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Abstract

The rapid progress of machine learning (ML) in predicting molecular properties enables high-precision predictions being routinely
achieved. However, many ML models, such as conventional molecular graph, cannot differentiate stereoisomers of certain types,
particularly conformational and chiral ones that share the same bonding connectivity but differ in spatial arrangement. Here, we
designed a hybrid molecular graph network, Chemical Feature Fusion Network (CFFN), to address the issue by integrating planar and
stereo information of molecules in an interweaved fashion. The three-dimensional (3D, i.e., stereo) modality guarantees precision and
completeness by providing unabridged information, while the two-dimensional (2D, i.e., planar) modality brings in chemical intuitions
as prior knowledge for guidance. The zipper-like arrangement of 2D and 3D information processing promotes cooperativity between
them, and their synergy is the key to our model’s success. Experiments on various molecules or conformational datasets including
a special newly created chiral molecule dataset comprised of various configurations and conformations demonstrate the superior
performance of CFFN. The advantage of CFFN is even more significant in datasets made of small samples. Ablation experiments confirm
that fusing 2D and 3D molecular graphs as unambiguous molecular descriptors can not only effectively distinguish molecules and their
conformations, but also achieve more accurate and robust prediction of quantum chemical properties.

Keywords: small dataset, unambiguous molecular descriptors, chiral stereoisomers, three-dimensional (3D) information, deep learning

Introduction
Recent advances in computational power and algorithms have
spawned a marriage between molecular science and computer
science [1, 2]. Models based on machine learning can now make
quick estimations or predictions on molecular properties [3]. Var-
ious types of machine learning (ML) methods such as convolu-
tional neural networks [4, 5], recurrent neural networks [6, 7] and
graph convolutional networks (GCNs) [8, 9] have been attempted
and used in a wide range of applications, including recognition
of protein structure [9], computer-assisted drug design [10] and

retrosynthesis planning [11, 12]. Based on the way of molecular
characterization, most existing models could be categorized into
three different classes, 1D (such as SMILES), 2D (such as topo-
logical graph) or 3D (such as space atomic coordinates). Many
of them could achieve excellent results in property prediction
for different molecules [13, 14]. However, many adopted molec-
ular representation methods [15] are limited in fully identify-
ing or characterizing all molecules (Supplementary Note 1) and
their possible conformations in the colorful and diverse chemical
space.
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Various approaches have been developed for molecular model-
ing. Encoding molecules as 1D vectors of text, such as simplified
molecular-input line-entry system (SMILES) [16], is a convenient
way to achieve molecular featurization. Molecules expressed this
way could be directly fed into NLP models such as transformer
[13, 14] and BERT [17, 18]. Despite the pertinent results of such
models in molecular property prediction and retrosynthesis,
encoding molecules as 1D text will inevitably lose the relative
atomic position and adjacency information. Consequently,
all models in this category fall short in analyzing molecular
configurations such as cis-trans structures, let alone molecular
conformations. To accurately represent adjacency information
between atoms, some methods take advantage of 2D fingerprints
[19] or topological graphs [20] to explicitly capture bonding
information. However, they neglect 3D geometry information
(stereo features) of molecules, and therefore are still unable
to distinguish conformational isomers and some complicated
configurational isomers including enantiomers [21]. Some 2D-
structure based networks have been creatively developed to
include selective 3D features of molecules such as 3D coordinates
of atoms integrated spatial–temporal gated network [22], 3D graph
Laplacian matrix with atoms’ soft relations [23], algebraic graph-
assisted BERT model (AGBT) [3], 3DGCN [24], atom distance based
3D molecular fingerprints [3] and atomic distance and bond angel
coupled to GNN [21]. While this greatly improves performances of
these 2D-based networks, the lack of full 3D information prevents
them from delivering satisfying results [25]. Some recent networks
such as SchNet [26],s DimeNet [27] and SphereNet [28] have
taken initial steps to represent complete 3D information such
as Euclidean distance between atoms, bond angle and torsion
angle. Explicitly including 3D information as features can indeed
further enhance prediction accuracy on downstream tasks [25].
However, these approaches, which often rely entirely on extracting
3D molecular features to model, tend to need more parameters
to fit the complex correlations between molecular properties and
full 3D information. The ignorance of basic chemical intuitions or
chemical logics hence leads such models to be hard to be trained
and have giant requirements in both the perspectives of data
volume and quality to achieve satisfying results.

Another drawback that limits the broad usage of ML methods
is that most of them are data hungry. Real datasets in chemistry
and material science are often scarce, unstructured and even
full of errors [29]. Large collections of experimental data are
very time-consuming and even contain a variety of unexpected
inconsistencies, omissions and mistakes [30]. Mathematical theo-
retical calculation seems feasible but is limited by the number
of atoms which complexity increases exponentially and could
be prohibitively expensive [31, 32]. It is an emergent and urgent
need to develop a data-efficient and error-proof ML method that
is capable of delivering satisfactory results even with small and
erroneous data [33] .

To address the above-mentioned challenges, a multi-modality
strategy that integrates 2D and 3D molecular features is adopted.
2D molecular features contain important information such as
molecular adjacency and cyclization, and are indicative of molec-
ular chemical properties such as aromaticity. This free physical
information could be used as the prior knowledge to mitigate data
shortage, increase models’ generalizability [34] and facilitate the
learning. A regular graph presenting such 2D molecular features
makes up the planer modality. The stereo modality handles 3D
features of molecules as a full connection graph. Relative atomic
positions are precisely presented so the molecular conforma-
tion can be uniquely determined. It naturally distinguishes all

molecular conformers and chiral molecules. This modality offers
precision and completeness. To generate a non-ambiguous molec-
ular descriptor, 2D molecular topology information (i.e. planar
modality) and 3D spatial geometry information (i.e. stereo modal-
ity) are integrated organically into a single network, CFFN (Chem-
ical Feature Fusion based Network). The 2D and 3D modalities
are interweaved together in a novel zipper-like arrangement to
facilitate information exchange between stereo modality and the
planar modality and to extract most useful information from both
modalities. CFFN not only delivers more accurate predictions on
different molecules as well as conformational and chiral isomers,
but also retains its accuracy when severely reducing the volume
of training data or including a large amount of erroneous data.

Materials and methods
Dataset preparation
In this work, QM9, MD17 and two chiral molecular datasets are
used to test the molecular property prediction performances of
different models on different molecules and conformers [35].
QM9 collects many different kinds of quantum properties of its
most stable conformer, and corresponding harmonic frequency,
dipole moment, polarizability, energy, enthalpy and free energy of
atomization for 134 k stable small organic molecules made up of
C (carbon), H (hydrogen), O (oxygen), N (nitrogen) and F (fluorine)
[35]. Geometry, typically of its most stable conformer, is provided
[36].

MD17 is a (MD) dataset of seven molecules, including aspirin,
ethanol, benzene, malonaldehyde, naphthalene, salicylic acid,
toluene and uracil [37], each containing 150 k to nearly 1 M
conformational geometries. The ground truth data are calculated
via molecular dynamics simulations using DFT at a temperature
of 500 K and in a resolution of 0.5 fs. Note that for every molecule,
we only need to extract 2D information once, because the atomic
and chemical bond features of different conformations of the
same molecule are the same.

The first chiral dataset that consist of 3800 chiral pairs is a
protein–chiral ligand binding dataset in which each enantiomer
of ligand exhibits different activity in binding affinity due to the
differences in 3D structural matching with the protein, sometimes
known as chiral cliff in biochemistry [38].

The second home-generated chiral dataset containing 1500
chiral conformers of 1, 2-dichloro-1, 2-difluoroethane (C2H2F2Cl2)
have been obtained by the ab-initio molecular dynamics simu-
lations performed using the software package Vienna ab initio
simulation package (VASP) with a canonical ensemble conducted
by the algorithm of Nose [39]. These confusingly similar structures
are used to throw down the gauntlet to the model.

CFFN model
Figure 1A illustrates the basic design and overall architecture of
our model. All molecules are presented as a graph-like data struc-
ture. 2D characteristics are planar (Figure 1A), carrying mostly
‘chemical’ information while 3D characteristics are stereo, car-
rying mostly ‘geometrical’ information. Planer modality treats
2D molecular structure as a normal molecular graph [15] and
recruits Pathfinder Discovery Network (PDN) [40] to extract the
chemical information encoded in it. In contrast, stereo modality
handles complete 3D molecular geometry using a full connection
graph [3]. Message Passing Neural Network (MPNN) is employed to
extract quantum physics-related information, particularly inter-
actions between atoms through edges, including both bonds and
non-bonds.
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Figure 1. CFFN architecture. (A) Illustration of overall architecture of CFFN that integrates planar and stereo structural information for molecular
property predictions. 2D and 3D information is respectively represented as common molecular graph (2D-G) and full connection graph (3D-G) including
all atomic distance, angle and dihedral angle. The two types of molecular graphs are processed using PDN and MPNN networks, respectively, and fused
together to form a final hybrid graph (updated 2D + 3D G), which makes final predictions toward certain molecular property. (B) Illustration of generating
3D-G using the MPNN network. Atomic information of a target atom is updated by aggregating information of all edges connecting to it, which is updated
iteratively using atomic information. (C) Illustration of an interdigitated arrangement of PDN and MPNN that together forms a zipper-like structure.
PDN, which processes 2D-G, and MPNN, which processes 3D-G, communicate via sharing atom information.

The planar and stereo modalities in CFFN are interdependent,
cooperative and synergetic. As illustrated in Figure 1C, the two
modalities share the same set of atomic information. During each
stage of ML, every target atom aggregates its adjacent atomic
information through the 2D network first. The updated atomic
information is then introduced into the 3D network as the initial
atomic information. The updated information is sent back to 2D
network in the next iteration. Bond information in planar modal-
ity and edge information in stereo modality are only processed
in the corresponding networks respectively, while shared atomic
information serves as the passage between the two networks. In
other words, the planar and stereo modalities take alternative
turns in ML and exchange the ‘new knowledge’ gained during
each iteration in ML. This interdigitated arrangement forms a
zipper-like structure, promoting a strong cooperation and synergy
between planar and stereo modalities, eventually leading to the
outstanding performance of CFFN.

2D-G and 3D-G for molecular presentation
In our model, both 2D and 3D molecular features are repre-
sented using two molecular graphs, denoted as 2D-G and 3D-G,
respectively. The datasets, QM9 and MD17, include the atomic
coordinates, and a 3D-G is naturally generated by fully connection
between atomic pairs. As for 2D-G, we convert the atomic coordi-
nate data into ‘MOL’ files by Openbabel package [41] due to the
SMILES representation is not unique for a specific molecule [42],

and then get the 2D-G by Rdkit package [43]. So 2D-G and 3D-G is
relatively independent in this process (Figure S1).

2D-G is a regular molecular graph, which includes atoms V,
bonds E, atomic features X and bonds’ features P:

G2D = (V, E, X, P) (1)

where X and P are the one-hot code vectors containing all atomic
features and bond features, respectively.

More specifically, X is made of two parts:

X = [
hid

∥∥ hresidual
]

(2)

where || denotes the operation of concatenation, hid is the hid-
den embedding of proton numbers which has 128-dimensional
vectors to represent the original atomic types, and hresidual is
the embeddings of all residual features such as aromaticity and
hybridization type. The five hybridization types and aromaticity
are embedded into a five-dimensional and two-dimensional vec-
tor. In addition, there are additional three-dimensional vectors
to represent atoms types as chiral centers (R/S/none), and then
concatenate with hid.

Likewise, P includes a series indicator for whether bond is in a
ring, bonding atoms and bond type:

P = [
hring

∥∥ htype
∥∥ hatom

]
(3)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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Here, P is an eight-dimensional vector including whether bond
is in a ring, bond type and proton number of bonding atoms which
has one-dimensional, five-dimensional and two-dimensional vec-
tor respectively by one-hot encoding.

3D-G is a full connection molecular graph generated naturally
by atomic coordinate from datasets that only includes the atomic
types and edges between atoms.

Herein,

X′ = [hid] (4)

G3D = (
V, E′, X′, P′) (5)

Then, fusing the 2D-G and 3D-G:

G2D+3D = (
V, E, X, P, E′, P′) (6)

where the atomic information is represented by X from 2D-G
which has more atomic information. E represents all bond instead
of bonds in the original 2D-G. And the edges information is
collected from 3D-G, two additional features E′and P′ correspond
respectively the edge set and the 3D features of all the edges.

These 3D features in P′about spatial distance d, angle θ and
torsion ϕ can be calculated by:

d = ∥∥xi − xj
∥∥ (7)

θ = cot−1

(
xi· xj〈
xi, xj

〉
)

(8)

ϕ = cos−1

(
nα · nβ

‖nα‖ · ∥∥nβ

∥∥
)

(9)

where i and j refer to two different atoms, xi and xj indicate the
coordinate vectors of atomi and j, and nα and nβ correspond to the
normal vectors of α and β planes (Figure S2).

These 3D features in P′ are all represented in spherical
coordinates using the Spherical Radial Bessel Functions (SRBF)
jl(·)and the Spherical Harmonics Bessel Functions (SHBF)Ym

l (θ , ϕ),
both of which are the regular solves of the Schrödinger equation
(Equation 10) in spherical coordinate system:

(∇2 + k2 )
Ψ

(
d, θ , ϕ

) = 0 (10)

where

�
(
d, θ , ϕ

) =
∞∑

l=0

m=l∑
m=−l

almjl(kd)Ym
l (θ , ϕ) (11)

where k is the wave number, and alm is the set of coefficients
regarding l and m, When d exceed the cutoff value of c [44],
Ψ (d, θ , ϕ) is set to be zero, meaning this interaction is not taken
into consideration. When assuming the atomic angular momen-
tum l = 0 and the magnetic quantum number m = 0 in the above-
mentioned Equation (12), this function can be reduced to

ẽn =
√

2
c

sin
( nπ

c d
)

d
(12)

where n is the principal quantum number. A more accurate
expression can be obtained by assuming magnetic quantum num-
ber m to be 0 and taking the atomic angular momentum l into

consideration. This spatial orientation information depending on
d, θ can be expressed as

ãln =
√

2
c3j2l+1 (zln)

jl
( zln

c
d
)

Y0
l (θ) (13)

Finally, to encode the full 3D information involving d, θ and ϕ an
orthogonal basis [27] can be exploited using the formula:

t̃lmn =
√

2
c3j2l+1 (zln)

jl
( zln

c
d
)

Ym
l (θ , ϕ) (14)

where zlndenotes the nth root of the Bessel function of order l.
Notice here l∈[0, · · ·,NSHBF − 1],m∈[−l, · · ·, l] and principal quantum
number n ∈[1, · · ·,NSRBF] where NSHBF and NSRBF respectively denote
the highest orders for SHBF and SRBF [28].

So far, we then initiate the 3D edge P′ by,

P′ = FC
(
ẽn

) � FC
(
ãln

) � FC
(
t̃lmn

)
(15)

where FC corresponds to a fully connected neural network and �
denotes the element-wise multiplication.

PDN for processing 2D information
PDN [40] is employed to process 2D information which is superior
to common GCNs [45, 46] based on our previous research. PDN
pays more attention to complex and multiple bond relationships
buried in a molecular as the bond difference. It is more suitable to
simulate complicated chemical bonding using learned weighted
adjacency matrices instead of one-hot encoding (Figure S3). It
aggregates the 2D features of atoms and passes the aggregated
information to their neighboring atoms with the convolution
module. More specifically, PDN generates a series of weighted

adjacency matrices
∼
Ai(1 ≤ i ≤ N) based on the 2D molecular bond

connections where the weights of
∼
Ai are initialized randomly and

N is the number of weighted adjacency matrices. Summation of

them generates an aggregated adjacency matrix
∼
A as

∼
A = σ

(
N∑

i=1

βi

∼
Ai

)
(16)

where βi(1 ≤ i ≤ N) is a series of trainable parameters and σ is

the nonlinear activation function Leaky ReLU [47]. The matrix
∼
A

is used to update X in the molecular graph as

X = σ

(
D−1/2

∼
A

∼
AD−1/2

∼
A

XW + b
)

(17)

where D∼
A

is the degree of matrix
∼
A, and weight matrix W and bias

b are both learnable parameters in PDN.

MPNN for processing 3D information
All atoms in a molecule are connected in pairs and the connec-
tions could simulate not only chemical bonding between neigh-
boring atoms but also non-bonding interactions such as van der
Waals forces. All 3D features including Euclidean distance (r),
intersection angle (θ ) and torsion angle (ϕ) between each atom
pair (Figure S1) are represented in spherical coordinates using the
SRBF and the SHBF. Presenting molecules in this way naturally
ensures both rotation and translation invariances of molecules.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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Table 1. Molecular property prediction performances of several models on QM9 dataset in terms of MAE

Property Unit SchNet DimeNet SphereNet CFFN Targeta

μ D 0.0802(0.0300) 0.0542(0.0029) 0.0593(0.0020) 0.0415(0.0003) 0.1000
α a0

3 0.1573(0.0100) 0.0955(0.0100) 0.1070(0.0016) 0.0613(0.0050) 0.1000

e eV 0.0928(0.0080) 0.0870(0.0060) 0.0857(0.0100) 0.0741(0.0005) 0.0430
Ehomo eV 0.0752(0.0030) 0.0682(0.0050) 0.0460(0.0040) 0.0301(0.0020) 0.0430
Elumo eV 0.0589(0.0030) 0.0465(0.0030) 0.0381(0.0020) 0.0343(0.0019) 0.0430
ZPVE eV 0.0033(0.0030) 0.0091(0.0003) 0.0020(0.0002) 0.0019(0.0001) 0.0012
U0 eV 0.0237(0.0030) 0.0186(0.0024) 0.0164(0.0002) 0.0151(0.0017) 0.0430
U eV 0.0272(0.0026) 0.0209(0.0024) 0.0187(0.0002) 0.0163(0.0006) /
H eV 0.0309(0.0022) 0.0162(0.0010) 0.0165(0.0012) 0.0153(0.0009) /
G eV 0.0265(0.0020) 0.0162(0.0016) 0.0174(0.0010) 0.0157(0.0008) /
Cv cal mol−1 K−1 0.0769(0.0050) 0.0462(0.0030) 0.0417(0.0029) 0.0413(0.0020) 0.0500

aThe target accuracies are taken from [48]. SDs are in brackets. The SOTA results are shown in bold.

The node and edge information are updated iteratively in
the following steps. First, edge vectors representing either bond
or non-bonds are updated via aggregating messages from the
neighboring atoms. Second, node vectors representing atoms are
updated via aggregating messages from corresponding edges and
atom information is updated accordingly; then all are ready for
the next iteration (Figure 1B). MPNN is employed to aggregate
and update all 3D features. The message of two atoms and the
corresponding edge between them is defined as

mij = σ
([

Xi‖ Xj

∥∥ P′
ij

]
W + b

)
(16)

where the features of atom i and j and the 3D features between
them P′

ij are concatenated and fed into a neural network. Here mij

is the fused message between atom i and j, W is the weight matrix,
and b is the bias in this neural network. Calculated mij is used to
renew P′

ij,

P′
ij = mij (17)

and the molecular graph is updated using the fused messages for
all atom pairs by,

Xi = σ

⎛
⎝

⎛
⎝∑

i �=j

mij

⎞
⎠ W + b

⎞
⎠ (18)

In this way, atoms can update their own information by aggre-
gating the messages from their adjacent atoms [49], and all 3D
features are then fully embedded.

Zipper-like fusion process for mutual reinforcement
between planar and stereo modalities
In CFFN, 2D and 3D information are arranged in an interdigitated
fashion as shown in Figure 1C. We believe this zipper-like
architecture is the key to the success of our model, as it promotes
the mutual enforcement of 2D and 3D information processing. In
the other series of experiments, we compared this method with
three other approaches to integrate the information: (A) an early
fusion network, (B) a late fusion network, (C) an intermediate
fusion network, as shown in Figure S4. The comparison is carried
using MD17 dataset and plotted in Table S9. Clearly, the zipper-like
network delivers the best results, followed by the intermediate
fusion network, while the early feature fusion network is the
worst. While all four networks support two molecular graphs
simultaneously, ensuring the consistency of information, only the

zipper-like network weaved the two modalities together. The other
three fusion networks simply add two modalities together without
much synergy. The interdigitated arrangement of the 2D modality
and the 3D modality allows the information updated in one
modality to be intermediately communicated to and exploited
in the other modality during information processing. The
mutual reinforcement between the two modalities accumulates
in each round of iteration, until satisfying performance is
achieved.

In each iteration, PDN processes and updates 2D features only
and passes the atomic information to MPNN to process and
update 3D features. The process is repeated for γ times and γ is
a tunable hyperparameter (Supplementary Note 3, Tables S1 and
S2). In this paper, γ is set to 4 in most cases and 8 in others. After
multiple iterations, a global representation of molecular graph G′

is obtained by integrate multi-dimensional features,

U = FC

(∑
i∈V

Xi

)
(19)

This quantity can be compared with any given target molecular
property.

The loss function is defined as:

Loss = 1
s

s∑
i=1

| ε̂i − εi | (20)

The potential energy related property ε can be modeled as
the combination of four parts, where εiand ε̂i are the true and
predicted values of the ith sample in an energy related molecular
property ε, and here s indicates the total molecular sample num-
ber [50].:

ε = εbonds + εangle + εtorsion + εnon−bonded (21)

Evaluation metrics
The area under the curve of receiver operating characteristic
(AUC-ROC) is employed here as the evaluation metric for the
classification tasks. With respect to the regression tasks, we
use mean average error (MAE) for QM9 and MD17 datasets
and root mean square error (RMSE) and R-squared (R2) for
chiral molecules dataset. We execute six independent runs for
each method and report the mean and the SD of the metrics
(Supplementary Note 4).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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Results
CFFN for more accurate molecular property
predictions
The superiority and broad applicability of our model in pre-
dicting properties is confirmed by its performances on several
datasets. First, to check our model’s ability in predicting quantum
properties for molecules with various chemical configurations.
Among them, QM9 is a widely used large-scale datasets, including
various quantum properties of molecules. QM9 comprises cal-
culated properties of 134 k different molecules including 6095
constitutional isomers [35]. That tabulated calculated properties,
at the B3LYP/6-31G(2df, p) level of theory, for all of the small
organic molecules made up of H, C, O, N and F atoms [35],
together making up a subset of the GDB-17 chemical universe
database in which all species contain no more than nine heavy
atoms [51]. Table 1 compares the performances of our model
with several advanced models. The improvement is across the
board and significant, ranging from 1% to 43%, with the average
around 16% compared with SphereNet. Furthermore, the absolute
accuracy of CFFN approaches chemical accuracy in several key
properties of many organic molecules, such as dipole moment
(μ), isotropic polarizability(α), energy of LUMO (Elumo), internal
energy at 0 K(U0) and heat capacity (Cv). The performance of
our model in predicting properties of molecules with various
configurations is more than satisfying. Table 1 lists the basic infor-
mation of these datasets and the performances of our model on
them.

CFFN for accurate conformational property
predictions
Atoms are not static but move constantly. However, QM9 focuses
on the most stable geometry only, while a real molecule can
access a very large number of three-dimensional conformations
in elevated temperature above absolute zero. Particularly impor-
tant ones are those formed by rotations of single bonds that could
change relative positions of connected atoms or atomic groups.
Since rotations of single bonds generally do not break chemical
bonding, all possible conformers of a single molecule must share
a same connectivity, and therefore the same 2D featurization
based solely on adjacency information. This generates a synonym
problem which is an intrinsic issue of using 2D-structure based
networks only [52,53]. In contrast, our CFFN model, which ensures
the full extraction of spatial 3D information (atomic distance,
intersection angle, torsion angle) (Figures S5–S7), can naturally
recognize and differentiate conformers. We expect such a model
should be superior in predicting properties that are highly rele-
vant to conformational space, such as heat capacity, Cv and free
energy, G. The ability of CFFN model to handle conformations is
tested on MD17, a benchmark dataset for molecules with multi-
ple conformations. MD17 comprises several common molecules
including aspirin, ethanol, malonaldehyde, naphthalene, salicylic
acid, toluene and uracil. Multiple conformational geometries are
calculated via DFT-based molecular dynamics simulations at a
temperature of 500 K. Instead of more commonly used molecular
properties such as energy, MD17 focuses on forces exerted on each
conformer, which is unique for each conformation and critically
important in molecular dynamics. Regarding experiments on this
dataset, only a part of data is used for training: two 1000-sample
subsets are used respectively for training and validation, and
the rest is used for testing (Supplementary Note 3 and Table S3).
The performances of our model as well as several alternative
ones in predicting molecular forces are reported in Figure 2. CFFN

Figure 2. Performance comparisons of force predictions for several
molecules in the MD17 dataset about predicted values of CFFN and
true values and several models in terms of MAE (all units are in
kcal∗mol−1 Å−1 and specific values are listed in Table S4).

shows excellent accuracy in predicting atomic forces of vari-
ous conformers. When compared with other advanced models,
CFFN achieves the lowest prediction errors. The MAEs are less
than 0.364 kcal/(mol∗Å) on all seven substances tested, on aver-
age 22% better than other models (Table S4). We note that the
improvement of CFFN is relatively small for a particular interest-
ing molecule, malondialdehyde. This molecule is known to change
its configuration spontaneously, i.e., tautomer in chemistry. The
2D presentation of tautomer is simply not as accurate as the 2D
presentation of other common molecule such as the other six

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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Figure 3. Performances of CFFN model in predicting properties of chiral molecules. (A) An exemplary pair of enantiomers displaying chiral cliff. (B) ROC
and (C) PRC curve of CFFN versus random classification in distinguishing enantiomeric pairs. (D) Structures of the three chiral isomers of 1, 2-dichloro-1,
2-difluoroethane (C2H2F2Cl2) and (E) corresponding energy distributions. (F) The performances of CFFN model for predicting energies of 1500 C2H2F2Cl2
configurations/conformations (500 samples for each chiral isomer). Among these three chiral isomers, RR and SS make an enantiomeric pair while RS
is a meso isomer (the left and right halves are mirror images of each other).

ones in this dataset. In this perspective, this observation actually
further supports importance of including correct 2D structure.

CFFN for accurate chiral molecular property
predictions
A noteworthy advantage of our model is that it naturally describes
all stereoisomers of chiral molecules and their conformations. To
verify this, two additional smaller datasets are also used to test
our model on chiral molecules and conformations.

Chirality, which prevails among natural molecules due to
breaking of mirror symmetry, often shows very different chemical
and biochemical behaviors with their mirror counterparts
[54]. Property predictions for chiral molecules are therefore of
fundamental and practical importance. However, it is underex-
plored and challenging to predict properties of chiral molecules.
Straightforward 2D molecular graphs cannot differentiate left-
and right-version of enantiomers since their connectivity is
identical. In our model, the 3D graph naturally distinguishes
all enantiomers because stereo information is included. The
effectiveness of our model is verified using a protein–chiral
ligand binding dataset [38] (more details in Method) (Figure 3A).
The dataset includes about 3800 chiral pairs and is divided by
8:1:1 respectively for training, verifying and testing. As shown in
Figure 3B, CFFN can effectively distinguish chiral molecules with
the accuracy of 92.5% and the AUC score is as high as 0.97 which
is superior to all other SOTA methods. In addition, CFFN is more
applicable to deal with sample imbalance (Figure 3C).

Many molecules contain multiple chiral centers, such as 1, 2-
dichloro-1, 2-difluoroethane (C2H2F2Cl2). The two symmetric chi-
ral carbon centers in this molecule generate three stereoisomers,
known as RS, SS and RR, as illustrated in Figure 3D. They have
different energy distributions (Figure 3E). Notice that SS and RR
make a pair of normal enantiomers, while RS is itself diastere-
omeric (a.k.a. meso isomer, and is non-optically active) due to
existence of an inversion symmetry center. This textbook example
is chosen to further challenge our model in describing multiple
categories of chirality commonly seen in organic molecules (more
details in Methods section). We randomly select 1200 samples as
the training set and 100 samples as the validation set, and use the
rest samples as the test set. As reported in Figure 3F, CFFN gained
an excellent and practical prediction performance by achieving
the average error accuracy of ∼0.0143 eV which is on the par with
chemical accuracy.

CFFN is data efficient and error proof
The high-fidelity datasets in chemistry is scarce. In reality, fre-
quent mistakes, many omissions and varieties of inconsistencies
are inevitable and should be considered. A data-efficient and
error-proof model is essential in practice. Here we first gradually
reduce the training sample size from 500 to 100 samples on
MD17 dataset to simulate scenarios of small datasets. To simulate
various types of data flaws in real world, we create three types
of errors/omissions: missing one atomic coordinate, missing one
atomic force and one inaccurate value of molecular energy. They
respectively represent three common types of flaws: missing
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Figure 4. Comparison of four models for seven molecules in the MD17 dataset. (A) On datasets of small samples: MAE with size of training samples
reduced from 500 samples to 250, 150 and 100 samples. (B) On flawed datasets: MAE with datasets containing 10% flawed data. Three types of flaws
are tested: type 1, missing one atomic coordinate; type 2, missing one atomic force; and type 3, inaccurate molecular energy. Units of MAE are in
kcal∗mol−1 Å−1 (more details could be found in Table S5 and S6).

input parameters, missing target properties and inaccurate key
intermediate properties (atomic force is derivative of molecu-
lar energy against atomic coordinate). In case of inaccurate key
properties, we added a random noise within 1–10% of the original
data. For each series, we replace 10% data of MD17 dataset with
erroneous ones of one type.

As Figure 4A illustrates, CFFN is more robust and error-
proofing. While the performances of all models worsen as the
number of test samples decreases, CFFN deteriorates the least
among all methods. For example, the MAE result of DimeNet
registered an 18-fold increase on average for seven molecules
while the MAE of CFFN only doubled. The results confirm that
CFFN could limit the error within 1 kcal∗mol−1 Å−1 with only 250
samples (Table S5).

In addition, CFFN is more ‘poka-yoke’. As shown in Figure 4B,
CFFN almost always delivers excellent performance and error
tolerance for each of the three error types. One exception is
observed in case of malonaldehyde with type 3 error. Malon-
aldehyde is a tautomer that possesses dynamic two-dimensional
topology. Its 2D feature may not be as reliable or relevant to its
properties as others and therefore, CFFN might have difficulties
to learn more accurate relationship from 2D + 3D features. For all
other molecules, CFFN has significant advantages. This indicates

that CFFN is more suitable to deal with real chemical problems
(Table S6).

Furthermore, various molecular conformations are also con-
sidered here and the analogous experiments were carried out
on QM9. Similar conclusions were obtained. The detailed results
could be found in Table S7.

Planar modality makes CFFN data efficient and
error proof
To understand the effect and confirm the necessity of explicitly
including 2D information, we carried out a series of ablation
analyses by removing the planar modality component from CFFN.
This new variant is designated as FFN (Feature Fusion Network)
and serves as a comparison to its vanilla version. Certainly, adding
2D information explicitly will bring a new concern, the increase
in complexity. Since all molecules live in 3D physical world, any
2D representations in whatever form are ultimately man-made
notations to describe real molecules in 3D. 2D information of
a molecule, in principle, should be available from its 3D infor-
mation. Explicitly including 2D information on top of full 3D
information inevitably increases the total number of parameters.
Usually, increased complexity is disadvantageous in ML; however,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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Figure 5. Ablation analyses by removing planar information. Direct comparison of CFFN with FFN, a variant without 2D information, shows that the
former is more accurate, robust, data-efficient and error-proof in different training samples (500,250,150,100 samples respectively) and flawed data
proportions (10% or 20%). The baseline is 500 training samples. Three types of flaws are: type 1, missing one atomic coordinate; type 2, missing one
atomic force; and type 3, inaccurate molecular energy. Units of MAE are in kcal∗mol−1 Å−1.

we believe the opposite is true in our case of molecular featur-
ization, and the following analyses are essential to verify the
necessary of adding 2D information in our framework. Actually,
2D representations of molecules are not some random abbrevia-
tions just for convenience, they do contain some most critical and
essential information about typical molecular architectures and
properties (such as functional groups and aromaticity). They are

languages created by some of most brilliant minds in history of
chemistry and agreed upon by all chemists. Incorporating such
wisdom accumulated over centuries as prior knowledge should
offer ML expert guidance and therefore reduce its effective com-
plexity. Indeed, the results of the ablation analysis in three sets of
experiments undoubtedly confirm improved prediction accuracy,
data efficiency and robustness of our model.
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Figure 6. Performances of CFFN model in predicting properties of various molecules for QM9 dataset in a small training sample (10 k) set for (A) Cv, (B)

e and (C) U0. Two types of flaws are tested: type 1, missing one atomic coordinate; and type 2, inaccurate molecular label (random error within 1–5%).
Units of MAE are in kcal∗mol−1 Å−1.

First, we compare the prediction accuracies of CFFN and FFN
for all seven molecules in MD17. As seen in Figure S8, CFFN
always delivers better results than its variant without explicit 2D
information. The average improvement is more than 20%, with the
maximum difference being 34.5%. The improvement is relatively
small, ∼9%, in one case of malondialdehyde. Again, we note that
malondialdehyde is a tautomer and its 2D presentation might be
not as accurate as others.

Incorporating prior knowledge about key properties is known to
help ML even more in small datasets [55,56]. Figure 5A compares
the prediction accuracies of two models with 500, 250, 150 and 100
training sets. With shrinking size of training data, both models are
expected to gradually deteriorate, and they do. But interestingly,
MAE of CFFN increases much slower than that of FFN. The perfor-
mance gap steadily enlarges when reducing the size of training
data to 250 or even 100 samples. In other words, CFFN is superior
to FFN all around, and even more so with small datasets. The
importance of such advantage cannot be overestimated when
dealing with real experimental data. Most chemistry or material
data are precious and costly, rarely available in large quantities.
ML method with higher data efficiency means more extensive
applications are possible in practice.

As illustrated in Figure 5B, MAEs of both models grow quickly
with the increasing amount of errors/omissions, as expected. The
more interesting observation is the performance gap between the
two models. MAE of CFFN increases much slower than its variant,
suggesting that the model become more robust and tolerate with
errors/omissions. Again, we attribute this robustness to explicitly
represented expert knowledge, which can regulate the model from
falling into traps created by erroneous and misleading data points.

The analyses above are done on each of the seven molecules
in MD17, which focuses on molecular conformations. The same
experiments are carried out on QM9, which focuses on molecular

configurations. As shown in Figure 6, the conclusions are similar:
CFFN not only delivers more accurate predictions, but also is
more adaptable to smaller sample scenarios and more tolerant
for errors and omissions. Apparently, 2D network by itself is
defective in the prediction of quantum properties, in line with our
expectation. This could be due to the fact that these properties
are closely related to 3D geometric conformation especially for
stereoisomers. However, 2D information plays an indispensable
role in CFFN, as elaborated early.

Conclusion
The complexities of molecular structures present a great
challenge to describe accurately and efficiently in ML. A multiple
modality strategy is adopted to integrate chemical knowledge
embedded in 2D information and molecular geometry in 3D
information. A novel hybrid molecular graph is developed to
fuse planar and stereo modalities in a zipper-like fashion. This
interdigitated arrangement not only ensures full integration of
2D and 3D information and but also promotes synergy between
them. 3D information provides full details of molecular geometry
and 2D information brings in priori knowledge. Together they
result in a data-efficient and error-proofing model that accurately
predicts a series of physicochemical and quantum physical
properties. CFFN can naturally handle all categories of isomerism
commonly observed in chemistry by naturally distinguishing
configurational, stereoisomeric and conformational isomers,
which is one critically important but underexplored territory
in molecular featurization. The versatility and accuracy of our
approach make it more suitable for various downstream applica-
tions such as biosenoring, chiral separation and retrosynthesis of
organic molecules. This crosstalk of modern ML technologies and
traditional chemistry shows its strong vitality and potential to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac560#supplementary-data
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address some canonical chemical challenges in the foreseeable
future.

Key Points

• We developed a novel network for molecule property
prediction by integrating planar and stereo structures
as non-ambiguous molecular descriptors in a zipper-like
arrangement fashion.

• CFFN is an accurate and versatile molecular property
prediction network for both conformational and chiral
isomers.

• CFFN achieves high accuracies in multiple acknowl-
edged datasets and specifically created new datasets,
exceeding most state-of-the-art models.

• Using professional knowledge buried in planer modality
as guidance makes CFFN be more data-efficient and
error-proof.
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