control adjustments [42], the 

perturbations did not hinder achieving the task goal. For the less explicit goal of stepping 

smoothly, however, spatial errors were sustained during perturbed strides and did not wash 

out during the 2-minute post-perturbation block. During split-crank cycling and split-belt 

walking where changing muscle recruitment was not an explicit task goal, modified 

muscular activation patterns were sustained [4], [5]. More recently, a perturbed walking 

study using brief treadmill belt accelerations during push-off also reported use-dependent 

learning and sustained post-perturbation gait modifications [43]. Longer-lasting locomotor 

modifications are desirable for gait rehabilitation and warrant further development of use-

dependent learning paradigms.

Perturbations during our seated locomotor task elicited significant anterior cingulate theta 

synchronization that also decreased with time (i.e. adapted) for right-side perturbations, 

providing new insights about the anterior cingulate role in error monitoring and motor 

learning. Previous studies have attributed anterior theta synchronization, or the analogous 

negative deflection in event-related potentials, to physical loss of balance or presence of a 

postural threat [15], [44]. Our results demonstrated that even without a potential loss of 
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balance, mechanical perturbations during a seated locomotor task can elicit anterior 

cingulate activity. We also observed a trend of adaptation of anterior cingulate theta 

synchronization for the right-side tasks, which contrasts previous studies that did not 

observe changes in the anterior cingulate cortex with adaptation but acknowledged a lack of 

spatial resolution [13], [20]. Our approach likely had sufficient resolution [34], [45], but we 

observed a trend of anterior cingulate adaptation only in the right-side tasks. Despite 

consistent motor errors during catch strides, only early catch strides elicited theta 

synchronization, suggesting that the anterior cingulate perceived early catches as errors, 

which emphasizes that mechanical perturbations are crucial for anterior cingulate elicitation. 

Overall, the sustained anterior cingulate theta power across all tasks during perturbed 

stepping further supports that the anterior cingulate cortex has a role in error-monitoring. 

However, the theta-band adaptation trend during right-side perturbed stepping suggests that 

the anterior cingulate also has a role in locomotor learning.

Perturbation timing significantly influenced anterior cingulate theta-band power fluctuations 

(Figure 6), suggesting that tuning perturbation features can modify and stimulate anterior 

cingulate activity. The theta-band average ERSP for extension-onset perturbations was 

greater than mid-extension perturbations. This difference may result from an additional 

intrinsic anterior cingulate theta synchronization that occurs during limb transitions in 

unperturbed gait, pedaling, and stepping [6], [7], [9], [10]. However, our results did not show 

significant anterior cingulate activity during pre and post-perturbations strides, partly 

because our analyses and ICA focused on identifying sources involved in perturbed 

stepping. The sustained anterior cingulate theta-band elicitation over the entire six minutes 

of left mid-extension perturbations demonstrates that specific perturbations could be tuned 

to enhance or extend cortical engagement.

We identified two close but distinct SMA clusters that exhibited specialized lateralization 

with both theta synchronization and desynchronization. We were able to identify distinct 

clusters in close proximity using our novel EEG noise rejection process that performs 

algorithmic parameter sweeping to estimate the most brain sources and an optimal k-means 

clustering algorithm to identify optimal cortical clusters (Figure 3). The left and right SMAs 

had clear differences in theta fluctuations (Figure 8), supporting that these SMA clusters 

were distinct and had specialized responses to the perturbations or motor errors. Theta 

synchronization occurred exclusively in the right SMA during mid-extension catch steps that 

had the largest temporal errors (~250 ms), suggesting that despite the lack of a physical 

perturbation, the right motor area theta synchronization was still sensitive to a motor error. 

The right motor and premotor cortices have been linked with monitoring temporal aspects of 

motor tasks [38], [39].

Interestingly, theta desynchronization occurred during the recovery step (i.e., the step 

following a perturbed step) in the right SMA during extension-onset perturbations and in the 

left SMA during mid-extension perturbations (Figure 8). Previous unperturbed gait studies 

showed significant theta desynchronization in sensorimotor cortices during mid-stance, but 

the significance of theta desynchronization specifically is not discussed [6], [7], [9], [10]. A 

recent study demonstrated that theta synchronization and desynchronization corresponds to 

negative and positive deflections in event-related potentials (ERP) of motor cortex, 
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respectively [46]. As such, ERP studies provide additional possible interpretations for 

observed theta synchronization and desynchronization in locomotor tasks. For example, a 

recent study on upper-limb visuomotor perturbations suggested that the presence (or 

absence) of negative and positive potentials during perturbations indicated different motor 

learning strategies [47], which aligns with our results.

Limitations of this study include attributing cortical and motor responses to lower-limb 

extension and focusing on EEG group-level analyses. We attributed the perturbations to the 

action of extending the lower-limb, i.e., left mid-extension perturbation means the 

perturbation occurred in the middle of extending the left-leg. Our stepping torque analysis 

(not reported here) and a previous study showed that during arms and legs recumbent 

stepping, subjects mainly relied on lower-limb extension for higher power demands [48]. 

Ensemble averaging across strides and subjects is necessary for EEG group-level analysis to 

reveal event-locked cortical fluctuations [35], [36]. Previous studies had >60 strides per 

subject for ensemble averaging, inherently increasing their statistical power [15], [38]. We 

had ~10 catch strides and ~50 perturbed strides per subject and yet were still able to observe 

distinct event-locked spectral fluctuations. Further single trial analysis may provide more 

insights into the inter-stride cortical variability [20], [49].

Mechanical perturbations are a robust way to elicit error-related cortical fluctuations and 

could be tuned to further enhance desired cortical activity. During a seated locomotor task, 

mechanical perturbations elicited anterior cingulate cortex activity, which decreased with 

more experience with the right-side perturbations. This supports that the anterior cingulate 

both monitors errors and learns from them [50]. The left and right SMA clusters 

demonstrated task-specific lateralization, suggesting that tuning perturbation features such as 

timing can elicit more desired cortical activity. The uncoupled anterior cingulate activity 

with motor errors and the specialized SMA fluctuations implicate that cortical feedback may 

be crucial for closed-loop rehabilitation because motor changes may not adequately reflect 

cortical dynamics.

Acknowledgments

The work of Helen J. Huang was supported by the National Institute on Aging of NIH under Grant R01AG054621.

References

[1]. Torres-Oviedo G, Vasudevan E, Malone L, and Bastian AJ, “Locomotor adaptation,” Prog. Brain 
Res, vol. 191, pp. 65–74, 1. 2011. [PubMed: 21741544] 

[2]. Leech KA, Roemmich RT, and Bastian AJ, “Creating flexible motor memories in human walking,” 
Sci. Rep, vol. 8, no. 1, p. 94, 1. 2018. [PubMed: 29311681] 

[3]. Choi JT and Bastian AJ, “Adaptation reveals independent control networks for human walking,” 
Nature Neurosci, vol. 10, no. 8, pp. 1055–1062, 8. 2007. [PubMed: 17603479] 

[4]. Alibiglou L and Brown DA, “Relative temporal leading or following position of the contralateral 
limb generates different aftereffects in muscle phasing following adaptation training post-stroke,” 
Exp. Brain Res, vol. 211, no. 1, pp. 37–50, 5 2011. [PubMed: 21523333] 

[5]. MacLellan MJ, Ivanenko YP, Massaad F, Bruijn SM, Duysens J, and Lacquaniti F, “Muscle 
activation patterns are bilaterally linked during split-belt treadmill walking in humans,” J. 
Neurophysiol, vol. 111, no. 8, pp. 1541–1552, 4. 2014. [PubMed: 24478155] 

Shirazi and Huang Page 12

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[6]. Gramann K et al., “Cognition in action: Imaging brain/body dynamics in mobile humans,” Rev. 
Neurosciences, vol. 22, no. 6, pp. 593–608, 1. 2011.

[7]. Enders H, Cortese F, Maurer C, Baltich J, Protzner AB, and Nigg BM, “Changes in cortical 
activity measured with EEG during a high-intensity cycling exercise,” J. Neurophysiol, vol. 115, 
no. 1, pp. 379–388, 1. 2016. [PubMed: 26538604] 

[8]. Hinton DC, Thiel A, Soucy J-P, Bouyer L, and Paquette C, “Adjusting gait step-by-step: Brain 
activation during split-belt treadmill walking,” NeuroImage, vol. 202, 11. 2019, Art. no. 116095.

[9]. Bulea TC, Kim J, Damiano DL, Stanley CJ, and Park H-S, “Prefrontal, posterior parietal and 
sensorimotor network activity underlying speed control during walking,” Frontiers Human 
Neurosci, vol. 9, p. 247, 5 2015.

[10]. Kline JE, Huang HJ, Snyder KL, and Ferris DP, “Cortical spectral activity and connectivity 
during active and viewed arm and leg movement,” Frontiers Neurosci, vol. 10, p. 91, 3. 2016.

[11]. Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Michels L, and Kollias S, “Brain activation 
associated with active and passive lower limb stepping,” Frontiers Hum. Neurosci, vol. 8, p. 828, 
10. 2014.

[12]. Nordin AD, Hairston WD, and Ferris DP, “Faster gait speeds reduce alpha and beta EEG spectral 
power from human sensorimotor cortex,” IEEE Trans. Biomed. Eng, vol. 67, no. 3, pp. 842–853, 
3. 2020. [PubMed: 31199248] 

[13]. Haefeli J, Vögeli S, Michel J, and Dietz V, “Preparation and performance of obstacle steps: 
Interaction between brain and spinal neuronal activity,” Eur. J. Neurosci, vol. 33, no. 2, pp. 338–
348, 1. 2011. [PubMed: 21070395] 

[14]. Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, and Riener R, “Effect of error 
augmentation on brain activation and motor learning of a complex locomotor task,” Frontiers 
Neurosci, vol. 11, p. 526, 9. 2017.

[15]. Peterson SM and Ferris DP, “Differentiation in theta and beta electrocortical activity between 
visual and physical perturbations to walking and standing balance,” eNeuro, vol. 5, no. 4, 7. 
2018.

[16]. Nordin AD, Hairston WD, and Ferris DP, “Human electrocortical dynamics while stepping over 
obstacles,” Sci. Rep, vol. 9, no. 1, p. 4693, 3. 2019. [PubMed: 30886202] 

[17]. Ridderinkhof KR, “The role of the medial frontal cortex in cognitive control,” Science, vol. 306, 
no. 5695, pp. 443–447, 10. 2004. [PubMed: 15486290] 

[18]. Galea JM, Vazquez A, Pasricha N, de Xivry J-JO, and Celnik P, “Dissociating the roles of the 
cerebellum and motor cortex during adaptive learning: The motor cortex retains what the 
cerebellum learns,” Cerebral Cortex, vol. 21, no. 8, pp. 1761–1770, 8. 2011. [PubMed: 
21139077] 

[19]. Arrighi P et al., “EEG theta dynamics within frontal and parietal cortices for error processing 
during reaching movements in a prism adaptation study altering visuo-motor predictive 
planning,” PLoS ONE, vol. 11, no. 3, 3. 2016, Art. no. e0150265.

[20]. Mierau A, Hülsdünker T, and Strüder HK, “Changes in cortical activity associated with adaptive 
behavior during repeated balance perturbation of unpredictable timing,” Frontiers Behav. 
Neurosci, vol. 9, p. 272, 10. 2015.

[21]. Payne AM and Ting LH, “Worse balance is associated with larger perturbation-evoked cortical 
responses in healthy young adults,” Gait Posture, vol. 80, pp. 324–330, 7. 2020. [PubMed: 
32593102] 

[22]. Stoloff RH, Zehr EP, and Ferris DP, “Recumbent stepping has similar but simpler neural control 
compared to walking,” Exp. Brain Res, vol. 178, no. 4, pp. 427–438, 4. 2007. [PubMed: 
17072607] 

[23]. Zehr EP, Balter JE, Ferris DP, Hundza SR, Loadman PM, and Stoloff RH, “Neural regulation of 
rhythmic arm and leg movement is conserved across human locomotor tasks,” J. Physiol, vol. 
582, no. 1, pp. 209–227, 7. 2007. [PubMed: 17463036] 

[24]. Huang HJ and Ferris DP, “Upper and lower limb muscle activation is bidirectionally and 
ipsilaterally coupled,” Med. Sci. Sports Exercise, vol. 41, no. 9, pp. 1778–1789, 9. 2009.

Shirazi and Huang Page 13

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[25]. Symeonidou E-R, Nordin A, Hairston W, and Ferris D, “Effects of cable sway, electrode surface 
area, and electrode mass on electroencephalography signal quality during motion,” Sensors, vol. 
18, no. 4, p. 1073, 4. 2018.

[26]. Delorme A and Makeig S, “EEGLAB: An open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 
9–21, 3. 2004. [PubMed: 15102499] 

[27]. Mullen T. (2. 2012). CleanLine: Tool/Resource Info. Accessed: May 10, 2019. [Online]. 
Available: https://www.nitrc.org/projects/cleanline/

[28]. Winkler I, Debener S, Müller K-R, and Tangermann M, “On the influence of high-pass filtering 
on ICA-based artifact reduction in EEG-ERP,” in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. 
Biol. Soc. (EMBC), 8. 2015, pp. 4101–4105.

[29]. Oliveira AS, Schlink BR, Hairston WD, König P, and Ferris DP, “A channel rejection method for 
attenuating motion-related artifacts in EEG recordings during walking,” Frontiers Neurosci, vol. 
11, p. 225, 4. 2017.

[30]. Palmer JA, Makeig S, Kreutz-Delgado K, and Rao BD, “Newton method for the ICA mixture 
model,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 3. 2008, pp. 1805–1808.

[31]. Pion-Tonachini L, Makeig S, and Kreutz-Delgado K, “Crowd labeling latent Dirichlet 
allocation,” Knowl. Inf. Syst, vol. 53, no. 3, pp. 749–765, 12. 2017. [PubMed: 30416242] 

[32]. Hjorth B, “An on-line transformation of EEG scalp potentials into orthogonal source 
derivations,” Electroencephalogr. Clin. Neurophysiol, vol. 39, no. 5, pp. 526–530, 11. 1975. 
[PubMed: 52448] 

[33]. Lancaster JL et al., “Automated talairach atlas labels for functional brain mapping,” Hum. Brain 
Mapping, vol. 10, no. 3, pp. 120–131, 7. 2000.

[34]. Shirazi SY and Huang HJ, “More reliable EEG electrode digitizing methods can reduce source 
estimation uncertainty, but current methods already accurately identify brodmann areas,” 
Frontiers Neurosci, vol. 13, p. 1159, 11. 2019.

[35]. Makeig S, “Auditory event-related dynamics of the EEG spectrum and effects of exposure to 
tones,” Electroencephalogr. Clin. Neurophysiol, vol. 86, no. 4, pp. 283–293, 4. 1993. [PubMed: 
7682932] 

[36]. Pfurtscheller G and Lopes da Silva FH, “Event-related EEG/MEG synchronization and 
desynchronization: Basic principles,” Clin. Neurophysiol, vol. 110, no. 11, pp. 1842–1857, 11. 
1999. [PubMed: 10576479] 

[37]. van Leeuwen J, Smeets JBJ, and Belopolsky AV, “Forget binning and get SMART: Getting more 
out of the time-course of response data,” Attention, Perception, Psychophys, vol. 81, no. 8, pp. 
2956–2967, 11. 2019.

[38]. Wagner J, Makeig S, Gola M, Neuper C, and Müller-Putz G, “Distinct β band oscillatory 
networks subserving motor and cognitive control during gait adaptation,” J. Neurosci, vol. 36, pp. 
2212–2226, 2. 2016. [PubMed: 26888931] 

[39]. Mutha PK, Stapp LH, Sainburg RL, and Haaland KY, “Frontal and parietal cortex contributions 
to action modification,” Cortex, vol. 57, pp. 38–50, 8. 2014. [PubMed: 24763127] 

[40]. Mayka MA, Corcos DM, Leurgans SE, and Vaillancourt DE, “Three-dimensional locations and 
boundaries of motor and premotor cortices as defined by functional brain imaging: A meta-
analysis,” NeuroImage, vol. 31, no. 4, pp. 1453–1474, 7. 2006. [PubMed: 16571375] 

[41]. Diedrichsen J, White O, Newman D, and Lally N, “Use-dependent and error-based learning of 
motor behaviors,” J. Neurosci, vol. 30, no. 15, pp. 5159–5166, 4. 2010. [PubMed: 20392938] 

[42]. Carpenter MG, Allum JHJ, and Honegger F, “Directional sensitivity of stretch reflexes and 
balance corrections for normal subjects in the roll and pitch planes,” Exp. Brain Res, vol. 129, 
pp. 93–113, 10. 1999. [PubMed: 10550507] 

[43]. Farrens AJ, Lilley M, and Sergi F, “Training propulsion via acceleration of the trailing limb,” 
IEEE Trans. Neural Syst. Rehabil. Eng, vol. 28, no. 12, pp. 2816–2825, 12. 2020. [PubMed: 
33074799] 

[44]. Adkin AL, Campbell AD, Chua R, and Carpenter MG, “The influence of postural threat on the 
cortical response to unpredictable and predictable postural perturbations,” Neurosci. Lett, vol. 
435, no. 2, pp. 120–125, 4. 2008. [PubMed: 18337005] 

Shirazi and Huang Page 14

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/cleanline/


[45]. Shirazi SY and Huang HJ, “Influence of mismarking fiducial locations on EEG source 
estimation,” in Proc. 9th Int. IEEE/EMBS Conf. Neural Eng. (NER), 3. 2019, pp. 377–380.

[46]. Nakagome S, Luu TP, He Y, Ravindran AS, and Contreras-Vidal JL, “An empirical comparison 
of neural networks and machine learning algorithms for EEG gait decoding,” Sci. Rep, vol. 10, 
no. 1, p. 4372, 3. 2020. [PubMed: 32152333] 

[47]. Palidis DJ, Cashaback JGA, and Gribble PL, “Neural signatures of reward and sensory error 
feedback processing in motor learning,” J. Neurophysiol, vol. 121, no. 4, pp. 1561–1574, 4. 2019. 
[PubMed: 30811259] 

[48]. Skinner NE, “Subjective costs of movement: Factors beyond economy in human behavior,” Ph.D. 
dissertation, Dept. Mech. Eng., Univ. Michigan, Ann Arbor, MI, USA, 2014.

[49]. Wagner J, Martínez-Cancino R, and Makeig S, “Trial-by-trial source-resolved EEG responses to 
gait task challenges predict subsequent step adaptation,” NeuroImage, vol. 199, pp. 691–703, 10. 
2019. [PubMed: 31181332] 

[50]. Holroyd CB and Coles MGH, “The neural basis of human error processing: Reinforcement 
learning, dopamine, and the error-related negativity,” Psychol. Rev, vol. 109, pp. 679–709, 10. 
2002. [PubMed: 12374324] 

Shirazi and Huang Page 15

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2021 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Recumbent stepper and perturbations.
a. The recumbent stepper is a one-degree-of-freedom arm-leg exercise device. b. 
Perturbations were applied either at the extension-onset or mid-extension of the targeted leg. 

Perturbations were increased stepping resistance for 200 milliseconds. c. The experiment 

included four tasks. Each task had three ordered blocks, pre, perturbed stepping, and post. 

The perturbed stepping block also included random no-perturbation catch strides.
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Fig. 2. Motor error metrics.
Subjects were instructed to match the pace and step smoothly. a. Stepping duration (i.e., 

temporal) error is the difference between stride duration and the two-second pacing cue. b. 
Stepping position (i.e., spatial) error is the maximum difference between the time-

normalized stepping profile and the averaged pre profile.
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Fig. 3. EEG post-processing workflow with a novel step-wise algorithmic parameter sweeping 
noise rejection process.
Shaded blocks indicate inputs or outputs. Thick lined blocks highlight the novel step-wise 

rejection approach.
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Fig. 4. Temporal and spatial errors during perturbed stepping.
The perturbed-stepping block include both perturbed strides (green) and one-in-five random 

catch strides (purple). For perturbed-stepping, the 10 circles are the averages of 10% 

batches. For pre and post, the 5 circles are the averages of 20% batches. * indicates 

significant post-hoc LSD tests a. Temporal errors were different between perturbed and 

catch strides (~50 ms vs. ~200 ms) and returned to the pre levels during the post block. b. 
Spatial error was greater for the perturbed strides than catch strides, and did not return to pre 
levels during post.
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Fig. 5. Locations of the electrocortical clusters.
Clusters with sources from > 70% of the subjects are shown. Only one source per subject 

was selected for each cluster during analysis. “% of all” indicates the percentage of all 

components in the Brodmann Area. a.u.: arbitrary unit.
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Fig. 6. Motor errors and anterior cingulate ERSP
a. and d. Adaptation (early vs. late) was not a significant factor for motor errors. # indicates 

perturbation timing was a significant factor. Error bars indicate confidence interval (CI) b. 
Perturbations (i.e., the strong solid lines) elicited theta synchronization in anterior cingulate 

cortex. Right-side perturbations elicited weaker synchronization during the late perturbed 

strides. c. Average theta-band ERSP waveform shows increased power after the 

perturbations across the tasks. Late perturbations elicited less theta-band average power only 

on the right-side tasks. e. Early catches (narrow solid lines) elicited a theta synchronization 

in the anterior cingulate cortex. f. Average theta-band ERSP waveform shows late right 

extension-onset catch strides elicited significantly higher spectral power than the early catch. 

Shaded areas indicate CI. Black bars indicate significant difference between early and late. 

Colored bars indicate CI does not overlap with zero.
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Fig. 7. Motor errors and theta-band ERSP across perturbation timings.
a. and b. Task type (mid-extension vs. extension-onset) was a significant factor for motor 

errors. Error bars indicate confidence interval (CI). c. Extension-onset perturbations had 

greater anterior cingulate and ipsilateral theta-band ERSP before the perturbation event (the 

solid vertical line). The theta-band ERSP was not significantly different after the 

perturbation event, except for the left SMA ipsilateral task. Shaded area indicates confidence 

interval. Black bars indicate significant difference between perturbation timing. Colored bars 

indicate CI clearing zero.
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Fig. 8. Supplementary motor area (SMA) Lateralization.
a. Theta desynchronization in the perturbed recovery step occurred in the right SMA for 

extension-onset and in the left SMA for the mid-extension (red squares). Only mid-extension 

perturbations elicited theta desynchronization before the perturbation event (red dashed 

rectangles). b. Mid-extension catch steps elicited theta synchronization before the end of 

limb extension (red dashed rectangles). Recovery-step theta desynchronization occurred 

contralaterally during extension-onset, but only occurred in the right SMA during the mid-

extension. Red and black indicate specialized and contralateral lateralization respectively.
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