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Abstract
Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between
previously separated human groups. Although classical and recent work have shown that studying admixture can
yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored.
Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection
while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral
source populations. Through extensive simulations, we show that this method is able to detect selection, even in
recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral
or admixed population. We apply this method to genome-wide SNP data of∼4,000 individuals in five admixed Latin
American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selec-
tion in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel
signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, com-
monly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may
reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by
European contact. In addition, some of the strongest signals inferred to be under selection in the Native
American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism pheno-
types, plausibly reflecting adaptations to novel dietary sources available in the Americas.

Key words: natural selection, Latin Americans, Native Americans, admixture.

Introduction
Admixed populations offer a unique opportunity to detect
recent selection. In the human lineage, genomic studies
have demonstrated the pervasiveness of admixture events
in the history of the vast majority of human populations
(Patterson et al. 2012; Hellenthal et al. 2014; Lazaridis
et al. 2014). By inferring the ancestral origins of particular
genetic loci in the genomes of recently admixed indivi-
duals, recent studies have provided evidence that such ad-
mixture has facilitated the spread of adaptative genetic
mutations in humans. Notable examples include the trans-
fer of a protective allele in the Duffy blood group gene like-
ly providing resistance to Plasmodium vivax malaria in
Malagasy and Cape Verdeans from sub-Saharan Africans
(Hodgson et al. 2014; Pierron et al. 2018; Hamid et al.
2021), and the transmission of the lactase persistence allele
in the Fula pastoralists from Western Eurasians (Vicente
et al. 2019).

An ideal setting in which to test whether and how
admixture contributed to genetic adaptation is Latin
America. The genetic make-up of present-day Latin
Americans stems mainly from three ancestral populations:
indigenous Native Americans, Europeans (mainly from the
Iberian Peninsula), and sub-Saharan Africans (Wang et al.
2007; Moreno-Estrada et al. 2013, 2014; Homburger et al.
2015; Chacon-Duque et al. 2018; Luisi et al. 2020) that
were brought together starting �500 years ago. The
admixed genomes of Latin Americans are, thus, the
result of an intermixing process between human popula-
tions that had been evolving independently for tens-
of-thousands of years and that were suddenly brought
together in a new environment. In this new environment,
the ancestral genomes were quickly subjected to novel
pressures that were largely unfamiliar fromwhere they first
evolved. Therefore, the genomes of Latin Americans

potentially harbor signals of recent adaptations attribut-
able to beneficial variants, for example, introduced from
a particular ancestral population, increasing rapidly in fre-
quency post-admixture. Motivated by this, several studies
have explored the genomes of admixed Latin Americans
for signatures of selection occurring since the admixture
event (Tang et al. 2007; Basu et al. 2008; Ettinger et al.
2009; Guan 2014; Rishishwar et al. 2015; Deng et al. 2016;
Zhou et al. 2016; Norris et al. 2020; Vicuna et al. 2020).
These studies have relied on an approach similar to
that of admixture mapping, where the ancestry of a gen-
omic region in each admixed individual is assigned to a
particular ancestral population, a technique known as
local-ancestry-inference (LAI). Loci with significantly
more inferred ancestry inherited from one ancestral popu-
lation are assumed to have evolved under some form of se-
lection (Tang et al. 2007).

In addition, the genetic makeup of Latin Americans of-
fers the opportunity to detect selection in their ancestral
populations, as large cohorts of Latin Americans can be le-
veraged to reconstruct genetic variation patterns in each
source population. This is of particular use for exploring se-
lection in Native Americans, since Native American groups
are currently underrepresented in genomic studies (Sirugo
et al. 2019), and as a consequence, only a few studies have
centered on detecting adaptive signals of indigenous
groups from the Americas. Such studies have identified
strong selective signals at different genes, particularly at
those related to immunity, highlighting the selective pres-
sures that Native Americans were subjected to after they
entered the continent (Lindo et al. 2018; Reynolds et al.
2019; Avila-Arcos et al. 2020).

With some exceptions (Cheng et al. 2021), these studies
either limited their analyses to Latin Americans with high
Native American ancestry or used LAI to infer loci in
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individuals that derive from a Native American source.
However, such approaches may result in a reduction of
statistical power due to the removal of individuals with
non-Native American ancestry, inaccurate local ancestry
estimation, and/or through removing segments challen-
ging to assign.

Here, we present a novel statistical model that identifies
loci that have undergone selection before or after an admix-
ture event (which we refer to as pre- or post-admixture se-
lection, respectively). In contrast to previous methods, this
approach is based on allele frequencies and does not require
assignments of local ancestry along the genome. We illus-
trate the utility of our new method by performing a selec-
tion scan in five Latin American cohorts collected as part
from the CANDELA Consortium (Ruiz-Linares et al. 2014).
Our results suggest that several loci have been subjected
to natural selection in admixed Latin American populations,
and in their ancestral populations, replicating many of these
signals using LAI. Many of the putative selected single nu-
cleotide polymorphisms (SNPs) are strongly associated to
relevant phenotypes, or act as expression quantitative loci
(eQTL) in relevant tissues, providing further evidence of
their functional effect. Overall, our analyses highlight the
usefulness of our method to detect signals of selection in

admixed populations or their ancestral populations, and re-
veal novel candidate genes implicated in the adaptive his-
tory of groups from the American continent.

Results
Overview of AdaptMix
In part following Balding and Nichols (1995), and analo-
gous to previous approaches (Long 1991; Mathieson
et al. 2015; Cheng et al. 2021), our model AdaptMix as-
sumes that, under neutrality, the allele frequencies of an
admixed target population can be described using a beta-
binomial model, with expected allele frequency equal to a
mixture of sampled allele frequencies from a set of groups
that act as surrogates to the admixing sources (fig. 1). In
our case, the admixed target population is a Latin
American cohort, defined below, and we use three surro-
gate groups to represent Native American, European,
and African admixing source populations. The mixture va-
lues are inferred a priori, for example, using ADMIXTURE
(Alexander et al. 2009) (fig. 1A), qpAdm (Haak et al.
2015) or SOURCEFIND (Chacon-Duque et al. 2018), as
the average amount of ancestry that each admixed target
individual matches to a set of reference populations.

FIG. 1. Schematic and intuition of the AdaptMix model. (A) For each CANDELA individual (columns), ADMIXTURE-inferred proportions of an-
cestry related to Native American, European, and African reference individuals. (B) Assuming only two admixing sources in this illustration for
simplicity, the model assumes ancestral populations (A∗ and B∗) contribute ancestry proportions αA and αB, respectively, to an admixed popu-
lation (C

′
) that is ancestral to the tested population (C). Assuming neutrality, the expected allele frequency (p0) of C

′
is estimated using these

proportions and the allele frequencies surrogate populations A and B related to A∗ and B∗, respectively. The sampled allele frequency (p) of C is
compared with p0, with large deviations indicative of selection (shown with an asterisk in the distribution). (c and d ) The relationship between
p0, the expected allele frequency in the admixed population under neutrality or selection, and αB, the ancestry proportion contributed from
ancestral population B∗ . If selection occurred prior to admixture during the split between populations B∗ and its surrogate B (i.e., along the
blue branch in [B]), this relationship increases linearly (blue lines), becoming more differentiated from neutrality (gray line) as the admixture
from B∗ increases. In contrast, under selection post-admixture (i.e., along the purple branch in [B]), the expected allele frequency (purple lines)
can deviate from neutrality even when the admixture from B∗ is near 0. The difference between the post-admixture and pre-admixture lines is
more clear when allele frequencies in populations A and B are similar (top plot). The solid blue and red lines indicate the allele frequencies in the
surrogate populations A and B, which are used to calculate p0.
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(The reference populations used by these programs may
be the same as the surrogate populations used in
AdaptMix, but they need not be as illustrated below.)
We find the variance parameter that maximizes the likeli-
hood of this beta-binomial model across all SNPs. This vari-
ance term aims to limit the number of false-positives
attributable to genetic drift in the target population fol-
lowing admixture and/or the use of inaccurate surrogates
for the ancestral populations. Then, at each SNP, we calcu-
late the probability of observing allele counts equal to or
more extreme than those observed in the target popula-
tion, hence providing a P value testing the null hypothesis
that the SNP is neutral (see Materials and Methods).

Assuming a pulse of admixture, this test is designed to
detect selection occurring: 1) in the admixed population
following the admixture event (i.e., along the purple line
“e” in fig. 1B), and/or 2) in one (or more) of the source/sur-
rogate pairings (i.e., along the red and/or blue lines (a)–(d)
in fig. 1B). Note that scenario 2) includes selection occur-
ring in any of the ancestral source populations (i.e., along
the lines “c” or “d” in fig. 1B) and/or in any of the surrogate
populations (i.e., along the lines “a” or “b” in fig. 1B). At
SNPs with evidence of selection (i.e., low P values), we dis-
tinguish between 1) and 2) by exploring how genotype
counts of admixed target individuals relate to their in-
ferred admixture proportions contributed by each surro-
gate. Under scenario 1), we assume that selection affects
all target individuals equally, regardless of their admixture
proportions, which, in turn, assumes that all ancestries
were present when selection occurred. In contrast, under
scenario 2), we expect selection to more strongly affect
one of the source/surrogate population pairings.
Intuitively, if 2) is true, individuals with nearly 100% ances-
try from the source/surrogate pair experiencing selection
will have genotype counts that deviate the most from ex-
pectations under the neutral model, whereas individuals
with nearly 0% ancestry from this pair will have counts
that closely follow the neutral model (fig. 1C). If instead
1) is true, this pattern is attenuated, though it can be
challenging in practice to distinguish 2) from 1) if allele fre-
quencies strongly differ between surrogate groups (fig. 1D).
Assuming a multiplicative model of selection, which is nu-
merically close to an additive model, we find the selection
coefficients that maximize the fit of the data to model 1)
and to model 2) when separately treating each source/
surrogate pair as the selected group. We report ratios of
likelihoods, equivalent here to using differences in Akaike
Information Criterion (AIC), to quantify our ability to dis-
tinguish among scenarios 1) and 2).

In summary, for each tested SNP we infer 1) a P value
testing the null hypothesis of neutrality, 2) the relative evi-
dence (i.e., likelihood ratios) for whether selection oc-
curred post-admixture or in one of the admixing sources
and 3) the selection strength summed across time.

Simulations
We tested our approach using simulations designed to re-
semble our Latin American cohort in terms of sample size,

inferred admixture proportions, and the extent to which
our surrogates match the true admixing sources. As
post-admixture selection in recently admixed population
is challenging to detect unless selection is strong, we in-
cluded selection coefficients (s) of large magnitude. We
note that the upper range values are consistent with those
estimated in recently admixed populations, including Latin
Americans (Zhou et al 2016, Pierron et al 2018, Vicente
et al 2019, Hamid et al 2021) (see Materials and Methods).

At a false-positive rate of 5× 10−5, these simulations in-
dicate we have �50–90% power to detect selection for
scenario 1) (i.e., post-admixture selection) with s= 0.15–
0.20, with s defined as the selection strength per gener-
ation in homozygotes carrying two copies of the selected
allele, and selection occurring over 12 generations
under various modes of selection (additive, dominant,
multiplicative, recessive) (fig. 2A, supplementary fig. S1,
Supplementary Material online). For scenario 2), in the
case of selection occurring in the Native American source,
power depends on the overall amount of Native American
ancestry (fig. 2A). As an example, Brazil-like simulations
(,15% average Native American ancestry) show little
power, Colombia-like simulations (�30% average Native
American ancestry) typically exhibit .50% power, and
other simulated populations (�50–70% average Native
American ancestry) exhibit .75% power under scenario
2) assuming s≥ 0.1 over 50 generations, with similar power
if instead s� 0.025 over 150 generations (supplementary
fig. S2, Supplementary Material online). Simulations in-
cluding a bottleneck in the Native American source popu-
lation (see Materials and Methods) showed reduced
power, likely because the stronger genetic drift both masks
the selection signal (Refoyo-Martínez et al. 2019;
Cuadros-Espinoza et al. 2021) and makes the surrogate
population more genetically differentiated from its corre-
sponding source (supplementary fig. S3, Supplementary
Material online). Detecting selection occurring in the
European or African source depends on the overall
amount of European and African ancestry in a similar
manner (e.g., fig. 2A, supplementary figs. S4 and S5,
SupplementaryMaterial online). For SNPs where we detect
selection, we mis-classify the type of selection ≤2% of the
time, for example, concluding post-admixture selection
when the truth is selection in the Native American source
�1% of the time across all selection coefficients (fig. 2B).
However, our approach often fails to classify selection
scenarios unless selection strengths are large (e.g., s. 0.1).

We also compared the power of AdaptMix to that of
Ohana, a recently developed maximum likelihood method
that infers selection bymodeling ancestral admixture com-
ponents, which has been shown to have similar or higher
power to other state-of-the-art methods (Cheng et al.
2021). Following Cheng et al. (2021), we simulated a real-
istic demographic model relating four populations meant
to represent African, East Asian, European, and Native
American sources. We also simulated an admixed popula-
tion that descends from a 50 to 50% mixture of the
European and Native American sources, with selection
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occurring prior to admixture in only the ancestral Native
American source (see Materials and Methods). We then
applied AdaptMix and Ohana to four sampled populations
that descend from the Africa, East Asian, European, and
admixed populations. In these simulations, AdaptMix has
�0.4–4.8% less power than Ohana if running Ohana
with an ideal number of ancestry components K, in this
case K= 4, that distinguishes the admixed population
(supplementary fig. S6, Supplementary Material online),
and if Ohana only tests for selection in the ancestry com-
ponent most representative of the admixed population
(fig. 3A). However, AdaptMix has up to 5.12% more power

than Ohana in this setting when using Ohana’s more gen-
eral test that does not assume selection only in the ad-
mixed population. Furthermore, if using a suboptimal K,
for example, K= 3, Ohana’s power is greatly reduced, since
the Native American and East Asian sources are both clas-
sified into the same ancestry component (supplementary
fig. S6, Supplementary Material online). We also performed
simulations, mimicking those in Cuadros-Espinoza et al.
(2021), under which selection occurs post-admixture in
the admixed population, with admixture occurring 70 gen-
erations ago (see Materials and Methods). In these simula-
tions, AdaptMix outperformed Ohana even when using

FIG. 2. Performance of AdaptMix to detect and classify selection in simulated Latin American populations. (A) Power to detect selection post-
admixture, selection in Native Americans, or selection in Europeans in simulated populations mimicking the Latin American cohorts. Power is
based on a P value cutoff that resulted in a false-positive rate of 5× 10−5 in neutral simulations. The power estimated for a given selection
coefficient is based on combining simulations using four different modes of selection (additive, dominant, multiplicative, recessive) occurring
over 12 generations for the post-admixture simulations, over 50 generations for the selection in Native American simulations, and over 25 gen-
erations for the selection in European simulations. Each simulation for a given combination of parameters consisted of 10,000 advantageous
SNPs with a starting allele frequency of the advantageous allele lower than 0.5. (B) The proportion of significant SNPs from (A) that were assigned
to the correct simulated scenario of (left-to-right) post-admixture selection or selection in Native Americans or Europeans (using a likelihood
ratio.1,000 to make a call; otherwise “Unclassified”). Rows give the true selection coefficient (legend at right), and the heatmap values give the
classification rate. Rows with N.A. show instances with less than 50 selected SNPs for which the classification rate is poorly estimated.
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the ideal number of clusters K= 3, presumably because
Ohana does not classify the admixed individuals into their
own ancestry component (supplementary fig. S6,
Supplementary Material online), which should maximize
its power. In these post-admixture simulations, both
AdaptMix and Ohana outperform two local ancestry devi-
ation (LAD) approaches (RFMix, ELAI) (Maples et al. 2013;
Guan 2014), perhaps because the older admixture time re-
sulted in difficulties accurately assigning local ancestry seg-
ments to source populations.

Applying AdaptMix to the Five Latin American
Cohorts of CANDELA
We divided Latin Americans into five cohorts based on
country of origin: Brazil (n= 190), Chile (n= 896),
Colombia (n= 1,125) Mexico (n= 773), and Peru (n=
834), using individuals sampled as part of the CANDELA

Consortium (Ruiz-Linares et al. 2014), testing each
cohort for selection separately (supplementary fig. S7,
Supplementary Material online). Analyzing each cohort
by country of origin results in a higher number of indivi-
duals, and, thus, increases the statistical power to detect
selection. As demonstrated in Chacon-Duque et al
(2018), however, there is a notable population sub-
structure within each country. To test for robustness of
our selection signals to this sub-structure, we supplemen-
ted each of these analyses by testing subsets of individuals
within a country based on their inferred ancestry matching
to Native American reference groups from Chacon-Duque
et al. (2018). This gave six additional tested groups with
sufficient ancestry represented: “Mapuche” (n= 434) in
Chile, “Chibcha Paez” (n= 200) in Colombia, “Nahua”
(n= 466) and “South Mexico” (n= 78) in Mexico, and
“Andes Piedmont” (n= 195) and “Quechua” (n= 147) in
Peru (supplementary fig. S8, Supplementary Material

FIG. 3. Performance of AdaptMix compared with existing methods. (A) Power of AdaptMix and Ohana to detect selection occurring prior to
admixture only in the Native American source of an admixed population. The gray line depicts Ohana’s power with K= 4 when testing for
selection only in the ancestry component most representative of the Native American source, with the brown line testing under the general
model. (B) Power of AdaptMix, Ohana, and two LAD approaches (RFMix, ELAI; Maples et al 2013, Guan 2014) to detect selection occurring
in an admixed population directly following the admixture event. The purple line depicts Ohana’s power with K= 3 when testing for selection
only in the ancestry component most representative of the admixed population, with the green line testing under the general model. See
Methods section for a detailed explanation of the simulation parameters employed for each scenario. Power for (A) and (B) is based on a P
value cutoff that resulted in a false-positive rate of 0.05 in neutral simulations.
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online). To infer the proportion of African, European, and
Native American ancestry in each Latin American, we ap-
plied unsupervised ADMIXTURE with K= 3 clusters jointly
to all CANDELA individuals and 553 Native American,
Iberian, and West African reference individuals (fig. 1A).

Note that the choice of surrogate populations
defines the selection test between each surrogate and its
corresponding ancestral source in scenario 2). In this
way, our test acts as an analogue to FST comparing two po-
pulations, but while accounting for admixture in one of
the populations. As an illustration, we tested the
Brazilian cohort for selection using northwest Europeans
from England and Scotland (GBR) from the 1000
Genomes Project (1KGP) (The 1000 Genomes Project
Consortium 2015) as a surrogate for the Brazilian cohort’s
European ancestry source (supplementary fig. S9,
Supplementary Material online). Given the majority
(�80%) of ancestry in the Brazilian cohort is related to
Iberian Europeans, this test is most-powered to detect se-
lection acting along the branch separating present-day
northwest Europeans and descendants of Iberians who
traveled to Brazil post-Columbus. In this analysis, we infer
the strongest signals of selection at the HERC2/OCA2 and
LCT/MCM6 genes. This replicates previously reported se-
lection signals when comparing northwest Europeans to
present-day Iberians (Poulter et al. 2003; Bersaglieri et al.
2004) and likely indicates selection for lighter skin pigmen-
tation and lactase persistence in northwest Europeans that
is unrelated to any selection in the Americas.

As another example, we also tested each Latin American
cohort separately while using Han Chinese from Beijing
(CHB) from the 1KGP as a surrogate for Native American
ancestry (supplementary fig. S10, Supplementary Material
online). In this analysis, SNPs that follow model 2) indicate
selection along the branch separating present-day Han
Chinese and Native American populations. For this test,
we find the strongest signals of selection at previously re-
ported selected genes in East Asians, including those related
to alcohol metabolism such as ADH7 and ADH1B (Galinsky
et al. 2016; Gu et al. 2018) that are both classified as selec-
tion undermodel 2). The strongest overall signal in this scan,
which was unclassified, overlapped the POU2F3 gene, impli-
cated in the regulation of viral transcription, keratinocyte
differentiation, and other cellular events. Selection signals
at this gene have been reported to be under selection in
Native American populations from throughout the
Americas (Amorim et al. 2017) and also shows evidence
for Neanderthal adaptive introgression in East Asians
(Racimo, Marnetto, et al. 2017).

For our main analyses, we use 205 Iberians (from 1KGP
and Chacon-Duque et al. (2018)) to represent European
ancestry surrogates. Therefore, given the likely short split
time between present-day Iberians and Europeans whomi-
grated to the Americas during the colonial era, we are
underpowered to detect selection in the European source
only (see simulations). We use 206 West Africans from the
1KGP to represent the African ancestry source, which has
been reported as a good proxy to the African genetic

sources (from Chacon-Duque et al. (2018)). For this reason,
we should similarly have low power to find selection oc-
curring only in the African source/surrogate. At any rate
we do not test for selection related to African ancestry,
because the Latin American cohort here have �6%
African ancestry on average, limiting power further (see
supplementary fig. S5, Supplementary Material online).
We combined 142 individuals with ,1% non-Native
American inferred ancestry from 19 Native American
groups (supplementary table S1, Supplementary Material
online) to represent the Native American surrogate. By
using individuals sampled from geographically spread
Native American groups as the Native American ancestry
surrogate, we aim to identify regional selection signals ex-
perienced by some Native American groups but not
others. We also expect to have the highest power when
testing for selection type 2) in Native Americans, as there
is likely to be the most time separating this “average”
Native American surrogate and the admixing source of
each regional Latin American cohort. To avoid confound-
ing our inference, we excluded individuals with .1% in-
ferred ancestry matching to surrogates other than Native
Americans, Iberian Europeans, and West Africans using
SOURCEFIND (Chacon-Duque et al. 2018). Also, since
the time since admixture among these groups is relatively
short in the CANDELA cohort (likely ,15 generations
ago), detecting selection post-admixture can only identify
relatively strong selection signals (see simulations).

AdaptMix Identifies 47 Regions of Putative Selection
For each Latin American cohort, we considered SNPs under
selection as those having P values less than the 5× 10−5

false-positive threshold in the population-matched neutral
simulations, which corresponds to a model-based P value
of 6.75× 10−6–1.07× 10−7 (supplementary table S2,
Supplementary Material online). For Chile, Colombia,
Mexico, and Peru, we report loci that pass these criteria
both in the analysis of all individuals from that country
and in at least one of three alternative analyses for
that country that are designed to test for robustness to la-
tent population structure (supplementary fig. S11,
Supplementary Material online). The first of these alterna-
tive analyses consisted of identifying signals of selection
using AdaptMix on each of the six Native American subsets
defined above (e.g., in either the “Andes Piedmont” or
“Quechua” subset when testing for selection in Peruvians)
(supplementary table S3, Supplementary Material online).
The other two alternative analyses were based on LAI. In
particular, we used ELAI (Guan 2014) to assign each genom-
ic region of an admixed individual to a Native American,
European, or African ancestral source. For the second alter-
native analysis, designed to test for post-admixture selec-
tion, we assessed whether the proportion of ancestry
inferred from one of these three sources in a local region de-
viated substantially from the genome-wide average
(supplementary table S4, Supplementary Material online).
For the third alternative analysis, designed to test for
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selection in the Native American source, we instead used
the Population Branch Statistic (PBS) (Yi et al. 2010) to
test for selection in one of the six Native American subset
groups defined above, using allele frequencies computed
from LAI-inferred Native American segments from the sub-
set of individuals representing that Native American group
(see Materials and Methods) (supplementary fig. S8,

Supplementary Material online and supplementary table
S5, Supplementary Material online).

Overall, we find 51 candidate regions to have evidence
of positive or purifying selection passing the criteria above,
47 of which target protein-coding genes (supplementary
table S6, Supplementary Material online and fig. 4). Four
of these 47 candidate gene regions contain at least one

FIG. 4. Genome-wide selection scan in five Latin American cohorts. Manhattan plot showing the genomic regions identified as selected via
AdaptMix in each Latin American cohort. The dashed horizontal lines indicate the P values cutoffs corresponding to a false-positive rate of
5× 10−5 based on neutral simulations. Different shapes represent the most likely selection model. The names of genes associated with signifi-
cant SNPs are shown.
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SNP exhibiting strong evidence (likelihood ratio .1,000)
of selection affecting all admixed individuals regardless of
ancestry proportions, which we assume reflects post-ad-
mixture selection. Furthermore, 18 of these 47 regions ex-
hibit strong evidence of selection containing at least one
SNP (likelihood ratio .1,000) in the Native American
source only. The 25 remaining candidate gene regions
are unclassified into either type of selection (likelihood ra-
tio ≤1,000).

To prioritize candidate casual genes, we annotated
the protein-coding gene that had the highest overall
Variant-to-Gene (V2G) scores (Ghoussaini et al. 2021;
Ochoa et al. 2021) for the SNPs showing the strongest evi-
dence of selection in each candidate gene region. The over-
all V2G score aggregates differentially weighted evidence
of variant-gene association from several sources, including
cis-QTL data, chromatin interaction experiments, in silico
function predictions (e.g., Variant Effect Predictor from
Ensembl), and distance between the variant and each
gene’s canonical transcription starting site. For each of
these candidate genes, we then annotated the phenotype
with the highest overall association score based on the
Open Targets Platform (Koscielny et al. 2017; Ochoa
et al. 2021).

Although most of these associated phenotypes re-
present genetic disorders, syndromes, or different types
of measurements (medically or non-medically related),
many are also related to immune response and diet—
two major selective forces previously reported to shape
the human genome (Karlsson et al. 2014; Fan et al.
2016). We, therefore, organize the description of our can-
didate selection signals into two main sections below that
cover only these two features, with signals of all other hits
in supplementary table S6, Supplementary Material online.
For brevity, below we only highlight putatively selected re-
gions where at least one significant SNP had an associated
GWAS or eQTL signal. For our significant SNPs related to
immune-response genes, GWAS signals included SNPs asso-
ciated to white blood cell counts in a large multicontinental
cohort (including Latin American individuals) (Chen et al.
2020), and eQTL signals included cis-associated SNPs to
gene expression in 15 immune-related cell types from the
DICE project (Schmiedel et al. 2018). For our significant
SNPs related to diet, GWAS signals included metabolic, an-
thropometric, and lipid levels from the UK Biobank cohort
(Loh et al. 2018), and eQTL signals included cis-associated
SNPs to gene expression in adipose, muscle, and liver tissue
from the GTEx Project (Lonsdale et al. 2013).

Signals at Immune-Related Genes
Fifteen of the forty-seven candidate gene regions contained
at least one protein-coding gene either related to the devel-
opment or regulation of the immune system or that has
been previously associated to the quantification of immune
cell types, susceptibility progression to infectious diseases,
or autoimmune disorders. For example, we replicate a well-
known signal encompassing several immune-related genes

at 6p21 that are a part of the human leukocyte antigen
(HLA) system (fig. 4 and supplementary figs. S12–S14,
Supplementary Material online). These included SNPs
(AdaptMix P value, 5.00× 10−7) near several MHC class
I genes (HLA-G, HLA-H, HLA-A, and HLA-J) in each of the
Chilean, Colombian, Mexican, and Peruvian cohorts, with
the Colombian cohort containing several SNPs classified
as being selected post-admixture (likelihood ratio
.1,000). Encouragingly, we inferred African ancestry en-
richment (Z-score. 2.5) in each cohort �60 kb down-
stream from our top AdaptMix signals using LAI, with
maximum Z-score. 9 (one-sided P value, 4.09× 10−21)
in the Chilean cohort (fig. 5). In addition, other signals
were inferred upstream in the Chilean cohort at a 5′ UTR
SNP of the ZBTB12 gene (rs2844455, AdaptMix P value=
5.45× 10−8), the Mexican cohort at an intronic SNP of
HLA-DMA (rs28724903, AdaptMix P value= 3.87× 10−8),
and the Peruvian cohort at an intronic SNP of the MHC
class III gene STK19 (rs6941112, AdaptMix P value= 7.57×
10−9). Many of these HLA genes have been previously char-
acterized as subject to be under selection post-admixture
in different Latin American populations by showing an ex-
cess of African ancestry at the HLA locus (Tang et al. 2007;
Basu et al. 2008; Ettinger et al. 2009; Guan 2014; Rishishwar
et al. 2015; Deng et al. 2016; Zhou et al. 2016; Norris et al.
2020; Vicuna et al. 2020).

In addition to HLA, we infer previously unreported se-
lection signals in four candidate gene regions that each
harbor genes with well-established roles in the immune
system, with each region containing at least one SNP sig-
nificantly associated (P value, 5× 10−8) to white blood
cell counts or the expression of an immune-related gene
in immune cells (P value, 10−5) (see Materials and
Methods). Among these, one signal at 1p13 in the
Chilean cohort encompasses the CD101 gene (fig. 6A),
which belongs to a family of cell-surface immunoglobulins
superfamily proteins and plays a role as an inhibitor of
T-cell proliferation (Soares et al. 1998; Bouloc et al.
2000). Within this region, five SNPs are classified as being
selected post-admixture and also show an increase of
LAI-inferred European ancestry (maximum Z-score=
3.40, one-sided P value= 3.36× 10−4). Strikingly, the re-
gion contains a synonymous SNP (Ile588, CADD score of
9.23) (rs3736907, AdaptMix P value= 1.05× 10−9) that
strongly affects CD101 expression in T cells (eQTL P va-
lue, 2.42× 10−10) and is associated with neutrophil
(GWAS P value= 2.08× 10−10) and total white cell count
(GWAS P value= 3.61× 10−9) (fig. 6A).

The second signal, at 18p11 also in Chileans, encom-
passes the PTPN2 gene, a tyrosine-specific phosphatase in-
volved in the Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) signaling pathway
(fig. 6B). The JAK-STAT pathway has an important role
in the control of immune responses, and dysregulation
of this pathway is associated with various immune disor-
ders (Shuai and Liu 2003). Several SNPs with low AdaptMix
P values (P value, 1.69×10−7) in the 18p11 region are
also associated with eosinophil counts (GWAS P value,
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1.13×10−10) and the expression of PTPN2 in natural killer
(NK) cells (eQTL P value, 1.14×10−9) (fig. 6B).

The other two novel signals, both in the Peruvian co-
hort, are consistent with selection in Native Americans
only (likelihood-ratio.1,000). The first, at 17q25, contains
the CD300LF gene that encodes for a membrane glycopro-
tein that contains an immunoglobulin domain, and that
plays an important role in the maintenance of immune
homeostasis by promoting macrophage-mediated effero-
cytosis (Borrego 2013). Notably, a 3′UTR SNP (rs9913698,
AdaptMix P value= 3.11×10−9) is strongly associated
with monocyte count (GWAS P value= 1.00× 10−33), to-
tal white cell count (GWAS P value= 5.96× 10−24),
lymphocyte count (GWAS P value= 2.50× 10−19), and
neutrophil count (GWAS P value= 1.30× 10−9)
(supplementary fig. S15, Supplementary Material online).
The second signal is at 22q11 adjacent to the MIF gene
(fig. 6C), which is implicated in macrophage function in
host defense through the suppression of anti-
inflammatory effects of glucocorticoids (Calandra and
Roger 2003). Variants within MIF have been recently

associated to rheumatoid arthritis in southern Mexican
patients (Santoscoy-Ascencio et al. 2020). The SNP
rs2330635 (AdaptMix P value= 7.06× 10−8) is strongly
associated to the expression of MIF in T-cells (eQTL P va-
lue, 8.63× 10−5) and NK cells (eQTL P value= 5.77×
10−9) and is also marginally associated to neutrophil
counts (GWAS P value= 2.46× 10−6) (fig. 6C).

Overall, these findings suggest that some of the clearest
signals of adaptation in the Americas can be ascribed to
immune-related selective pressures. These plausibly re-
sulted from both the introduction of novel pathogens
after European colonization and the endemic pathogens
encountered by the first Native Americans during the ini-
tial peopling of the continent.

Signals at Genes Related to Diet
Among the 47 candidate regions, nine regions contained at
least one protein-coding gene potentially related to diet-
ary practices through their association with metabolism-
related phenotypes or anthropometric-related

FIG. 5. Regional selection plot at the HLA region in five Latin American cohorts. The top plot shows the−log10(P values) of SNPs from AdaptMix,
the middle plot shows Z-score values based on African LADs, and the bottom plot shows genes in the region shaded in gray. Genomic coordi-
nates are in Mb (build hg19 as reference) and genes shown include transcripts.
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measurements (supplementary table S6, Supplementary
Material online). Among these, we infer three previously
unreported signals where at least one of the
selected SNPs was associated to metabolic- or
anthropometric-related phenotypes, or to the expression
of the candidate gene in adipose, muscle, or liver tissue
(see Materials and Methods). One of these three hits
(rs4636058, AdaptMix P value= 5.70× 10−10), at 6p22 in
the Chilean cohort, is classified as being selected post-
admixture and shows an increase of LAI-inferred
European ancestry (Z-score= 3.78, one-sided P value=
7.82× 10−4). It is located at 6q22 and encompasses the
SLC35F1 gene, whose function is not known, though sev-
eral studies have associated this gene with different mea-
surements of cardiac function (Hoffmann et al. 2017;
Warren et al. 2017; Giri et al. 2019). Notably, SNP
rs4636058 is marginally associated to cholesterol levels

(UKBB GWAS P value= 3.8× 10−4) and body fat percent-
age (UKBB GWAS P value= 4.29× 10−4). Another of
these three hits, at 1q31 in the Mexican cohort, is consist-
ent with selection in Native Americans (likelihood-ratio
.1,000) (fig. 7A). The 1q31 signal includes an intronic
SNP (rs1171148, AdaptMix P value= 2.31× 10−8) of
BRINP3, a gene associated to body mass index in studies
across different human groups (Pulit et al. 2019; Zhu
et al. 2020). Within this region, various SNPs are associated
to different metabolic-related phenotypes, including the
SNP rs1171148 that is associated with hip circumference
(UKBB GWAS P value= 4.96× 10−8) and marginally asso-
ciated with the body mass index (UKBB GWAS P value=
5.51× 10−5) (fig. 7A).

Finally, the third hit (rs5030938, AdaptMix P value=
3.79× 10−15), which had the highest overall AdaptMix
score, is inferred in the Peruvian cohort at 10q22 and

FIG. 6. Genetic loci with signals of selection at immune-related genes. (A), (B) and (C ) Regional selection plot at three candidate regions of se-
lection encompassing two immune-related genes in the Chilean and one immune-related gene in the Peruvian cohort. Each plot is composed of
four panels (rows), consisting of−log10(P values) of SNPs: (row 1) fromAdaptMix; (row 2) associated with immune-related cell counts via GWAS
(Chen et al 2020); (row 3) associated (as expression quantitative trait loci [eQTLs]) with expression of genes CD101, PTPN2, andMIF for (A)–(C ),
respectively (Schmiedel et al. 2018); with (row 4) depicting genes in the region (in Mb, build hg19 as reference. The horizontal dashed lines give
significance thresholds of (row 1) P value= 1× 10−5 based on neutral simulations (row 2) P value= 1× 10−5 (blue line) and P value= 5× 10−8

(red line), and (row 3) P value= 1× 10−4. (D), (E) and (F ) Derived allele frequency (DAF) in admixed Latin Americans (white circles) stratified by
proportion of inferred Native American ancestry, for the SNPs highlighted (vertical dashed line) in top row panels. The sizes of the circles are
proportional to the number of individuals in that particular bin. The lines give expected DAF under neutrality (gray), post-admixture selection
(brown), or selection in the Native source (black). The horizontal dashed red, blue, and green lines depict DAF for surrogates to Native American,
European, and African sources, respectively. AdaptMix’s conclusions for these SNPs are selection that is (D) post-admixture, (E) unclassified, and
(F ) pre-admixture in the Native American source.
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indicates selection in Native Americans (likelihood-ratio
.1,000) (fig. 7B). This SNP is associated with the expres-
sion of HKDC1 in liver (eQTL P value= 2.19× 10−5), adi-
pose visceral (eQTL P value= 1.46× 10−5), and adipose
subcutaneous tissue (eQTL P value= 1.36× 10−4)
(fig. 6B). HKDC1 encodes and hexokinase that catalyzes
the rate-limiting and first obligatory step of glucose me-
tabolism (Ludvik et al. 2016), and several studies have

associated variants within this gene with glucose levels in
pregnant women (Hayes et al. 2013; Guo et al. 2015;
Kanthimathi et al. 2016; Tan et al. 2019) and with weight
at birth (Warrington et al. 2019).

Overall, these results support previous hypothesis
that genes related to energy metabolism were probably
critical in the establishment of stable human popula-
tions in distinct ecoregions (Hancock et al. 2010),

FIG. 7. Genetic loci with signals of selection at metabolic-related genes. (A) and (B) Regional selection plot at two candidate regions of selection
encompassing metabolic-related genes in the Mexican and Peruvian cohorts, respectively. Each plot is composed of four panels consisting of
−log10(P values) of SNPs: (row 1) from AdaptMix; (row 2) from the UK Biobank GWAS; (row 3) associated (as eQTLs) with expression of
BRINP3 and HKDC1 for (A)–(B), respectively, (GTEx eQTL study); with (row 4) depicting genes in the region (in Mb, build hg19 as reference).
The horizontal dashed lines give significance thresholds of (row 1) P value= 1× 10−5 based on neutral simulations (row 2) P value= 1× 10−5

(blue line) and P value= 5× 10−8 (red line), and (row 3) P value= 1× 10−4. (C ) and (D) Derived allele frequency (DAF) in admixed Latin
Americans (white circles) stratified by the proportion of inferred Native American ancestry, for the SNPs highlighted (vertical dashed line)
in top row panels, both of which were classified as reflecting selection in the Native American source. The sizes of the circles are proportional
to the number of individuals in that particular bin. The lines give expected DAF under neutrality (gray), post-admixture selection (brown), or
selection in the Native American source (black). The horizontal dashed red, blue, and green lines depict DAF for surrogates to Native American,
European, and African sources, respectively. AdaptMix’s conclusions for these SNPs are selection that is pre-admixture in the Native American
source for (C) and (D).
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including those of the Americas (Amorim et al. 2017;
Reynolds et al. 2019).

Discussion
Analytical Considerations
Here, we present AdaptMix, a novel statistical model that
identifies loci under selection in admixed populations. Our
model is based on the principle that allele frequencies in an
admixed population can be modeled as a linear combin-
ation of the allele frequencies in the ancestral populations
proportional to their admixing contributions, and that de-
viations from the expectation can be a product of selec-
tion. This selection test is related to the work of Long
(1991) and Mathieson et al. (2015). One difference is
that our approach directly infers and models the variance
of the predicted allele frequencies in the admixed popula-
tion given the set of surrogates used for ancestral sources.
This parameter can help control for large deviations in al-
lele frequency arising solely from genetic drift experienced
in the admixed population (Long 1991; Bhatia et al. 2014)
and/or from using inaccurate proxies for one or more of
the source populations. In some applications here, for
example, the Brazilian cohort, AdaptMix gives P values
with a median near 0.5 as expected under the null hypoth-
esis of neutrality (supplementary fig. S16, Supplementary
Material online). However, simulations under neutrality
that follow a slightly different model than our inference
approach (see Materials and Methods), shows AdaptMix
gives both an excess of high and low P values relative to
the uniform distribution expected under neutrality
(supplementary fig. S17, Supplementary Material online).
This suggests our P values are not well-calibrated, perhaps
reflecting deviations from the underlying model and ne-
cessitating caution when choosing thresholds for signifi-
cance. One potential issue is that SNPs with low
minor-allele-frequency (MAF) likely well-fit their expected
frequencies under the neutral model, given their lower ex-
pected variance in sampling frequency. Therefore, datasets
with a high proportion of such SNPs may decrease the in-
ferred variance parameter to an undesirably low value.
Binning SNPs by MAF and inferring a separate variance
parameter for each bin may help. Here, we based our sig-
nificance thresholds on neutral simulations tailored to
each cohort, including matching for genome-wide
sampled allele frequencies, and focus only on the strongest
association signals that resulted in low false-positive rates
based on simulated neutral SNPs. However, we caution
that necessarily simulations are over-simplifications of
complex latent demographic processes, and more work
is required to verify these signals.

Another important contribution of our test is that it
can infer whether selection disproportionately affects
one source/surrogate pairing or affects all ancestry back-
grounds equally. We assume that selection affecting
all ancestry backgrounds indicates selection occurring
post-admixture, which is more parsimonious than an

alternative explanation of independent selection events
differentiating allele frequencies between each admixing
source and its surrogate. For inferred selection in a
source/surrogate pairing, this can reflect selection occur-
ring in that source and/or its surrogate, possibly even fol-
lowing the admixture event. Post-admixture selection
affecting only one source may be possible in cases of selec-
tion only occurring in a particular environment that is cor-
related with admixture fractions. For example, selection we
infer to occur in Native Americans may be attributable to
Europeans introducing a new environmental pressure (e.g.,
infectious disease) that disproportionately affected fitness
in indigenous Americans. However, the split time between
the true Native American ancestral source and our Native
American surrogate is likely much longer than the time
since colonial era admixture, suggesting selection pre-
admixture as a more plausible explanation given the longer
time to act. Supporting this, our inferred selection coeffi-
cients (which are summed over time) in cases where
we conclude selection in Native Americans are typically
greater than 2 (supplementary table S6, Supplementary
Material online). If selection had occurred post-admixture
continuously over the last 12 generations (corresponding
to an admixture date of �1650CE), this value approxi-
mately corresponds to a per generation selection coeffi-
cient �0.16, which is strong relative to previous reports
of recent selection in human populations (e.g., Hamid
et al. (2021)). In contrast, our four signals concluding
post-admixture selection infer a per generation selection
coefficient,0.1, which falls more in line with previous in-
ference of selection strengths.

For 18 genomic regions where we conclude selection in
the Native American source (supplementary table S6,
Supplementary Material online), it is possible this is cap-
turing selection in (some subset of) groups that comprise
the Native American surrogate group we use here, rather
than in the (more localized) Native American source of
the admixed population. The lack of overlap in selection
signals when analyzing the five CANDELA cohorts, as
well as the lack of concordance of our signals with
those from PBS testing for selection in this combined
Native American surrogate (supplementary fig. S18,
Supplementary Material online), suggests that our signals
are not being driven by selection in this combined popu-
lation in practice. Another potential concern is that our
likelihood ratio test may preferentially conclude selection
in the Native American source if the combined Native
American surrogate generally represents a poor match to
the true source. Encouragingly, when using PBS to test
for selection in LAI-inferred Native American segments
from individuals with high degrees of ancestry recently re-
lated to the tested Native American source, an analysis
that does not use the allele frequency of the combined
Native American surrogate, PBS scores for SNPs in 6 of
these 18 regions fall into the top 99.99th percentile
(supplementary figs. S19–S24, Supplementary Material on-
line), with the remaining 13 regions containing SNPs in the
top 99th percentile. However, relative to our approach,
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LAI-based selection scans (e.g., Avila-Arcos et al. (2020))
may bemore robust to using combined data frommultiple
populations to represent one surrogate, since it only re-
quires matching to a subset of individuals’ haplotype pat-
terns in the reference panel.

We also checked whether the top signals recently re-
ported to be under selection in the Native American an-
cestry component of an admixed Mexican population
using Ohana (Cheng et al. 2021) showed evidence of selec-
tion in our scan of a different Mexican cohort. Notably, we
found that 7 out of the top 10 candidate genes reported in
Cheng et al. (2021) contained at least one nearby SNP (i.e.,
within 50 kb from the reported gene) with AdaptMix se-
lection scores above the 95th percentile in theMexican co-
hort, including 4 SNPs with scores above the 99th
percentile, and one SNP with a score above the 99.9th per-
centile. We also found that among the 18 SNPs classified as
being selected in the Native American ancestors of the
Peruvian cohort, 12 of these were found at higher frequen-
cies in ancient DNA (aDNA) from .700-year-old popula-
tions sampled in Peru relative to any other aDNA data
sampled elsewhere in the Americas (supplementary fig.
S25, Supplementary Material online).

In general, our approach has decreased power to distin-
guish whether selection occurred post-admixture versus in
one of the ancestral sources, if reference population allele
frequencies are very different and/or selection is weak
(fig. 1C). Inferring excess ancestry matching using LAI
would likely better classify whether selection was post-
admixture in such cases, for example, a scenario where
one population that is fixed (or nearly fixed) for the pro-
tective allele intermixes with a population nearly-fixed
for the non-protective allele, with the admixed population
subsequently undergoing selection. An example of this is a
recently reported excess of African ancestry, likely attribut-
able to post-admixture selection, on the Duffy-null allele in
inhabitants of Santiago Island in Cape Verde (Hamid et al.
2021). However, our test to detect whether any type of se-
lection occurred should not be affected by these scenarios.
In addition, our approach may identify post-admixture se-
lection in scenarios that excess-ancestry LAI-based would
miss by design, such as cases where the selected allele
is at a similar frequency in all reference populations.
Perhaps the most important contrast to LAI and other ap-
proaches detecting selection in admixed populations
(Cheng et al. 2021) is that, in principle, our approach can
be applied to populations that descend from the mixture
of genetically similar groups, for example, if using
haplotype-based approaches (e.g., SOURCEFIND) to infer
ancestry proportions. Future work should assess the power
of this technique under such admixture settings.

Although our method assumes a single pulse of admix-
ture, theoretically our ability to diagnose and classify selec-
tion occurring in only one source should not be affected by
multiple instances of (or continuous) admixture from that
or any other source. This is because the signal of allele fre-
quency deviation due to selection in such cases is entirely
determined by the amount of ancestry inherited from that

source and not by the number of admixture pulses. In con-
trast, if an admixed population experiences selection and
then receives newmigrants from one of the original admix-
ing sources that are unaffected by this selection, for ex-
ample, later European migrants to the Americas, in
theory, this may attenuate our ability to determine that se-
lection occurred post-admixture. However, in a simple
scenario of one such additional admixture pulse, contrib-
uting 10–50% of DNA, the correct post-admixture selec-
tion theoretical model fits as well or better to the
theoretical truth than does the incorrect model conclud-
ing selection in the source that did not contribute newmi-
grants (supplementary fig. S26, Supplementary Material
online).

As noted above, and consistent with other tests com-
paring populations (Mathieson 2020), the choice of surro-
gate group can make a difference in the inferred selection
signals. For example, our largest signal of Native American
selection, at 10q22 and most strongly signalled in the
“Andes Piedmont” Peruvian subgroup, disappears if re-
placing the “combined Native American” surrogate group
with Han Chinese (CHB from the 1KGP) (supplementary
fig. S10, Supplementary Material online). In this case, the
frequency of the putatively selected allele (rs5030938) is
67% in LAI-inferred Native American haplotypes in the
Peruvian “Andes Piedmont” subgroup, which is notably
higher than the 38–54% observed in LAI-inferred Native
American haplotypes in four non-Peruvian sub-groups,
and, thus, consistent with selection (supplementary table
S7, Supplementary Material online). However, it is lower
than that of CHB (�76%), which explains the lack of signal
when using CHB as a surrogate. The frequency in Yakut, a
Siberian group that perhaps better represents ancestral
Native Americans than CHB does (Wang et al. 2007), is clo-
ser to that of frequency estimates across non-Peruvian
Native American groups (0.46–0.5). In general, there is a
trade-off between using surrogates more distantly related
to the source, which may decrease power to find regional
adaptation signals, versus choosing a more closely related
surrogate, which may also decrease power by masking
adaptation signatures that it shares with the target source
(e.g., using Iberians as a surrogate for European ancestry of
Latin Americans). Our inferred variance parameter can be
used to investigate how well a given surrogate captures
genetic variation in the target population, with, for ex-
ample, the inferred variance using CHB as a surrogate
�5–10-fold higher relative to using the combined Native
American surrogate.

Selection Signals Detected in the CANDELA Cohort
The candidate genes we infer to be affected by selection in
Latin Americans and their Native American ancestors are
best viewed in the context of other previously reported
signals. Reynolds et al. (2019) recently performed a selec-
tion scan in three Native North American populations
and identified some of the strongest signals at
immune-related genes including the interleukin 1 receptor

Mendoza-Revilla et al. · https://doi.org/10.1093/molbev/msac076 MBE

14

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac076#supplementary-data
https://doi.org/10.1093/molbev/msac076


Type 1 (IL1R1) gene in a sample from several closely related
communities in the southeastern United States, and the
mucin 19 (MUC19) gene in a central Mexican population.
We do not replicate the MUC19 signal in the CANDELA
Mexican cohort, which could indicate that the Native
American component in this cohort is not closely related
to that of the central Mexican Native American group.
Nonetheless, we found some of our strongest signals of se-
lection at several loci encompassing genes involved in the
immune response, including CD300LF andMIF, detected as
being selected in the Native American ancestors of
Peruvians. Interestingly, CD300LF promotes macrophage-
mediated efferocytosis, whereasMIF plays a role regulating
macrophage function through the suppression of gluco-
corticoids. These observations suggest that these two
genes might have perhaps evolved in a coordinated man-
ner, possibly due to their phagocytic-related role against
the novel pathogens encountered in the Americas.

Regarding signals of selection post-admixture, several
studies have consistently shown adaptive signals in different
Latin American populations at HLA by showing an excess of
matching to African reference haplotypes using LAI (Tang
et al. 2007; Basu et al. 2008; Ettinger et al. 2009; Guan
2014; Rishishwar et al. 2015; Deng et al. 2016; Zhou et al.
2016; Norris et al. 2020; Vicuna et al. 2020). Given that
African ancestry was enriched at this region, the authors sug-
gested that certain African alleles could have conferred a se-
lective advantage to certain infectious diseases most likely
brought by Europeans. Although AdaptMix is only able to
classify selection in one cohort (Colombia) out of our four
HLA signals, we also replicated this excess of African ancestry
in each of the CANDELA cohorts (supplementary fig. S12,
Supplementary Material online). There is some debate as
to whether these signals are genuine or attributable to con-
founders such as inaccurate LAI inference (Pasaniuc et al.
2013). To illustrate the validity of these concerns, people
with entirely Northwest European ancestry fromBritain infer
excess ancestry related to Africa in HLA, which—though
perhaps influenced by genuine selection at HLA in
Northwest Europeans—presumably does not reflect genu-
ine recent African ancestry (supplementary fig. S27,
Supplementary Material online). Instead, this is more likely
attributable to the relatively high degree of genetic diversity
in HLA mimicking African genetic diversity, illustrating how
these LAI-based tests can give false-positive signals when
testing for post-admixture selection. This may explain why
AdaptMix does not replicate themoderate amount of excess
African ancestry inferred by LAI at HLA in the Brazilian co-
hort (supplementary fig. S12, Supplementary Material on-
line), which is predominantly of European ancestry.
Indeed, regions under selection in admixed populations
may be particularly difficult to classify accurately using LAI,
for example, with the HLA region here having the lowest
overall LAI classification probability (supplementary fig.
S28, Supplementary Material online), especially in cases
where the reference population has not experienced similar
selection and, hence, may have poorlymatching genetic vari-
ation patterns. As our approach does not require LAI, it is

robust to these issues. Although our model is not able to
classify selection as post-admixture at most of our HLA sig-
nals, allele frequency patterns in the admixed cohorts are
consistent with post-admixture selection and often show al-
lele frequencies drifting away from those expected under our
neutral model and toward those of the African or European
reference population (supplementary fig. S29,
Supplementary Material online). This is most evident in
the Colombian cohort, consistent with Africans contributing
protective alleles as previously suggested (Tang et al. 2007;
Basu et al. 2008; Ettinger et al. 2009; Guan 2014; Rishishwar
et al. 2015; Deng et al. 2016; Zhou et al. 2016; Norris et al.
2020; Vicuna et al. 2020). In addition to HLA, we also iden-
tified a novel post-admixture selection signal in the Chilean
cohort that was accompanied by a significant increase of
European ancestry at the CD101 locus, again, suggesting
that protective alleles from Europeans might have also
been adaptive to counter Old World-borne diseases
brought to the Americas.

The signals encompassing genes related to metabolic
and anthropometric-related phenotypes are consistent
with novel dietary practices in the Americas driving adap-
tation, with many signals with an effect on relevant pheno-
types and/or tissues, classified as being selected in the
Native American source. Previous studies have shown evi-
dence of adaptation at genes related to metabolic-related
phenotypes and attributed the adaptation to dietary pres-
sures in Native Americans. Avila-Arcos et al. (2020) recently
reported strong signals of selection in the Mexican Huichol
at several genes associated to lipid metabolism, including
APOA5 and ABCG5. We do not replicate these signals in
the CANDELA Mexican cohort, which could indicate that
the Native American component in this cohort is not close-
ly related to that of the Huichol. The signals at APOA5 and
ABCG5 are in line with a previous finding of a strong selec-
tion signal at another ATP-binding cassette transporter A1
(ABCA1) gene that has been associated with low high-
density lipoprotein cholesterol in Latin Americans
(Villarreal-Molina et al. 2008; Acuña-Alonzo et al. 2010).
As the ABCA1 protein carrying the putative selected allele
shows a decrease cholesterol efflux, the authors suggest
that this variant could have favored intracellular choles-
terol and energy storage, which, in turn, might have bene-
ficially influenced the ability to accommodate fluctuations
in energy supply during severe famines and during the
regulation of reproductive function (Acuña-Alonzo et al.
2010). Lindo et al. (2018) used a genomic transect of
Andean highlanders from northern Peru and found the
strongest signals of selection at MGAM, a gene related to
starch digestion. The authors attributed this finding to a
dietary-related selective pressure perhaps brought by the
transition to agriculture in this region. AdaptMix shows evi-
dence in the CANDELA Peruvian cohort within MGAM
(rs7810984, AdaptMix P value= 1.79× 10−8, above
99.9th percentile) only when using CHB as a surrogate for
Native American ancestry. This again illustrates how the
choice of surrogate populations defines the selection test
between each surrogate and its corresponding ancestral
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source. It is possible that by including Andean Native
Americans in our Native American source population
(supplementary table S1, Supplementary Material online),
we are affecting the power to detect selection in the
Andean Native American ancestors of the CANDELA
Peruvian cohort, analogous to how Lindo et al. (2018) no
longer detect selection at MGAM when using PBS to com-
pare ancient and present-day (Aymara) Andean groups.

Studies have also reported signals of selection in Native
Americans groups shared with Siberian populations,
which the authors interpreted as an adaptation to
polyunsaturated-rich diets prior or close to the peopling
of the Americas, likely in the Arctic Beringia. These in-
cluded a signal overlapping the WARS2 and TBX15 genes,
previously associated to body fat distribution and adipose
tissue differentiation (Fumagalli et al. 2015; Racimo,
Gokhman, et al. 2017), and the fatty acid desaturase
(FADS) gene cluster that modulates the manufacture of
polyunsaturated fatty acids (Amorim et al. 2017; Harris
et al. 2019) (but seeMathieson (2020) for an alternative ex-
planation of the FADS signal). Again, we inferred moderate
selection evidence at these regions in the CANDELA
Peruvian cohort only when using CHB as surrogate for
Native American ancestry (SNP rs2361028 near TBX15,
AdaptMix P value= 1.8× 10−7, above 99.5th percentile;
SNP rs174576 within FADS2, AdaptMix P value= 3.8×
10−8, above 99.5th percentile). It is, thus, tempting to sug-
gest that the three novel signals of selection AdaptMix
classifies as being under selection in Native Americans
might be related to dietary pressures experienced prior
or during the peopling of the Americas (e.g., the BRINP3
signal detected in Mexicans), or as a product for a greater
reliance of domesticated crops including potatoes (3400–
1600 CE) (Rumold and Aldenderfer 2016) (e.g., the HKDC1
signal detected in Peruvians). However, it is important to
note that other factors may also be attributable to some
of these selection signals.

Of potential adaptive interest is the STOX1 gene de-
tected in the Peruvian cohort close to our highest overall
selection signal within HKDC1 at 10q22 (fig. 6B). Mutations
within STOX1 have been associated to preeclampsia (Van
Dijk et al. 2005; van Dijk and Oudejans 2011), a pathology
of pregnancy characterized by high blood pressure and
signs of damage to other organ system that can be
lethal for the mother and for the fetus (Sibai 2003).
Interestingly, in a recent linkage study on preeclampsia
conducted in Andean Peruvian families, SNPs within
STOX1 show a marginal association (P value= 0.004678)
(supplementary fig. S30, Supplementary Material online)
(Badillo Rivera et al. 2021). Given that high elevation is
linked to an increased incidence of preeclampsia
(Zamudio 2007), it is possible that natural selection has
acted on genes related to this condition. Furthermore,
the fact that variants within HKDC1 are associated with
glucose levels in pregnant women (Hayes et al. 2013;
Guo et al. 2015; Kanthimathi et al. 2016; Tan et al. 2019)
and considering the relationship between abnormal glu-
cose levels and preeclampsia (Joffe et al. 1998;

Weissgerber and Mudd 2015), it is also possible that nat-
ural selection has targeted variants at HKDC1 due to its
role in glucose metabolism.

Lastly, other environmental factors may also be attrib-
utable to some of these selection signals, such as infectious
diseases. There is growing evidence of a link betweenmeta-
bolic diseases and innate immunity or inflammation
(Pickup and Crook 1998; Kominsky et al. 2010; Lumeng
and Saltiel 2011; Robbins et al. 2014). For instance, it has
been shown that cholesterol plays a key role in various in-
fectious processes such as the entry and replication of fla-
viviral infection (Osuna-Ramos et al. 2018). Additional
studies in ancient and present-day indigenous American
populations will be needed to disentangle the putative se-
lective pressures at these loci.

Conclusion
We have presented a novel allele frequency-based method
that identifies loci under selection in admixed populations,
while determining whether the selection affected all ances-
tral sources equally, indicating selection following admix-
ture, or in only one of the sources. The novel candidate
genes under selection provide new insights into the adap-
tive traits necessary for the early habitation of the
Americas and to respond to the challenge of infectious
pathogens corresponding to European contact. Future
functional investigations will allow a more detailed under-
standing of the consequences of selective pressures experi-
enced in the American continent, including its effect on
present-day health outcomes.

Materials and Methods
Genomic Datasets
The Latin American individual samples analyzed here were
part of the Consortium for the Analysis of the Diversity
and Evolution of Latin America (CANDELA)
(Ruiz-Linares et al. 2014). The CANDELA Consortium sam-
ples (http://www.ucl.ac.uk/silva/candela) have been de-
scribed in detail in previous publications (Ruiz-Linares
et al. 2014; Chacon-Duque et al., 2018). These data include
a total of 6,630 volunteers from five Latin American coun-
tries (Brazil, Chile, Colombia, Mexico, and Peru). This data-
set was genotyped on the Illumina HumanOmniExpress
chip platform including 730,525 SNPs. We also collated ref-
erence populations from regions that have contributed to
the admixture in Latin America. For Native American sam-
ples, we used individuals previously genotyped by
Chacon-Duque et al. (2018). This dataset compromises
19 Native American populations from throughout the
Americas with genotype data (supplementary table S1,
Supplementary Material online). For all the analyses de-
scribed, we have only retained Native American individuals
that showed more than 99% Native American ancestry as
estimated by ADMIXTURE (see below). For European sam-
ples, we used genotype data from Portuguese and Spanish,
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individuals previously genotyped by Chacon-Duque et al.
(2018) and Spanish (IBS; Iberian Population in Spain)
from the 1000 Genomes Project study (The 1000
Genomes Project Consortium 2015). For Sub-Saharan
Africans, we used genotype data from Yoruba (YRI;
Yoruba in Ibadan, Nigeria), and Luhya (LWK; Luhya in
Webuye, Kenya) individuals from the 1KGP. The reference
samples from Chacon-Duque et al. (2018) are described in
more detail in the supplementary table S1 (Supplementary
Material online) from the mentioned publication. For
some of our analysis, we also included the 103 Han CHB
and 85 Europeans from England and Scotland (GBR)
from the 1KGP as a surrogate for the Native American
and European sources, respectively. Genotype data of
the individuals from the 1KGP were downloaded from
the 1000 Genomes Project FTP site available at ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/.

Data Curation
We used PLINK v1.9 (Chang et al. 2015) to exclude
SNPs and individuals with more than 5% missing data
or that showed evidence of genetic relatedness as in
Chacon-Duque et al. (2018). Due to the admixed nature
of the Latin American samples, there is an inflation in
Hardy–Weinberg P values, and, therefore, we did not ex-
clude SNPs based on Hardy–Weinberg deviation. After ap-
plying these filters, 625,787 autosomal SNPs and 7,986
individuals were retained for further analysis.

Selecting Admixed Latin American and Reference
Individuals
In order to select admixed Latin American individuals (i.e.,
individuals with varying degrees of Native American,
European, and African ancestry), we conducted an un-
supervised ADMIXTURE analysis at K= 3 using a set of
103,426 LD-pruned SNPs including Native Americans,
Iberian Europeans, and West Africans. We then removed
nonadmixed Latin American individuals that we define
as having less than 10% or more than 90% Native
American genome-wide ancestry. To avoid confounding
our selection inference due to the underlying population
structure, we further excluded individuals with .1% in-
ferred ancestry matching to surrogates other than Native
Americans, Iberian Europeans, and West Africans using
SOURCEFIND estimates obtained for the same individuals
in Chacon-Duque et al. (2018). As expected, we observe a
strong correlation between the ADMIXTURE and
SOURCEFIND estimates (average r. 0.99), demonstrating
the validity of this filtering approach and demonstrating
that most of the ancestry of the admixed Latin
American individuals can be appropriately modeled by a
three-way admixture model. After this filtering procedure,
the five Latin American populations consisted of 190
Brazilians (BRA), 1,125 Colombians (COL), 896 Chileans
(CHL), 773 Mexicans (MEX), and 834 Peruvians (PER).
From our Native American, European, and Sub-Saharan
African reference populations, we also removed

individuals who contained more than 1% of ancestry
from another group based on the ADMIXTURE analysis
described above. After this extra filter, our final reference
dataset was composed of 142 Native Americans, 205
Europeans, and 206 Sub-Saharan Africans.

Change in Allele Frequency Under Wright-Fisher with
Multiplicative Model of Selection
Assuming a multiplicative model of selection and random
mating, the frequency of the three genotypes in generation
1 at a biallelic locus with alleles A and a at frequencies
p and 1− p, respectively, in the previous generation is
where s1∈ [− 1, ∞] is the selection coefficient in gener-
ation 1 and

AA Aa aa
(1+ s1)

2p2/c1 (1+ s1)2p(1− p)/c1 (1− p)2/c1

c1= (1+ s1)
2p2+ (1+ s1)2p(1− p)+ (1− p)2. Note that

each copy of the A allele changes fitness by a factor
of (1+ s1).

Under the above, the allele frequency of (p1) of allele A
in generation 1 is

p1 = (1+ s1)
2p2 + (1+ s1)p(1− p)

(1+ s1)
2p2 + (1+ s1)2p(1− p)+ (1− p)2

= (1+ s1)p

1+ s1p

(1)

For generation 2, again assuming a multiplicative selec-
tion, the frequencies of the three genotypes are

AA Aa aa
(1+ s2)

2p21/c2 (1+ s2)2p1(1− p1)/c2 (1− p1)
2/c2

where s2 ∈ [− 1,∞] is the selection coefficient in generation
2 and c2 = (1+ s2)

2p21 + (1+ s2)2p1(1− p1)+ (1− p1)
2.

Note that each copy of the allele A changes fitness by a factor
of (1+ s2) in this generation.

The allele frequency (p2) of allele A in generation 2 is

p2 = (1+ s2)p1
1+ s2p1

=
(1+ s2)

(1+ s1)p

1+ s1p

[ ]

1+ s2
(1+ s1)p

1+ s1p

[ ]

= (1+ s∗2)p
1+ s∗2p

,

(2)

where s∗2;(s1 + s2 + s1s2).
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More generally, the allele frequency pg of allele A in gen-
eration g is

pg = (1+ s∗)p
1+ s∗p

, (3)

where

s∗ =
∑g
i=1

si

[ ]
+

∑g−1

j=1

sj
∑g
i=j+1

si

( )[ ]
+

∑g
i=3

∏
i

≈
∑g
i=1

si, (4)

with si the selection coefficient at generation i and Πi the

sum of the products of all
g
i

( )
combinations of {s1,…, si}

values. The approximation in equation (4) assumes that
the si are small, which should be a reasonable approxima-
tion based on, for example, the estimated selection coeffi-
cients in humans.

Testing for Evidence of Selection at an SNP
To assess the evidence of selection at an SNP, we employ a
model inspired by that used in Mathieson et al. (2015) and
based on the Balding–Nichols formulation (Balding and
Nichols 1995). In particular, for the allele count Xj at SNP
j in the target population, we assume

Pr(Xj = xj|M, pj, D) =

Beta− Binomial xj; 2M,
1− D

D
pj,

1− D

D
(1− pj)

( )
,

(5)

whereM is the number of target individuals and D is a vari-
ance parameter that is measuring the degree of uncer-
tainty about pj. More generally, D can be thought of as a
genetic drift parameter. The above model implicitly as-
sumes that the frequency of the allele in the target popu-
lation follows a Beta(mean= pj, variance=Dpj(1− pj)).
Under neutrality, we assume

pj = 1

M

∑K
k=1

∑M
i=1

ak(i)

[ ]
f jk)

( )
, (6)

where fjk is the sampled frequency of the allele in the sur-
rogate population at SNP j for source k, and αk(i) is the in-
ferred admixture proportion from population k in
individual i. We first find D̂ as the value of D that maxi-

mizes
∏J
j=1

[Pr(Xj|M, pj, D)], using the optim function in R

with the “Nelder–Mead” algorithm. Then, fixing D = D̂
in equation (5), for each SNP, we find the two-sided P value
testing the null hypothesis that the observed allele counts

follow this neutral model.
The variance under (5) is small for SNPs with very high

or very low pj, so such SNPs tend to reject this null model
even in cases where the observed target population allele
frequency does not deviate notably from its neutral
expectation pj in (6). Therefore, we used an alternative par-
ameterization where we assumed that the frequency of
the allele in the target population follows a Beta(mean=
pj, variance=V ). This was achieved by substituting D in

equation (5) at SNP j with min V
pj(1−pj)

, 0.99999
[ ]

, neces-

sary to ensure numerical stability, and finding V̂. In prac-
tice, this means that SNPs with minor allele frequency
,(1.00001×V ) had variance (0.99999pj(1− pj)) rather
than V. Although our use of V achieved the desired prop-
erty of mitigating false-positives at SNPs with low MAF,
one potential drawback is that datasets containing a
high proportion of low-MAF SNPs may drive the inferred
V to be small relative to the variance expected at
high-MAF SNPs under neutrality. In other words, under
neutrality, it is possible that V.Dpj(1− pj) at low-MAF
SNPs, yet V,Dpj(1− pj) at high-MAF SNPs. If so,
high-MAF SNPs may reject the neutral model more fre-
quently than it should under neutrality. Indeed, this seems
to be the case: in some of our neutral simulations de-
scribed below, SNPs with AdaptMix P value ,0.05 are
1.7-fold enriched for SNPs with MAF. 0.3 relative to all
tested SNPs. We reiterate that this is partially by design
since we use our formulation with V precisely to avoid in-
ferring selection at low-MAF SNPs. Future work, for ex-
ample inferring V separately for SNPs binned by MAF,
may lead to better P value calibration under neutrality.

Determining Whether Selection Occurred Pre or
Post-Admixture
Consider the scenario in figure 1B, where sampled popula-
tion C descends from an admixture of unsampled popula-
tionsA∗ and B∗, who are represented by sampled surrogate
populations A and B, respectively. Our test aims to distin-
guish whether selection occurred post-admixture along
branch (e) versus along any of branches (a)–(d). Let fC
be the allele frequency of a sample from population C.
At a neutral SNP,

E[fC] = afA∗ + (1− a)fB∗ , (7)

where fA∗ and fB∗ are true allele frequencies of A∗ and B∗ at
the SNP, respectively, and α is the admixture proportion
from A∗. Letting fk be the sampled allele frequency for
population k serving as surrogate to the true admixing
population k∗, it seems reasonable to assume

E[fc] = afA + (1− a)fB. (8)

Note that this also holds under selection along branch (f)
in figure 1B, which we ignore here (but which can be tested
by comparing allele frequencies in A and B). Equation (8)
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assumes that fA and fB are equally good proxies for the ad-
mixing populations’ frequencies f∗A and fB∗ , respectively,
at the SNP, which may not be true. We test the effect of
this using simulations, described below, in which surro-
gates vary in how well they reflect their respective true ad-
mixing sources.

In the case of a multiplicative model of selection along
branch (e) in figure 1B at this SNP, using equation (3), we
assume

E[fc] = (1+ sc)[afA + (1− a)fB]

1+ sc[afA + (1− a)fB]
; Ec[ fc], (9)

where sc is the selection strength (i.e., equation (4)) along
branch (e).

Alternatively, under a multiplicative model for selection
along branches (a) and/or (c) in figure 1B, with analogous
results for selection along branches (d) and/or (b), instead
we assume

E[fc] = a
(1+ sA)fA
1+ sAfA

[ ]
+ (1− a)fB

= fB + a
(1+ sA)fA
1+ sAfA

− fB

[ ]
; EA[fc],

(10)

where sA is the selection strength along branches (a) and/
or (c). Importantly, EA[ fc] is linear in α, whereas EC[ fc], is
not, which we aim to exploit to distinguish between these
two scenarios.

Here, assuming CANDELA population T can be de-
scribed as a mixture of K sources, we assume the genotype
gi of individual i∈ [1, …, M ] from T as follows:

gi � Binomial(2, fT(i)). (11)

Under neutrality, we set fT(i) in equation (11) to

fNT (i) =
∑K
k=1

[ak(i)fk], (12)

where fk is the sampled allele frequency at the given SNP
for the surrogate population to the source contributing
αk(i) admixture to individual i.

In the case of selection in T post-admixture, we gener-
alize equation (9) and set fT(i) in equation (11) to

f PT (i|s) =
(1+ sc)

∑K
k=1 ak(i)fk

[ ]
1+ sc

∑K
k=1 ak(i)fk

[ ] . (13)

For the alternative case of selection along the branches
separating source A and its sampled surrogate A∗, we gen-
eralize equation (10) and replace fT(i) in equation (11) with

f AT (i|sA) =
∑K
k!=A

aA(i)fk

[ ]
+ aA(i)

(1+ sA)fA
1+ sAfA

[ ]
. (14)

In practice, we fix αk(i) to be the proportion of DNA that

each target individual i matches to surrogate k as inferred
by ADMIXTURE. We define

LP(sc) ;
∏M
i=1

[ f PT (i|sc)gi(1− f PT (i|sc))2−gi ], (15)

where gi is the genotype for target individual i. We use the
optim function in R with the “Nelder–Mead” algorithm to
find the maximum-likelihood estimate (MLE) ŝc, which is
the value of sc that maximizes equation (15).

Similarly, we define

LA(sA) ;
∏M
i=1

[ fAT (i|sA)gi(1− f AT (i|sA))2−gi], (16)

again finding ŝA, as the MLE for sA.
We note that [2− 2log(LP(ŝ)] and [2− 2log(LA(ŝA))] are

analogous to AIC values for these respective models.
Following the AIC theory, we calculate

I = min[LP(ŝc), LA(ŝA)]

max[LP(ŝc), LA(ŝA)]
≤ 1, (17)

where, relative to the model with higher likelihood out of
(15) and (16), the model with smaller likelihood is I times
as probable to minimize the loss of information when used
to represent the unknown true model (Akaike 1974).

Note we could analogously calculate the likelihood un-
der the neutral model, that is, using equation (12). Then, as
an alternative to the selection testing approach described
in Section “Testing for evidence of selection at a SNP”, we
could use a likelihood-ratio-statistic approach to test for
selection using either (15) or (16) as the alternative model
likelihood. We explored this alternative testing approach
but do not use it here because it gave lower P values
when simulating under neutrality. This observation may,
in part, be alleviated if we estimated fk∗ under both the
neutral and alternative models rather than fixing fk∗ = fk.
However, estimating fk∗ is confounded with estimating sC
or sA under the alternative models.

Simulations
Estimating How Well Each Surrogate Reflects its
Corresponding True Admixing Source
We aimed to generate simulations that mimic our real data.
To do so, we first generate a measure of how well a sampled
surrogate population k reflects its corresponding true (un-
known) source population. In particular, we estimate a drift
parameter dk in the followingmanner. First, at each SNP j, we
use nlminb in R to find the estimated values { f̃

j
1, . . . , f̃

j
K}

for { f1∗ , . . . , fK∗}, respectively, that minimize

∑M
i=1

xji −
∑K
k=1

ak(i)fk∗

( )2

, (18)
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where xji [ {0, 1, 2} is the allele count for the admixed target

individual i∈ [1, …, M] at the SNP and each f̃
j
k [ [0, 1].

Then, for each source k, with observed allele counts Gj
k and

total countsMj
k at SNP j in the surrogate population, follow-

ing Balding–Nichols (Balding and Nichols 1995) we assume

Gj
k � Beta

− Binomial Mj
k,

dk
1− dk

f̃
j
k,

dk
1− dk

(1− f̃
j
k)

( )
. (19)

We then used the “Nelder–Mead” algorithm in the optim
function in R to find the dk∈ [0, 1] that maximized the prod-
uct of (19) across all SNPs. This gave the values reported in
table 1.

A large estimated dk (.0.1) corresponds to cases where
there is little admixture from that source in our sampled
individuals from that country, that is, for African admix-
ture in most countries and Native American admixture
in Brazil. As values inferred using such little data are pre-
sumably unreliable, we cap them at 0.05 for the simula-
tions below. Although these values are a guide, in
practice, we adjusted these values by a multiple of 2–7
to generate neutral simulations that had the same inferred
drift D̂, described in section “Testing for evidence of selec-
tion at a SNP”, as that observed in the real data.

Generating Simulated Allele Frequencies
We simulated admixed individuals who had experienced
selection, with genome-wide admixture proportions αk(i)
from source populations k∈ [1,…, K ] for simulated indivi-
duals i∈ [1, …, M ] matching those inferred by
ADMIXTURE in the real data. To do so, for each simulation
we repeated the following procedure:

1) For each source k, at each SNP, we sample starting al-

lele frequencies fk∗ from a Beta dk
1−dk

fk,
dk

1−dk
(1− fk)

( )
,

where fk is the sampled frequency of the respective
surrogate population and dk are defined in table 1
(but capped at 0.05).

2) We randomly select SNPs to undergo selection. If se-
lection is occurring in source population k prior to
admixture, we randomly sample from among SNPs
for which fk∗ , 0.5. If selection is occurring post-

admixture, we instead randomly sample from

among SNPs for which
∑M
i=1

∑K
k=1

fk∗ak(i)

( )
/M , 0.5.

3) We randomly select neutral SNPs from among all re-
maining SNPs, that is, those not among the SNPs
chosen in (2), in the real data.

4) To simulate selection:
• If selection is occurring prior to admixture, we
simulate selection in the relevant source popula-
tion for g generations under a specified model of
selection (additive, dominant, multiplicative, re-
cessive) using Wright–Fisher with a population
size of Ne individuals.

• If selection is occurring after admixture, we
simulate selection separately in each of the source
populations for g generations, under a specified
model of selection using Wright–Fisher with a
population size of Ne individuals per population.5) At each SNP, we sample allele counts for each indi-

vidual i from a Binomial(2, pi) with pi =
∑K
k=1

[ f gkak(i)],

where
• f gk = fk∗ for neutral SNPs
• f gk = fk∗ at selected SNPs for source populations k
not undergoing selection (i.e., in cases where selec-
tion is pre-admixture)

• f gk is the sampled final frequencies in step (4) after
g generations, at selected SNPs for source popula-
tion k undergoing selection.

We then analyze data from the simulated target popula-
tion individuals using the real sampled data from the
surrogate populations. For simulations here, we use
Ne= 10,000 for the African, European, and Native
American source groups.

Our procedure in steps (4)–(5) to simulate selection
and admixture ensures that the admixed individuals
have variable admixture proportions while remaining
computationally tractable. An alternative to this would
be to generate M admixed populations using observed fk
values, with the admixture proportions for population i
equal to α1(i), …, αK(i), and then simulate each admixed
population for g generations using Wright–Fisher, either
with or without selection. Such simulations would match
the approach used by our model to classify selection as
type 1) or type 2) (Section “Determining whether selection
occurred pre- or post-admixture”). However, we chose the
above for reasons of computational efficiency, as we have
many individuals (i.e.,M. 1000). Note also that our selec-
tion test (Section “Determining whether selection oc-
curred pre- or post-admixture”) is different from this
simulation procedure, in that our test models the com-
bined allele frequency across all admixed individuals, using
the mean admixture contributions across target indivi-
duals to calculate the expected frequency. This, in addition
to theway we infer the variance term that describes the dis-
tribution of each SNP’s sampled allele frequency (see
“Testing for evidence of selection at a SNP” above), may

Table 1. Inferred dk Measuring How Well the Sampled Surrogate
(column) Reflect the True Admixing Sources for Each Target Population
(row).

Target Native American European African

Brazil 0.173 0.007 0.102
Chile 0.02 0.011 0.226
Colombia 0.044 0.012 0.044
Mexico 0.024 0.007 0.223
Peru 0.015 0.009 0.119
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explain why our model exhibits an excess of SNPs with
small P values even when simulating no selection. This is
despite using all SNPs to infer the model’s variance param-
eter, which is designed to make more SNPs fit the model
(likely explaining the excess of high P values, we also see,
e.g., in supplementary fig. S17, Supplementary Material on-
line). Although including this variance parameter does
somewhat control P values by for example, giving in
some cases a median P value near 0.5, as expected under
neutrality, our no-selection simulations suggest caution in
directly using our model’s P values for assessing selection
evidence. This suggests that some degree of plausible simu-
lations would be helpful to calibrate themodel’s reported P
values.

Forward Simulations
To explore the effect of the effective population size (Ne)
on the population undergoing selection, we conducted
additional simulations using the forward simulator SLiM
3 (Haller and Messer 2019). We used the demographic
model of an admixed Mexican (MEX) population recently
presented in Cheng et al. (2021). The model is based on
parameter estimates from Gravel et al. (2011) and
Gutenkunst et al. (2009) of a three-population demog-
raphy, namely, an African (AFR), European (EUR), and
Asian population (ASN). The main difference is the inclu-
sion of an additional Native American population that
splits from the ASN population. The MEX population is
modeled as a 50%/50% admixture between the EUR and
the Native American population. We consider five differ-
ent Nes for the Native American population (Ne= 800,
1,000, 200, 5,000, and 10,000). The selection occurs only
in the ancestral Native American population with no on-
going selection in MEX. In the original model, selection
lasts for 500 generations, which resulted in the allele being
fixed before the admixture event in simulations with high
Ne, particularly when testing for high selection coefficients.
To avoid this fixation which might result in a bias when es-
timating the power, we modeled selection in the Native
American population for 300 generations. All other para-
meters were the same as in the original model. We simulate
a region of 4 Mb with a mutation rate of 10−8 and a recom-
bination rate of 10−8 base pairs per generation and sample
20 diploid individuals from each population. We simulate a
single selected site under an additive model within a
+10 kb window of the center of the simulated region. As
in our previous simulations, we consider 10 different selec-
tion coefficients (s= 0.01 to 0.1 in steps of 0.01, with s de-
fined here as the increased fitness when carrying one copy
of the advantageous allele) with a starting frequency for
the selected site being equal to or higher than 0.01 but lower
than 0.1. Following Haller and Messer (2019), we scale times
down by a factor of 10, and scale up the mutation rate, re-
combination rate, and selection coefficient by a factor of 10.
We conducted a total of 500 independent regions to esti-
mate the statistical power for each combination of Ne
and selection coefficient.

We additionally simulated an 80 Mb region under neu-
trality (i.e., s= 0) using the same settings as previously de-
scribed. For AdaptMix, admixture proportions were
estimated by applying supervised ADMIXTURE with K=
3 to this neutral region, setting AFR, EUR, and ASN as
the reference populations. Note that, as the MEX popula-
tion does not have AFR ancestry, this simulation setting is
also assessing the power under a model misspecification,
which might be more realistic for most real-word applica-
tions. The 80 Mb neutral region was then used to generate
a null distribution of P values. The power of AdaptMix was
based on a P value cutoff that resulted in a false-positive
rate of 5× 10−5 of this null distribution.

Comparison of AdaptMix Against Other
Selection Approaches
We compared the performance of AdaptMix with two dif-
ferent approaches under the two scenarios: 1) selection in
one of the source populations and 2) selection in the ad-
mixed population following the admixture event.

To assess the power under scenario 1), we compared
AdaptMix against Ohana, a maximum likelihood method
for finding regions under positive selection by modeling
ancestry components (Cheng et al. 2021). Importantly,
Ohana has been shown to retain similar or higher power
compared with other state-of-the-art methods. We com-
pared AdaptMix and Ohana under the demographic set-
ting previously described, but simulating selection for
500 generations and fixing the Ne of the Native
American population undergoing selection to 800, as in
the original publication.

To assess the power under scenario 2), we compared
AdaptMix against Ohana and to a LAD approach. A LAD
approach here consists of evaluating whether a genomic
region is enriched for a particular ancestry compared
with their genome-wide average, and relies on local ances-
try inference. LAD approaches have been extensively used
to detect signals of selection following an admixture event
in several recently admixed populations, including Latin
Americans (Tang et al. 2007; Basu et al. 2008; Ettinger
et al. 2009; Guan 2014; Rishishwar et al. 2015; Deng et al.
2016; Zhou et al. 2016; Norris et al. 2020; Vicuna et al.
2020). For this scenario, we used the demographic model
recently presented in Cuadros-Espinoza et al. (2021), which
involves a simple two-way admixture model. Briefly, the
demographic model consists of two populations that split
from their common ancestor 2080 generations ago and
then intermix 70 generations ago to produce a third admixed
population. The admixture proportions are set to 50%/50%,
and selection occurs only in the admixed population for 70
generations until the present. All other parameters are set
to those presented in the publication, except for the removal
of background selection. We sample 50 diploid individuals
from each of the three populations, that is, the admixed
population and the two intermixing populations X and Y,
at the end of the simulation, as in the original publication.
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As in our previous simulations, we additionally simu-
lated an 80 Mb region under neutrality (i.e., s= 0) using
the same settings as previously described for each scenario.
In the case of AdaptMix, the 80 Mb neutral region was
used to estimate admixture proportions, based on a super-
vised ADMIXTURE analysis with K= 2, using X and Y as
surrogates, and to generate a null distribution of P values.
In the case of Ohana, we used the 80 Mb neutral region to
estimate the ancestral component proportions and the co-
variance matrix, and to generate a null distribution of
log-likelihood ratios from its selection scan. The maximum
number of iterations to estimate the ancestral component
proportions and the covariance matrix was set to 20. For
Ohana, we considered both the global hypothesis testing
whether any ancestry component has an outlying score
in the covariance matrix, and a population-specific hy-
pothesis testing whether a specific ancestry component
has an outlying score. For the population-specific hypoth-
esis, in scenario 1), we tested the ancestry component
most representative of the Native American component
in MEX, and in scenario 2), we tested the ancestry compo-
nent most prevalent in the admixed population. In the
case of LAD, which was only used for scenario 2), we per-
formed local ancestry inference using both RFMix (Maples
et al. 2013) and ELAI (Guan 2014). We ran RFMix with the
phase correction feature enabled and performed two
rounds of the EM algorithm to improve local ancestry calls.
In the case of ELAI, we performed 20 rounds of EM itera-
tions. To obtain local ancestry assignment probabilities,
we conducted 10 independent runs and averaged prob-
abilities across all runs, as recommended in the ELAI man-
ual. All other parameters for both methods were set to the
default except for the time of admixture, which was set to
the true generation time. We performed local ancestry in-
ference on the 80 Mb neutral region to generate a null dis-
tribution of Z-scores.

To estimate and compare the power between the dif-
ferent approaches, we simulated a total of 500 independ-
ent regions under each scenario and for each selection
coefficient tested. Each independent simulation con-
sisted of a 2 Mb region with a mutation rate of 10−8

and a recombination rate of 10−8 base pairs per gener-
ation. We simulate a single selected site under an additive
model near the center of the simulated region and con-
sider 5 different selection coefficients (s= 0.01–0.05 in
steps of 0.01, with s defined here as the increased fitness
when carrying one copy of the advantageous allele). The
power of each method was based on a P value cutoff that
resulted in a false-positive rate of 0.05 of the respective
null distribution.

Finally, we also compared the execution time of
AdaptMix and Ohana (supplementary table S8,
Supplementary Material online). We find that Ohana
was much faster when running on a single node, for ex-
ample taking 80 s to run on 150 individuals at
.200,000 SNPs using five iterations, compared with run-
ning ADMIXTURE and AdaptMix taking �5,700 seconds
in the same population.

Estimation of Allele Frequencies in Ancient
Native Americans
To estimate allele frequencies in ancient Native Americans,
we queried the Allen Ancient DNA Resource (AADR)
available at https://reich.hms.harvard.edu/allen-ancient-
dna-resource-aadr-downloadable-genotypes-present-day-
and-ancient-dna-data. We downloaded the “1240K”
dataset v50.0, which contains ancient and present-day
individuals (from either shotgun sequencing data or in-
solution target capture, with a range of coverages) at
1,233,013 sites. In order to obtain data for ancient Native
Americans without non-Native American ancestry, we
kept only individuals with a reported date of more than
500 years BP from countries in the Americas and the
Caribbean that passed the quality control filters as defined
in the database. After that, we selected populations with a
minimum of 10 non-missing allelic counts when estimat-
ing allele frequencies.

Local Ancestry Analysis in the CANDELA Cohort
Local ancestry assignment was conducted using the HMM
approach implemented in ELAI (Guan 2014). The phased
genotype data needed as input was obtained by using
SHAPEIT2 (Delaneau et al. 2012) with default parameter
settings. Genetic distances were obtained from the
HapMap Phase II genetic map build GRCh37 (Gibbs
et al. 2003). As reference continental panels, we used the
same Native American, European, and African individuals
as in our AdaptMix analysis. ELAI was run setting the ad-
mixture generation parameter to 20, and with 20 rounds
of EM iterations. To obtain local ancestry assignment prob-
abilities, we conducted 10 independent runs and averaged
probabilities across all runs as recommended in the ELAI
manual. To test for LAD, we estimated Z-scores for each
ancestry across each locus and obtained the corresponding
one-sided P values testing for a positive deviation.

Population Branch Statistic (PBS) Analysis in the
CANDELA Cohort
We first selected Latin American individuals carrying a spe-
cific Native American ancestry component based on the in-
ferred Native American ancestry proportions previously
estimated by Chacon-Duque et al 2018 in the CANDELA
sample. Specifically, for each Native American ancestry
component, we selected CANDELA individuals with
.10% inferred ancestry from that particular Native
American ancestry component, and with ,1% combined
inferred ancestry, combined across all other Native
American components. Thus, each group of admixed
Latin Americans was composed primarily of Native
American ancestry from a particular Native American com-
ponent, plus European and African ancestry. We then esti-
mated allele frequencies for each Native American
component by considering only alleles (i.e., haplotypes)
that were considered of Native American origin with
local-ancestry posterior probability .0.9. We only
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computed allele frequencies for a Native American compo-
nent if all SNPs genome-wide had.100 alleles (haplotypes)
assigned to Native American origin. This resulted in allele
frequency estimates for six Native American components,
including “Quechua”, “Andes Piedmont”, “Chibcha Paez”,
“Nahua1”, “South Mexico”, and “Mapuche” ancestral com-
ponents (see Chacon-Duque et al. (2018) for a detailed de-
scription of the inferred components). Pairwise, FST were
then estimated using Hudson’s estimator as in equation
(9) of Bhatia et al. (2013). The branch length (T ) between
two populations was computed as T=−log10(1− FST)
(Cavalli-Sforza 1969). The Population Branch Statistic
(PBS) (Yi et al. 2010) combines the pairwise branch lengths
between three populations, which was computed as

PBSTarget = TTarget,Control + TTarget,Outgroup + TControl,Outgroup

2
.

PBS values were computed for each Native American com-
ponent, using all possible pairwise combinations of the
other Native components as the control and outgroup po-
pulations. The rationale of this analysis was to try to find sig-
nals of selection exclusive to a given Native American group
(i.e., that likely occurred after the divergence between
Native American lineages). For some of our analysis, we
also used the CHB population from the 1000 Genomes
Project, the European reference population, or the African
reference population, as control and outgroup populations.

Summary Statistics for GWAS and eQTL Data
To assess the biological consequence of selected variants,
we queried summary statistics from genome-wide associ-
ation studies (GWASs) of relevant phenotypes, and
gene-expression data (i.e expression quantitative locus
[eQTL] studies) from relevant cell or tissues. For our
GWAS query, we retrieved data from immune and
metabolic-related phenotypes, as these traits are known
to have been subjected to strong selective pressures across
several human groups (Fan et al. 2016). Immune-related
phenotypes included 1) total white cell count, neutrophil
count, lymphocyte count, monocyte count, basophil
count, and eosinophil count from the Chen et al. (2020)
GWAS study conducted across five continental ancestry
groups. Metabolic-related phenotypes included the body
mass index (BMI), body fat percentage, type II diabetes sta-
tus, hip circumference, waist circumference, HDL levels,
LDL levels, cholesterol levels, and triglyceride levels (Loh
et al. 2018). Summary statistics from these GWAS analyses
were based on the UK BioBank (UKBB) cohort available at:
http://www.nealelab.is/uk-biobank. For our eQTL query,
we retrieved the cis-associations summary statistics of 15
human immune cell types from the DICE (Database of
Immune Cell Expression, Expression quantitative trait
loci [eQTLs] and Epigenomics) project (Schmiedel et al.
2018), available at: https://dice-database.org/downloads.
We also retrieved cis-association summary statistics from
adipose (subcutaneous, and visceral omentum), muscle

(skeletal), and liver tissue from the GTEx Project v7
(Lonsdale et al. 2013) available at: https://gtexportal.org/
home/datasets.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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