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Self-assembly and photoinduced fabrication of
conductive nanographene wires on boron nitride
Xiaoxi Zhang 1,2, Fabian Gärisch 3, Zongping Chen4,5, Yunbin Hu4,6, Zishu Wang1,2, Yan Wang1,7,

Liming Xie 8, Jianing Chen1,2, Juan Li9, Johannes V. Barth10, Akimitsu Narita4, Emil List-Kratochvil 3,11,

Klaus Müllen 4 & Carlos-Andres Palma 1,12✉

Manufacturing molecule-based functional elements directly at device interfaces is a frontier

in bottom-up materials engineering. A longstanding challenge in the field is the covalent

stabilization of pre-assembled molecular architectures to afford nanodevice components.

Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a

hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking

and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average

width of 200 nm, electrical conductivities of 106 S m−1 and breakdown current densities of

1011 A m−2. Joint experiments and simulations reveal that hierarchical self-assembly pro-

motes their formation and functional properties. Our approach demonstrates the feasibility of

combined bottom-up supramolecular templating and top-down manufacturing protocols for

graphene nanomaterials and interconnects, towards integrated carbon nanodevices.
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Complex material manufacturing through self-assembly is
currently approaching atomic precision1,2, which is
instrumental for the advancement of modern carbon

nanodevices. In parallel to bulk preparation, surface-templated
fabrication offers unique advantages for interfacial molecular
architecture self-assembly and synthesis, such as rational ato-
mistic design aided by joint computational modeling and scan-
ning probe microscopy investigations3–9. Of fundamental interest
is to establish a link between on-surface self-assembly and
synthesis, and the fabrication of bottom-up structures with robust
performance in the nm-to-μm scale usable for integrated carbon
nanodevices. In principle, interfacial molecular architectures can
be leveraged to obtain robust, functional nanoscale components
via photolithography or similar top-down patterning strategies10.
Towards the fabrication of precision carbon interconnects,
resistors, diodes, supercapacitors, and other electronic
components11, it is favorable to crosslink supramolecular archi-
tectures into nanosheets or nanowires12,13, and control their
processing by, e.g., ultra-fast Joule heating14 or thermal
conversion15,16. However, atomic precision and functionality in
the context of nanodevices remain largely unexplored in inter-
facial molecular architectures. Regarding atomic precision, a
major challenge is to control the organization of the architecture
to induce advantageous covalent reaction pathways17–23 using for
example a variety of homolytic cleaving groups to induce
crosslinking10,20,21,24,25. Concerning functionality, two major
obstacles regarding applications are moderate device perfor-
mances and processing conditions incompatible with nanofabri-
cation. For modern nanomanufacturing, it is desirable to template
supramolecular architectures in device configurations of choice,
and react them in situ to reach the target technology, such as
broadband and conductive (e.g., 107 S m−1)26 nanoscale inter-
connects together with state-of-the-art logic elements (e.g., tran-
sistor or quantum circuits). Overall, an important frontier of
atomically-precise bottom-up science is to attempt to engineer
nanodevices, by stimuli-induced crosslinking or thermal anneal-
ing of increasingly regular supramolecular architectures18,25,27,28

at device interfaces.
Herein we adopt a surface-templated approach to fabricate

and monitor supramolecular nanoarchitectures on hexagonal
boron nitride (BN), and their conversion into highly
conducting nanowires (106 S m−1, Fig. 1) between gold electrodes
in situ. In an ultra-high vacuum (UHV) environment, we ther-
mally sublimated precursor molecules, brominated anthracene
carboxylic acid derivative 1 on BN, to guide hydrogen-bonding
and hierarchical assembly of the molecules29,30. Joint molecular
dynamics (MD), scanning tunneling microscopy (STM) and
atomic force microscopy (AFM) studies reveal that the
molecular units form a periodic pattern according to the expected
π-stacking motif with d= 3.5 ± 0.2 Å at the BN/Cu(111)
interface. Supramolecular architectures grow upward in the
direction perpendicular to the surface of the BN substrate, and
supramolecular nanowires evolve with a micrometer length, as
characterized by scanning electron microscopy (SEM). After their
formation, ultraviolet (UV) light is employed to induce debro-
mination of supramolecular structures of 1 to form species 2,
monitored by matrix-assisted laser desorption ionization
(MALDI) mass spectrometry (MS)24. Species 2 engages subse-
quently in dehydrogenative coupling, affording nanographene
wires, whereby Raman spectroscopy indicates further dehy-
drogenative chemical conversions following 1273 K annealing,
providing highly regular nanowires. Mean conductivities
of (1.6 ± 2.0) × 106 S m−1 (19.7 ± 7.3Ω per μm of a 200 nm
diameter nanowire) and breakdown current densities of
(1.6 ± 1.9) × 1011Am−2 further substantiate successful nanowire
synthesis on insulators.

Results & discussion
Simulations and STM of interfacial self-assembly. Brominated
anthracene was successfully employed for on-surface synthesis of
polyanthrenes and ultra-narrow graphene nanoribbons31.
Nanographene formation involves three steps: debromination,
free radical-radical coupling, and thermal dehydrogenation32,33.
On metal surfaces, the success of the reaction relies on efficient
diffusion and low steric hindrance between the radical
intermediates32,33. On insulators, the debromination can be
assisted by light, but to date yielded amorphous materials24.
Notwithstanding this, ordered assemblies with closely packed
bromines can promote radical-radical coupling24,25. Precursor 1,
9,10-dibromo-anthracene-2-carboxylic acid, favors expression of
supramolecular dimers via carboxylic acid H-bonds, (1)2, pro-
viding the constituents for robust π-stacking complexes (Fig. 2a).
Following this strategy, adjacent Br atoms can be abstracted by
the stimulation with UV light, potentially promoting directional
radical-radical coupling24,25. To understand the propensity of the
precursors towards hierarchical assembly via H-bonding and
subsequent π-stacking, several CHARMM force field34 molecular
dynamic (MD) simulations were performed for ten randomly
distributed molecules in vacuo. After 1-ns simulations at tem-
peratures between 370 K and 400 K, an average number of six
π-stacks indicates the formation of a 4•(1)2 supramolecular stacks
(Fig. 2b). One representative 4•(1)2 stack extracted from the MD
simulations and optimized by self-consistent charge, dispersion
corrected, third-order density functional tight binding (SCC D-
DFTB3) employing the DFTB+ package35 is depicted in Fig. 2c.
The cluster consists of two stacks of cis-(1)2 and two of trans-(1)2.
The π-stack distances amount to d= 3.4 Å for the Grimme
implementation of dispersion correction36 (D3) and d= 3.6 Å for
a Lennard Jones (LJ) implementation. These two methods usually
correspond to lower and upper estimates, respectively, of com-
mon stacking distances37,38.

To study self-assembly and crosslinking under equivalent
conditions, a monolayer of 1 (cf. Supplementary Synthesis, and
Supplementary Figs. 1 and 2) was sublimated (30 min, 433 K)
under UHV (10−9 mbar) on top of a model substrate for inert
self-assembly39: An hexagonal BN monolayer on Cu(111)40. The
sublimation temperatures employed are much below the decom-
position temperature of 1 as measured by thermal gravimetric
analysis (>677 K). Cryogenic STM data (Fig. 2d) reveals the
supramolecular structure is characterized by rows with an
interrow periodicity a and intrarow periodicity c= (3.5 ± 0.2)
Å. The interrow distance is closer than previously reported
anthracene carboxylic acid structures (~3.9 Å)41. For straight
patterns, a amounts to 6.4 Å. To elucidate probable molecular
arrangements, departing from a supramolecular dimer (1)2, we
built a disordered cluster featuring 45, upstanding, trans-(1)2
dimers on BN (Fig. 2e). After a few ns of MD simulations at 295 K
(Fig. 2f), the cluster self-assembled into a brick structure42 with
c= 3.7 Å and interrow distances of a= 7.5 Å, in close agreement
with experimental data. We assign the ~1 Å interrow discrepancy
with experiment to the finite size of our cluster, since larger
clusters or structures induce denser configurations. It is worth
noting that lower deposition times result in flat-on molecular
arrangements on the BN/Cu(111) substrate, as shown in the STM
data inset in Fig. 1 and Supplementary Fig. 3. Polymorphic
domains in large area STM surveys (Supplementary Fig. 4) reveal
isolated rows, without neighbors or with odd-number of
neighboring rows, which cannot account for in-plane H-bond
formation (cf. Supplementary Fig. 3). Hence, the upstanding π-
stacked (1)2 rows are likely held together by interrow vdW
interactions only. The absence of interrow distances comparable
to the H-bonded cis or trans interdimer distance of ~10–14 Å
additionally substantiates this conclusion (cf. dimer length in
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Fig. 1 inset with Fig. 2c and Supplementary Figs. 3 and 4). This
type of upstanding molecular orientation is possible for multi-
layers of acenes43–45 and benzothiophenes46 on graphene and
BN, where interrow distances are close to 6 Å. These exhaustive
STM and MD simulations identify three hierarchical levels of
assembly: carboxylic acid dimer formation, intrarow π-stacking,
and interrow vdW interactions.

Simulations and characterization of supramolecular nano-
wires. Microsecond-long simulations of 576 molecules at 350 K
were employed to complementarily study (1)2 multilayered
stacking perpendicular to the substrate surface, that is, in three
dimensions (3D). The simulations reveal that brick-packed layers
can grow in a layer-by-layer manner, stacking in 3D, with a tri-
clinic unit cell extracted from the steepest descent optimization of
the (1)2–(1)2 interlayer motif amounting to a= 9.0 Å, b= 21.3 Å,
c= 4.4 Å with α, β, γ= 63°, 68°, 80°, respectively (Fig. 3a, b).
Preparations employing higher deposition fluxes (30 min at
453 K, 10−9 mbar) at a BN/Cu(111) substrate temperature of
353–373 K evidence layered growth (Fig. 3c), whereby the STM
data in Fig. 3c depicts molecular islands associated with stacked
layers on top of each other. The line profile in Fig. 3d shows an
apparent height of the first step of 21 Å. This height is close to the
Br–substrate distance of the first layer, amounting to h= 19.5 Å
(triangle, Fig. 3b) and is similar to the projection of the length of
(1)2 in Fig. 3a to the substrate (15.1 Å), plus the adsorption
height. Considering an adsorption height of 3.4 Å, the dis-
crepancy (Δh= 19.5 Å – 18.5 Å) is assigned to a steeper first layer
on the surface as compared to the unit cell. The interrow dis-
tances (blue arrows, Fig. 3b) and height of the first step are too far
apart and high, for anything but two upstanding (1)2, in accor-
dance with Fig. 2 data. However, the STM apparent height dif-
ference between the first and second layer (8 Å Fig. 3d, cf.
Supplementary Fig. 5) is lower than the simulated bilayer height
in Fig. 3b (15.1 Å). Because the rows of the second layer are very
similar to those of the first layer, we assign the height discrepancy
to electronic or vibronic tunneling effects. Note how the rows are

oriented perpendicular to the substrate’s high symmetry direc-
tions, an effect which is reproduced in the simulations due to
bromine and hydrogen preferring the hollow sites of the honey-
comb lattice in molecular mechanics.

In further studies below, we employed longer deposition times
aiming at slow, multilayered growth of supramolecular architec-
tures. For these studies the substrate BN was transferred from
copper to mica sheet. After 60 min deposition, supramolecular
nanowires of 1 are further evidenced in AFM data (Fig. 3e–h).
Height profiles are shown along the tentative growth directions,
where step heights and lengths of ~3 nm can be resolved
(Fig. 3e, f). Photoluminescence (PL) microscopy reveals that the
supramolecular structures form ~20-µm-long nanowires on BN
surface upon 60 min deposition, featuring apparent, diffraction-
limited widths of ~1 µm (Fig. 3g, i). The PL identifies the
supramolecular peak emission at 480 nm upon 350 nm excitation.
SEM shows that the typical nanowire width amounts to
80–400 nm for >5 µm-long nanowires before (Supplementary
Fig. 7a, c) and after (Fig. 3j, Supplementary Fig. 7b, d) UV
induced crosslinking, by means of an OSRAM UV-Vis lamp
(λmax 366 nm, 250W) for 12 h under UHV. Inspection of SEM
data sets reveal that nanowires are needle-like, become thinner at
the tip, and hang away from the BN substrate. These observations
evidence surface-templated nanowires, tentatively promoted by
island nucleation in Fig. 3c47.

Photo-crosslinking and thermal conversion into nanographene
wires. Further observations were conducted to address the
supramolecular nanowire photo-crosslinking, with key results
depicted in Fig. 4. Ex-situ MALDI-MS measurements provide
evidence for dimerization of 1 into species 2 after UV irradiation
whereby the MS main isotopic distribution is identified as
crosslinked species 2, C30H16Br2O4 (calc. m/z= 597.94, exp.
m/z= 597.96, Fig. 4b). Simultaneously, MS signals of the tetra-
brominated species C30H16Br4O4 (calc. m/z= 755.78) are
absent, which exclude supramolecular complexes or cycloaddition
between the anthracene cores prior to debromination.

Fig. 1 Hierarchical self-assembly, crosslinking and thermal conversion of supramolecular structures. Species 1 undergoes supramolecular H-bond
dimerization, π-stacking and vdW layered growth into supramolecular nanowires (i). Species 2 can be formed by ultraviolet (UV) photo-crosslinking within
the supramolecular architectures formed by species 1 (ii), and subsequently undergoes thermal dehydrogenation to nanographene precursors and thermal
crosslinking into nanographene networks (iii). The so-formed nanographene wires are defined by the nanographene material retaining their supramolecular
architecture wire-like scaffold. The inset in (i) shows the scanning tunneling microscopy (STM) data of four flat-on molecules on the BN/Cu(111) surface,
forming two (1)2 supramolecular dimers, held together by an interrow hydrogen bond. The inset in (iii) shows the scanning electron microscopy (SEM) of
the final nanographene wire between electrodes. STM parameters: It= 80 pA, Vs= 1.0 V. SEM parameters 2 kV, I= 10 μA.
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To rationalize the debromination and dimerization coupling
process into species 2, we perform DFTB-MD simulations at
298 K by artificially removing Br atoms between (1)2–(1)2 inter-
layers. This approximation considers that C-Br photodissociation
begins to occur at ~0.1 Å from the equilibrium distance24, so that
the crystalline structure is not significantly altered when Br (or
e.g., Br2 or HBr) dissociates and desorbs through vacancies in the
molecular architecture during the 12 h of UV treatment under
UHV conditions. In the simulations, C–C coupling is observed
for interlayers with a twist angle of 90° (Fig. 4a). We note that
C–C coupling for different twist angles is possible, but was not

investigated in detail due to the related increase of the simulation
supercell size. Importantly, polarized Raman (for λ0= 532 nm) of
UV irradiated structures shows a high degree of anisotropy,
pointing towards a topochemical effect of UV irradiation (Fig. 4d,
Supplementary Fig. 9a, b, black line). The anthracene peak near
1400 cm−1 sharpens after irradiation, contrary to its absence in
anthracene photocycloaddition experiments48.

DFTB-MD depicts a tentative mechanism whereby heating of
the unit cell in Fig. 4a to 1273 K affords C–H bond breaking
(Fig. 4c), and nanographene formation (Supplementary Fig. 6).
Interestingly, we find that annealing supramolecular nanowires to
1273 K for 30 min is possible by fixing the nanowires between
gold electrodes (Fig. 4e–g, Supplementary Figs. 12 and 13). It is
worth mentioning that the nanowire will evaporate if annealed
without UV treatment (Supplementary Fig. 14). Raman spectro-
scopy of the UV irradiated 1 on BN/mica annealed 30 min to
1273 K reveals a 70 cm−1 FWHM signal centered at 1602 cm−1

for λ0= 532 nm excitation (Fig. 4d magenta) with a side peak at
~1589 cm−1 close to the graphene G peak E2g mode49 at
λ0= 532 nm ~1580 cm−1. A G peak FWHM< 100 cm−1 together
with a notably weak signal near the D peak50 (~1410 cm−1,
FWHM= 60 cm−1, D/G intensity ratio < 0.3) is contraindicative
of amorphous carbon or high sp3 carbon content51 at
λ0= 532 nm. Instead, the weak G peak dispersion (1610 cm−1

at λ0= 325 nm, Supplementary Fig. 11c) and background shape
around the 2D and 2G peaks, supports strained, randomly
stacked, or n-doped graphene possibly connected or intercalated
by oxygen or bromine atoms51,52. For example, absence of 2D
peaks and a signal at 1586 cm−1 accompanied by a broad
1500 cm−1 background has been reported53 for a carboxylated
nanographene54 with 60 sp2 carbons. We conclude that the
nanowires consist of crosslinked, distinctly-shaped pieces of
nanographenes, departing from dehydrogenated species 2
observed in simulations (Fig. 4c). To illustrate this, we summarize
in Supplementary Fig. 10 the evolution of the broad 1620 cm−1

signal in the powder of 1 and upon self-assembly and UV
treatment, from a sharp carbon sp2 signal at 1610 cm−1 indicative
of a highly regular crosslinked material, to a broad signal below
1600 cm−1 after annealing.

After 1273 K annealing, PL microscopy reveals PL intensity
quenching of the nanowire (close to 480 nm at 350 nm excitation
Fig. 4e, f), in agreement with the PL spectroscopy (Supplementary
Fig. 15) and a controlled dehydrogenation33. Electrical characteriza-
tion of nanowires at room temperature and under argon flow reveal
resistances of (118 ± 44) Ω for electrode-electrode distances of ca.
6 µm, which correspond to a conductivity of (1.6 ± 2.0) × 106 Sm−1

(19.7 ± 7.3 Ω per μm for a 200 nm diameter nanowire, Fig. 4h),
given an approximated cylindrical nanowire diameter of (200 ± 120)
nm. We note that slight deviations from a linear ohmic behavior
have been observed at very low (~nA) and high currents (~mA),
which is attributed to initial Joule heating effects and fatigue at high
current densities, respectively. The attained conductivity value of our
nanowires is found to be at the order of magnitude of some metal
alloys (Galinstan, Constantan) and it is therefore higher than that of
CVD or electro-spun carbon nanofibers (10 Sm−1 to 3 × 102 Sm−1,
or equivalently 1.1 × 105Ω to 2.6 × 106Ω per μm for 200 nm
diameter carbon nanofibers)55,56 and highly ordered graphene fibers
or nanotube bundles (~105 Sm−1, 3.1 × 10−2 Ω per μm length, for
20 μm diameter graphene fibers)16,57. The conductivity of the
reported nanographene wires is close to that of graphene formed on
the etched sidewalls of silicon carbide, which can achieve ballistic
transport up to 10 microns length (i.e., 300 nm width ballistic
transport graphene ribbons have a conductivity of ~2 × 106 Sm−1,
~102 Ω per μm length of ribbon)58,59 and approaches the
conductivity of Ag nanowires (~4 × 107 Sm−1, 0.2Ω per μm for a
200 nm diameter nanowire)60 and nanotube-Cu nanowires26.
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On hexagonal BN

In vacuum

Fig. 2 Simulations and scanning tunneling microscopy detail of the first-
layer self-assembled stacks of (1)2 on boron nitride. a H-bond and
π-stacking of 1 may promote densely packed rows. b In vacuo molecular
dynamic (MD) simulations of ten molecules of 1 in a 125 nm3 box show
ultrafast propensity towards hydrogen bond dimerization into (1)2 and
π-stacking: After 1 ns the number of π-stacks (6–8) indicate the formation
of 4•(1)2 stacks. c Ultra-high vacuum scanning tunneling microscopy (UHV
STM) data at ~20 K reveals supramolecular structures with periodicity
c= (3.5 ± 0.2) Å on BN/Cu(111). Scale bar 1 nm. STM parameters It= 80
pA, Vs= 1.0 V. In the straight pattern the interrow distance is a= 6.4 Å.
d Dispersion-corrected density functional tight binding (DFTB) optimization
of a 4•(1)2 stack extracted from the MD simulations, containing two stacks
of trans-(1)2 and two of cis-(1)2 with d= 3.4 Å. The numbers in parenthesis
refer to calculations employing a Lennard-Jones potential. e, f Molecular
dynamics of 45 upstanding edge-on species of (1)2 on BN reveals self-
assembly in regular patterns with an interrow distance of a= 7.5 Å,
c= 3.7 Å. Inset: Top-view of the assembly after 10 ns.
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Fig. 3 Simulations, analysis and ultraviolet irradiation of supramolecular nanowires. a A simulated interlayer (1)2–(1)2 unit cell on top of the first-layer
and, b overview of ns-long molecular dynamics at 350 K depicting nanowire pillars on hexagon-boron nitride (BN). Molecules loosely adsorbed on the
substrate have been removed for clarity. The cyan boxes depict the interlayer region supercells, and the intrarow direction (blue arrow) is shown
perpendicular to the substrates’ high symmetry directions (black arrows). c Ultra-high vacuum scanning tunnel microscopy (UHV STM) data at ~20 K of
islands of 1 after 30min multilayer deposition on BN/Cu(111). The blue arrows depict the row directions. d The apparent height profile along two strata in c.
Standing (1)2 dimers on the substrate are shown to scale. The rows are independent of each other and the average interrow separation (green arrows) is
<1 nm, similar to the interrow parameter in Fig. 2. STM parameters It= 80 pA, Vs= 800mV. e, g Atomic force microscopy (AFM) detail of tip of a
nanowire after 60min multilayer deposition on BN/mica. The scale bars in e and g are 7 nm and 50 nm, respectively. f The profile of e depicts
eight stacked (1)2 shown to z-scale and ~2 nm height variations along the wire. h The profile of g depicts ~2 nm height variations along the wire.
i Photoluminescence (PL) (λex= 350 nm) microscopy showing supramolecular nanowires after 60min multilayer deposition on BN/mica and
corresponding diffraction-limited widths (red arrows). j Scanning electron microscopy of the structures after ultraviolet (UV) irradiation, cf. structures
before irradiation Supplementary Fig. 7. SEM parameters 1 kV, I = 10 μA.

Fig. 4 Photo-crosslinking and annealing into nanographene wires. a DFTB-MD simulated C–C bond formation at 298 K after debromination. b Matrix-
assisted laser desorption ionized mass spectrum (MALDI-MS) of 1 after ultraviolet (UV) irradiation on boron nitride (BN) on mica shows formation of
species 2 (m/z= 597.96). Species 2 is not detected when the sample is annealed at 573 K under argon without UV treatment. c The C–H bond breaking
DFTB-MD simulation during the high temperature transformation of the supercell in a followed by C–C bond formation. Dissociating H atoms are shown in
green. d Raman spectroscopy of an individual nanowire. The 1389 cm−1 anthracene signal intensifies after UV irradiation. After 1273 K 30min annealing,
the 1541 cm−1 signal which appears after UV irradiation weakens, and the 1602 cm−1 peak (black dash line) broadens. λex= 532 nm and 2mW, 60 s
integration time. e, f Photoluminescence (PL) microscopy (480 nm emission at 350 nm excitation) of the nanowire between two gold electrodes after
photo-crosslinking, and after 1273 K 30min annealing. g Laser confocal microscopy bright field image of a nanowire. The inset shows a photo of 1/BN/mica
sample with Au electrodes. h High current I-V characteristics of a single ~200 nm-wide nanowire reveals a resistance of 101Ω which increases in time. The
inset shows the junction stability at 10 mV and low currents.
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We found that operating nanowires at higher biases than 0.5 V can
lead to enhanced thermal annealing effects further increasing the
conductivity. Yet, in most cases the nanowires are damaged, with a
breakdown current density of (1.6 ± 1.9) × 1011Am−2 (Supplemen-
tary Fig. 16). This breakdown current density is placed between
carbon nanofibers (~1010Am−2)26 and graphene nanoribbons
(~1012Am−2)61, in agreement with stacked nanographenes. The
advantage of record conductivities and currents density measured in
bottom-up nanofabricated structures is multifold: Functional
properties, (current) annealing effects, transport physics, and
circuitry can be tailored by means of atomic dopants in the
precursors, multicomponent self-assembly and photolithography.

In summary, we have studied the self-assembly, photo-
crosslinking, thermal conversion and conductivity of anthracene
derivatives on BN substrates. The supramolecular architecture
precursor self-assembles with four hierarchical levels of interplay:
carboxylic acid dimer formation, π-stacking, interrow and
interlayer vdW interactions, affording 80 to 400 nm-wide
supramolecular nanowires. Joint experiment and simulations
provide evidence for the formation of nanographene upon UV
irradiation and thermal conversion between gold electrodes,
resulting in covalently bonded, robust nanographene wires with
conductivities of (1.6 ± 2.0) × 106 S m−1 approaching those of
noble metal nanowires. Our work helps bridge the gap between
basic research in on-surface self-assembly and integrated carbon
nanodevices, promoting the development of bottom-up tem-
plated molecular nanomaterials and crosslinkable organic frame-
works (XOFs) with top-down atomic crosslinking precision62

directly at device interfaces.

Methods
Substrate preparation. The BN surface was prepared either in situ by chemical
vapor deposition (CVD) of borazine on Cu(111) under UHV following a protocol
described40 for the scanning tunneling microscopy experiments, or transferred
from commercial BN on Cu foil (Graphene Supermarket) to mica (Changchun
Taiyuan Company). First, we coated polydimethylsiloxane (PDMS) on BN/Cu,
followed by ammonium persulfate solution for 8 h. After that, the copper was
completely etched, and the BN on PDMS was picked up with the mica sheet. After
cleaning in deionized water and drying for 1 h, we exfoliated the PDMS very slowly.
It is important to note that BN on mica substrates were annealed to 673 K for 1 h
under air to remove PDMS residues63 until no fluorescence was detected from the
substrate. Subsequently the substrates were transferred to UHV.

Sample preparation. The DBA-COOH molecule 1 was sublimated to the substrate
under UHV (5 × 10−9 mbar) between 433–453 K for 30 min to prepare a mono-
layer or multilayer of the molecules, and 60 min to prepare the nanowires. The
filament of the evaporator was preheated for 15 min. After sublimation, all samples
were flash annealed at 352 K before characterization and irradiated by a 250W
OSRAM HWL lamp without its outer bulb (featuring λ(UV) = 254, 266, 303, 313,
335, 366 nm) under UHV for 12 h (10−9 mbar). For the last step, Au(111) electrode
pads (30–200 nm thickness) were evaporated. We used a SKY Technology DZ-300
thermal evaporator to evaporate the Au electrodes. The electrode was evaporated
through a shadow mask under 5 × 10−7 mbar. The sample was then annealed to
1273 K via e-beam heating, employing 600 V sample voltage for 30 min main-
taining UV irradiation at high vacuum (10−8 mbar).

Scanning probe microscopy. Scanning tunneling microscopy (STM) was carried
out using a CreaTec STM operating between 6 K and 20 K under ultra-high
vacuum conditions. Molecules were deposited using a quartz container held
between 433 K or 453 K while the BN/Cu(111) substrate40 and the sample was kept
at 293 K followed by annealing steps described in the main text. All STM data was
recorded in constant current mode. The STM images in Fig. 3 were processed using
the Gwyddion software64, and the Z feedback corrected by a factor of 0.77/3.5,
where 0.77 Å is the apparent STM height of the dimer on BN/Cu(111) in Fig. 1
(inset in i) under similar tunneling parameters, and 3.5 Å is an estimated height of
a molecule lying down on BN/Cu(111). Atomic force microscopy experiments were
carried out in a Bruker Multimode 8 AFM in tapping mode under ambient
conditions.

Molecular modeling. The MMFF parameter implementation in the program
CHARMM c3634 was employed for force field molecular dynamic (MD)

simulations. For the in vacuo stacking studies, twelve simulations were performed
in a cubic 125 nm3 cell with 10 molecules at temperatures between 370 K and
400 K. The trajectories’ π-stacking were analyzed by searching for C-Br carbons at a
distance of less than 5 Å from each other. This criterion much larger than the
π-stacking distance was employed to account for displaced parallel stacking. For
the studies on BN, three layers of trans-(1)2 (576 molecules) were initialized
on a BN mimic39 in a simulation cell of size a = 127, b = 132, c = 1000. The
Langevin thermostat was employed to perform constant temperature dynamics
with a friction coefficient of 0.1 ps−1 and a 1 fs integration time
step in vacuo, and 0.01 ps−1 and 2 fs on the substrate. Density-functional based
tight-binding (DFTB) calculations were performed with the DFTB+ package35.
DFTB is an approximate valence-only DFT method that employs localized atomic
orbitals as basis functions. Carbon and oxygen were described by one 2s and three
2p functions and hydrogen by a single 1s function as provided by the 3ob-3-1
parameter set65. Bromine was parameterized as described in ref. 65. The
Nosé–Hoover thermostat was employed for the DFTB-MD simulations with a
coupling of 3000 cm−1 and a 0.5 fs integration time step. Conjugated gradient
geometry optimization search of optimized MD structures was performed using
self-consistent charge third-order DFTB with either Lennard–Jones or Grimme
dispersion approximation (see text). The self-consistency criterion was set to
10−5e. The residual force on each atom was typically smaller than 10−3 a.u.

Scanning electron microscopy. The scanning electron microscopy (SEM)
images were scanned by a HITACHI S4800 SEM under 1 kV to 2 kV high voltage,
6000× to 8000× magnification, respectively. We place the sample on a conductive
tape on the holder, and in the SEM chamber with a base pressure of 10−7 mbar.
1 kV was applied when the sample was not irradiated by the UV lamp, which
avoids damage by the electron beam. Samples measured by SEM measured were
not characterized further to avoid electron-irradiation related changes in the
nanowires.

Raman spectroscopy. The 325 nm Raman spectra were recorded with a Horiba
LabRam HR Evolution Raman spectrometer under 0.5 mW 325 nm laser, and the
532 nm Raman with a Renishaw inVia-Reflex Raman spectrometer under 2 mW
532 nm laser. Both Raman spectra were measured employing a 60 s integration
time and 100× Olympus objective.

Photoluminescence microscopy and spectroscopy. The photoluminescence
microscopy (PL) data was captured by an Olympus BX53 PL microscope, whose
wavelength of irradiation lamp is 350 nm. We employ a 100× Olympus objective to
obtain the optical microscope image and PL microscope image of nanowires, and
5× Olympus objective to obtain the larger scale image of sample. The PL spectra
were acquired in a homemade UHV chamber to monitor the process of self-
assembly of 1, UV debromination and thermal conversion. The sample was irra-
diated by a 337 nm LTB MNL100 nitrogen laser operating at ~80 Hz. The signal
was collected by a Princeton Instrument HRS-300 spectrometer and photo-
multiplier (PMT) detector. The HV of PMT was 1000 V, and the integration time
was 1000 ms.

Matrix-assisted laser desorption ionization and time-of-flight mass spectro-
metry. A thin layer of (2E)-2-methyl-3-[4-(2-methyl-2-propanyl) phenyl]-2-pro-
pen-1-ylidene malononitrile (DCTB) was deposited on top of the samples. A
337 nm laser (LTB MNL100) was employed to ionize and desorb the molecules24.
The matrix-assisted laser desorption ionization time-of-flight (MALDI-ToF) mass
spectrometry (MS) experiments were carried out in a Bruker FLEX2 spectrometers
under a pressure of 10−6 mbar. The MS of 1 was also measured by a Kore Tech
electron ionization ToF-MS after deposition onto a BN/mica substrate. Species 1
was evaporated on BN/mica substrate and the sample was set in front of the
skimmer of the ToF-MS. The acquisition time was 30 min, the ionization energy
10 eV and the emission current 200 μA. During the measurement, the temperature
of sample was 30 °C at a pressure of 4 × 10−9 mbar.

Electrical characterization. An Imina Micro Probe Station and Keithley 4200A-
SCS Parameter Analyzer were employed for electrical characterization of the
samples. The samples were exposed to air during transfer from UHV and measured
under argon unless stated otherwise, and usually driven for one minute at 10 mV to
stabilize the conductivity.

Data availability
All data supporting the findings of this work are available within this paper and
its Supplementary Information. Raw data are available from the corresponding author
upon request or will be made available at http://palmalab.org/publications.html.
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