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1  | INTRODUC TION

Aspergillus flavus, a widely distributed saprophyte, is also an important 
soil fungus that produces highly carcinogenic aflatoxins (AFs) (Zhang 
et al., 2014). This fungus is also the most economically important in the 
A. genus, because it contaminates seed crops and foodstuffs with this toxic 
and carcinogenic secondary metabolite (Yang et al., 2016). Aspergillus fla-
vus, as an important fungus, can cause damage to different plants, such 
as peanuts and maize, and produce the most hazardous AFs (Gonçalves 
et al., 2012; Moosavi Nasab et al., 2018; Noroozi et al., 2020). When AFs 
are present in foods at sufficiently high levels, these fungal metabolites 
can have toxic effects that range from acute (liver or kidney deterioration) 
to chronic (e.g., liver cancer) toxicity and can be mutagenic and teratogenic 

(Mahmoud et al., 2014). Thus, the ingestion of foods contaminated with 
aflatoxins poses a significant threat to human health due to its hepato-
toxicity and immunotoxicity (Yang et al., 2015). In consideration of these 
detrimental properties, further research on the effect of A. flavus on food 
is important for developing effective strategies to control food safety in 
foodstuffs.

Walnuts (Juglans regia L.) are an extremely valuable nut species 
(antioxidant activity, and phenolic and mineral contents of the wal-
nut kernel (Juglans regia L.) as a function of the pellicle color), and 
they contain the highest amount of PUFAs of edible nuts (Nakanishi 
et al., 2016). With the development of society, all people begin to 
pursue diversity, nutritional content, and safety to meet their dietary 
needs and food preferences for a positive and healthy life (Udomkun 
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Abstract
The aim of this study was to evaluate the performance of volatile organic compounds 
(VOCs) for evolution monitoring and early detection of Aspergillus flavus (A. flavus) 
contamination in walnuts. We successfully applied headspace–gas chromatography–
ion mobility spectrometry (HS-GC-IMS) to evaluate walnut VOC changes caused by 
A. flavus contamination. A total of 48 VOCs were identified in walnuts contaminated 
with A.  flavus. After identification of VOCs, a heat map and principal component 
analysis (PCA) highlighted ethyl acetate-D, 3-methyl-2-butanol, and cyclohexanone 
as potential biomarkers specific to A. flavus contamination in walnuts. These results 
provided valid targets for the development of sensors to evaluate the early mold 
contamination in stored walnuts.
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et al., 2018). So, walnuts are commonly found in the human diet be-
cause of their rich nutrients (Miao et al., 2020; Sánchez-González 
et al., 2016). Unfortunately, contamination of walnuts by AFs pro-
duced by the fungi A. spp. is a serious problem because of their po-
tential threat to health (Amini & Ghoranneviss, 2016). Some studies 
have investigated the implications of kernel oxidation and fungal 
growth (A. spp.) that result in the development of carcinogenic af-
latoxins in relation to the commercial storage and transportation of 
walnuts (Campbell et al., 2003). Molds individuals are tiny and hard 
to detect in the early stages of growth. When the quality of the 
walnuts is changed to an abnormal state, the damage is irreparable. 
The inhibition of fungi before the toxins are produced is more im-
portant and is a better strategy than the removal of toxins once pro-
duced (Amini & Ghoranneviss, 2016). Therefore, there is an urgent 
need for a method that can accurately determine the extent of mold 
growth on walnuts and control this crisis early on. The occurrence of 
harmful compounds in foodstuffs can result from their mishandling 
during food production or can be formed during food production, 
processing, or storage (Hernández-Mesa et al., 2017). Some harmful 
compounds are also produced in the process of AF contamination in 
walnuts. Flavor usually determines the overall unique sensory char-
acteristics of food and is also an important tool for evaluating the 
nutritional value and freshness of food.

The conventional physical and chemical analysis methods for mold 
detection cannot achieve the requirements of fast and nondestructive 
testing because of their complex operation steps, time consumption, 
and poor sensitivity. With the development of chromatographic and 
spectral technology, the identification of mold in the food industry has 
started to turn to the detection of substances produced by the growth 
and metabolism of molds, such as mycotoxins and volatile organic com-
pound biomarkers. Ion mobility spectrometry (IMS) is an instrumental 
analytical technique of separating the ions of detected substances 
based on their ion mobility velocity under atmospheric pressure (Zhang 
et al., 2016). Headspace–gas chromatography–ion mobility spectrom-
etry (HS-GC-IMS) is a simple, rapid, and sensitive detection technique 
(Rodríguez-Maecker et al., 2017). This instrumentation combines the 
outstanding separation capacity of gas chromatography with the ad-
vantages of fast response and high sensitivity of ion mobility spectrom-
etry (Gerhardt et al., 2017). This technique has little requirement for 
sample pretreatment to identify volatile substances in liquid or solid 
samples (Cavanna et al., 2018). Over the few decades, this technique 
has been applied in many different research fields for the detection 
of chemical warfare agents, for security purposes, and for food qual-
ity and safety as well as for medical purposes (Jünger et al., 2010). In 
particular, it has been used for the detection of food-borne microbial 
spoilers since spoilage of food is often accompanied by the formation of 
characteristic volatile compounds (Karpas et al., 2002). As a result, the 
HS-GC-IMS technique can separate and identify volatile compounds 
in complex matrices, such as aldehydes, ketones, alcohols, amines, and 
other volatiles. Considering these factors, HS-GC-IMS technology was 
used to establish an effective method to identify aroma compounds 
in walnut samples contaminated with A.  flavus at different growth 
stages. Characteristic fingerprint spectra and heat map were used to 

characterize the infection process of A.  flavus, and PCA with cluster 
analysis was used to explore the utilization of this method for the rapid 
assessment of the degree of walnut mildew and the feasibility of early 
warning of the degree of walnut mildew.

2  | MATERIAL S AND METHODS

2.1 | Materials, fungal strains, and inoculum 
preparation

Unshelled butterfly walnuts (Juglans regia L., Xiangling Variety) 
were obtained from store for this study and preserved in high bar-
rier bags at −20℃. Aspergillus flavus were a laboratory standard 
strain NRRL3357, purchased from China General Microbial Culture 
Collection Centre. This strain forms high concentrations of aflatoxin 
after growth on YES agar (20  g/L yeast extract, 150  g/L sucrose, 
15 g/L agar) at 30°C for 4 days.

2.2 | Pretreatment of walnut samples

First, the randomly selected walnuts were peeled and disinfected 
with 1% sodium hypochlorite. After washing the samples three 
times with sterile water, the surface of the samples was dried with 
sterilized filter paper. Then, walnut pulps of the same size, no pests, 
no mechanical damage were grouped and weighed about 5.5 g per 
group.

2.3 | Preparation of mildew samples

The samples of the treatment groups were inoculated with a con-
centration of 106/ml A.  flavus spore suspension and placed on the 
water agar medium. Then, they were dried at room temperature and 
cultured in a 30°C incubator with constant temperature and humid-
ity, and samples not inoculated with A. flavus spores were used as 
control. At the same time, each group of samples was set up with 
three parallel groups, a total of 18 groups of samples. Next, the sam-
ple changes were closely observed and sampled in a freezer at ir-
regular intervals.

2.4 | Testing conditions

A HS-GC-IMS Flavor Analyzer (FlavourSpec®) was used to iden-
tify volatile compounds in walnuts stored under different storage 
conditions. The gas chromatographic preseparation was performed 
at 45°C on a FS-SE-54-CB-0.5 capillary chromatographic column 
(15 m × 0.53 mm). Headspace incubation temperature, incubation 
time, and incubation speed were set at 60°C, 10 min, and 500 rpm, 
respectively. Nitrogen was used as carrier gas under the following 
programmed flow: 2 ml/min for 2 min, 100 ml/min at 20 min, and 
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maintained for 10 min. The headspace injection needle temperature 
was 65°C, and the injection volume was 500 μL. MS parameters 
were as follows: full-scan mode with scan range of 33–500 amu at a 
rate of 0.50 scan/s. The ion source temperature was 260°C with an 
ionizing energy of 70 eV and a mass transfer line of 250°C (Taylor 
et al., 2017).

2.5 | Statistical analysis

The instrumental analysis software includes LAV (Laboratory 
Analytical Viewer) and three plug-ins as well as GC ×  IMS Library 
Search, which can be used for sample analysis from different an-
gles. The VOC identification was achieved by the National Institute 

F I G U R E  1   3d topographic and 2D 
topographic maps for walnut samples with 
different stages of mold growth. (a) The 
walnut samples and the 3D topographic 
plot of walnuts with different stages of 
mold growth; (b) the 2D topographic 
plot of walnuts at different times; and 
(c) the 2D difference spectrum plot of 
walnuts at different times. W0: walnut 
samples contaminated by A. flavus for 
0 hr; W1: walnut samples contaminated 
by A. flavus for 12 hr; W2: walnut samples 
contaminated by A. flavus for 1 day; W3: 
walnut samples infected by A. flavus for 
2 days; W4: walnut samples infected 
by A. flavus for 4 days; and W5: walnut 
samples infected by A. flavus for 6 days
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of Standards and Technology (NIST) reference library (NIST Mass 
Spectral Library, version 2.0a, 2001) and the comparison of the 
retention times and mass spectra of authentic standards (Taylor 
et  al.,  2017). The spectra were analyzed using the LAV software, 
and the different profiles and fingerprints of volatile components 
were constructed using the Reporter and Gallery plug-ins. The PCA 
and heat map were used for clustering analysis of walnut samples 
(Yang et al., 2019). The heat map and PCA were generated using the 
R software packages, pheatmap for heat maps, and factoextra for 
the PCA plots.

3  | RESULTS

3.1 | HS-GC-IMS analysis of walnut mold

The differences in volatile compounds in walnut samples with dif-
ferent degrees of A. flavus contamination as a function of time were 
analyzed by GC-IMS. The data are represented by 3D topographical 
visualization in Figure 1a, where the y-axis represents the retention 
time of the analysis in the gas chromatograph, the x-axis represents 
the ion migration time for identification, and the z-axis represents 
the peak height for quantification. As shown in Figure 1a, VOCs of 
walnut samples with different degrees of mold growth were very 
similar, but the signal intensity was slightly different. After infection 
by AFs, the contents of most flavor compounds decreased.

The ion migration time and the position of the reactive ion peak 
(RIP) were normalized. A top view of the GC-IMS 3D topographic 
plot of walnut samples with different aflatoxin infection days is 
shown in Figure 1b and Figure 1c. The whole spectrum represented 
the total headspace compounds of the samples. Each point to the 
right of the RIP represents a volatile compound extracted from the 
samples. Most of the signals appeared in the retention time range of 
100–900 s with a drift time of 1.0–1.5 s. The color represents the 
signal intensity of the compound. White indicates a lower intensity, 
and red indicates higher intensity. The darker the color, the greater 
the intensity.

The difference comparison model was applied to compare the 
differences between walnut samples. The topographic plot of un-
infected walnut samples was selected as a reference, and the 
topographic plots of the other samples were normalized with the 
reference (Figure 1c). If the VOCs were consistent, the background 
after deduction was white, while red indicated that the concentra-
tion of the substance was higher than in the reference, and blue indi-
cated that the concentration of the substance was lower than in the 
reference. Most of the signals in the topographic plot of the walnut 
samples appeared between the retention times of 100 and 450s, and 
in the infected walnut samples, there were several different signals. 
(The retention times were between 350 s and 450 s.) Moreover, the 
signal intensity was stronger than that observed in the pileus. This 
may be because the compounds yielding these signals were consid-
ered to be weakly polar, considering that nonpolar compounds have 
a longer retention time on nonpolar columns than polar compounds 

(Arroyo-Manzanares et  al.,  2017). After being contaminated with 
A. flavus, the signals of some compounds (sensitive to temperature 
and easy to decompose or degrade) disappeared, or the signal in-
tensity decreased (Figure 1c). In contrast, the enhanced intensity of 
some signals showed that the concentration of some compounds in-
creased after contamination.

3.2 | Volatile compound identification in walnut 
samples at different moldy growth stages

The compounds were characterized by comparing the IMS drift 
time and retention index with those of the authentic reference com-
pounds. Due to their different concentrations, it was observed that 
some single compounds might produce multiple signals or spots (di-
mers or even trimers). A total of 48 typical compounds from the top-
ographic plots were identified with a GC × IMS Library (Figure 2 and 
Table 1) and are represented by numbers in Figure 2. Furthermore, 
15 typical compounds from the topographic plots were not identi-
fied as corresponding by names.

3.3 | Changes in volatile compounds in walnut 
samples contaminated by A. flavus

The notable visual plots were chosen and listed together by gal-
lery plot for intuitive comparison. Accordingly, the differences 
in volatile compounds in walnut samples with different contami-
nation times were observed, and the characteristic fingerprints 

F I G U R E  2   Ion migration spectra of walnuts infected by A. flavus 
for different periods of time. The numbers indicate identified VOCs
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TA B L E  1   The information on identified compounds of walnut samples

No. Compound CAS# Formula MW RI Rt [s] Dt Remarks

1 (E)−2-nonenal-M 18829–56–6 C9H16O 140.2 1,187.5 610.905 1.41366 Monomer

2 (E)−2-octenal 2548–87–0 C8H14O 126.2 1,056.7 426.753 1.34043 Null

3 Benzeneacetaldehyde-M 122–78–1 C8H8O 120.2 1,035.8 397.332 1.24744 Monomer

4 2-pentyl furan 3777–69–3 C9H14O 138.2 993.1 339.092 1.25675 Null

5 (E)-hept−2-enal-M 18829–55–5 C7H12O 112.2 955.6 307.807 1.257 Monomer

6 2-heptanone 110–43–0 C7H14O 114.2 892.8 255.438 1.26259 Null

7 dihydro−2(3h)-furanone 96–48–0 C4H6O2 86.1 926 283.099 1.08417 Null

8 n-hexanol 111–27–3 C6H14O 102.2 869.7 243.494 1.63935 Null

9 Hexanal-M 66–25–1 C6H12O 100.2 792.1 203.888 1.25566 Monomer

10 Hexanal-D 66–25–1 C6H12O 100.2 791.4 203.574 1.56833 Dimer

11 V1 * * 0 594.4 142.28 1.2981 Null

12 V2 * * 0 901.5 262.668 1.42628 Null

13 2-Hexen−1-ol-M 2305–21–7 C6H12O 100.2 848.8 232.807 1.18723 Monomer

14 2-Hexen−1-ol-D 2305–21–7 C6H12O 100.2 852.5 234.693 1.52242 Dimer

15 V3 * * 0 759 190.372 1.4029 Null

16 3-hydroxybutan−2-one-D 513–86–0 C4H8O2 88.1 703.3 169.312 1.3414 Dimer

17 V4 * * 0 630 150.389 1.28451 Null

18 V5 * * 0 712.1 172.627 1.21012 Null

19 Ethyl acetate-M 141–78–6 C4H8O2 88.1 607.1 145.172 1.09852 Monomer

20 V6 * * 0 646.8 154.232 1.20866 Null

21 Oct−1-en−3-ol 3391–86–4 C8H16O 128.2 984 331.517 1.16386 Null

22 Hexanoic acid 142–62–1 C6H12O2 116.2 1,008.7 359.089 1.29704 Null

23 Nonanal 124–19–6 C9H18O 142.2 1,110.2 502.011 1.4751 Null

24 Propanoic acid 79–09–4 C3H6O2 74.1 697.9 167.287 1.10665 Null

25 3-hydroxybutan−2-one-M 513–86–0 C4H8O2 88.1 708.6 171.344 1.05562 Monomer

26 Ethyl acetate-D 141–78–6 C4H8O2 88.1 592.1 141.75 1.34555 Dimer

27 (E)-hept−2-enal-D 18829–55–5 C7H12O 112.2 956.2 308.335 1.67703 Dimer

28 Benzeneacetaldehyde-D 122–78–1 C8H8O 120.2 1,035.3 396.51 1.5406 Dimer

29 2-Octanone 111–13–7 C8H16O 128.2 996.6 342.051 1.76611 Null

30 2-Furanmethanol, 5-methyl- 3857–25–8 C6H8O2 112.1 952.3 305.035 1.57587 Null

31 V7 * * 0 980.7 328.753 1.69394 Null

32 V8 * * 0 1,001.3 348.712 1.22881 Null

33 3-(methylthio)propanal 3268–49–3 C4H8OS 104.2 903.8 264.6 1.09279 Null

34 V9 * * 0 739.7 183.069 1.09451 Null

35 V10 * * 0 738.6 182.658 1.36158 Null

36 3-methyl−2-butanol 598–75–4 C5H12O 88.1 703.6 169.43 1.24442 Null

37 1,2-dimethoxyethane 110–71–4 C4H10O2 90.1 674.9 160.638 1.30063 Null

38 V11 * * 0 452 109.785 1.08838 Null

39 V12 * * 0 458.8 111.345 1.05735 Null

40 Ortho-guaiacol 90–05–1 C7H8O2 124.1 1,083.5 464.412 1.12538 Null

41 (E,Z)−2,6-nonadienal 557–48–2 C9H14O 138.2 1,172.7 590.047 1.37729 Null

42 (E)−2-nonenal-D 18829–56–6 C9H16O 140.2 1,186.5 609.43 1.97516 Dimer

43 Benzaldehyde 100–52–7 C7H6O 106.1 953.9 306.369 1.15371 Null

44 V13 * * 0 911.3 270.918 1.2549 Null

45 V14 * * 0 911.1 270.683 1.67046 Null

(Continues)
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corresponding to each stage were established. As shown in Figure 3, 
the signals of hexanoic acid, propanoic acid, ethyl acetate-M, and 
3-hydroxybutan-2-one-M, V5, V9, and V12 in the W0 samples were 
much higher than those in the sample groups contaminated by A. fla-
vus. Ethyl acetate-D, 3-hydroxybutan-2-one-D, 3-methyl-2-butanol, 
ortho-guaiacol, and cyclohexanone were almost absent in the W0 
samples. However, the signals of these volatile compounds were 
strongest in the W1 sample. Some volatile compounds, including (E, 
Z)-2,6-nonadienal, 1, 2-dimethoxyethane, benzene acetaldehyde-M, 
benzene acetaldehyde-D, benzene acetaldehyde-D, nonanal, (E)-2-
octanone, 2-pentyl furan, (E)-hept-2-enal-M, (E)-hept-2-enal-D, (E)-
2-nonenal-D, (E)-2-nonenal-M, 1-nonanol, 1,2-dimethoxyethane, 
2-heptanone, n-hexanol, hexanal-D, 2-hexen-1-ol-m, oct-1-
en-3-ol, 2-hexen-1-0l-D, oct-1-en-3-ol, nonanal, 2-octanone, 
2-furanmethanol, benzaldehyde, V1, V2, V7, V8, V13, and V14 in the 
W5 sample group, were much higher than those in the W0 sample 
group.

On the other hand, the signal of 1, 2-dimethoxyethane, ben-
zene acetaldehyde-M, benzene acetaldehyde-D, (E)-hept-2-enal-M, 
2-heptanone, oct-1-en-3-ol, nonanal, 2-octanone, and benzaldehyde 

increased with increasing A. flavus contamination time. In addition, 
walnut samples in the W5 group had more unique flavor compounds 
and higher volatile compound concentrations than those in the 
W0 group, and the volatile compounds identified in the stipe were 
more abundant. At the same time, there were fewer unique flavor 
compounds in the walnut sample that were not contaminated by 
A. flavus.

To further understand the differences in VOCs of walnut sam-
ples contaminated by A.  flavus in different mold growth stages, 
cluster analysis was performed using a heat map (Figure  4). 
According to the vertical direction of the heat map, all samples 
were classified into four main categories: the control group, early-
stage mold, midstage mold, and late-stage mold. The volatile 
compounds in walnut samples could be divided into four groups: 
clusters a, b, c, and d. At the midstage mold period of A.  flavus 
contamination, the volatile components of V2-V4 were similar to 
those of W0 and W1. Moreover, they were quite different from 
those in the late-stage mold group. In addition, volatile compounds 
of group b were mainly present in W0, that of groups b and d were 
mainly produced in the early-stage mold samples and midstage 

No. Compound CAS# Formula MW RI Rt [s] Dt Remarks

46 Cyclohexanone 108–94–1 C6H10O 98.1 894.2 256.603 1.14968 Null

47 V15 * * 0 866.9 242.059 1.4803 Null

48 1-nonanol 143–08–8 C9H20O 144.3 1,187.3 610.577 1.5251 Null

Abbreviations: *, unidentified; Dt, drift time; MW, molecular mass; RI, retention index; Rt, retention time.

TA B L E  1   (Continued)

F I G U R E  3   Fingerprint comparison of VOCs in noninoculated samples and A. flavus inoculated samples determined by HS-GC-IMS. Notes: 
The darker the spot, the larger is the quantity of volatile compounds. Each row represents all the signal peaks selected in a sample. Each 
column represents the signal peak of the same VOCs in different samples
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mold samples, while that of group c were mainly produced during 
the late-stage mold samples. As is shown in Figure 4, there were 
many kinds of volatile compounds in the walnut samples, and the 
signals of these volatile compounds were higher in the late-stage 
mold samples than in the samples from other periods. However, a 
significant amount of A. flavus could be seen in the late-stage mold 
samples (Figure 1a). Therefore, in order to achieve early monitor-
ing and warning, we focused on the detection targets of these 
compounds in groups a and d (Figure 4). The compounds in group a 
ethyl acetate-D, 3-methyl-2-butanol, cyclohexanone, V3, V4, and 

V15 were strongest in the premold stages, and it can be seen that 
the signals weakened as growth time increased.

3.4 | Similarity analysis of fingerprints based 
on PCA

Principal component analysis is a multivariate statistical analysis 
technique that uses multiple variables to linearly transform data to 
select a few significant variables (Yang et al., 2019). By determining 

F I G U R E  4   Heat map and cluster analysis of walnut samples with different extents of infection time
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a few principal component factors to represent many complex and 
difficult-to-find variables in the original samples, the regularity and 
difference among samples could be evaluated according to the 
contribution rate of principal component factors in different sam-
ples (Sebzalli & Wang, 2001). PCA was established using signal in-
tensity to highlight the differences in volatile compounds. The PCA 
of volatile compounds in walnuts with different extents of A. flavus 
contamination is shown in Figure 5a. The PCA results clearly show 
that the PCA biplots PC1 and PC2 accounted for 78.68% of the 
total variance in the dataset (Figure 5a). The distribution map for 
the first two principal components determined by PCA is shown 
in the figure, and PC1 and PC2 described 45.95% and 32.73% of 
the accumulative variance, respectively. These components were 
thought to exhibit the similarity between the different walnut 
samples.

As shown in Figure 5a, the control group and treatment group 
walnut samples were in a relatively independent space and well-
distinguished in the distribution map. It was evident that four distinct 
regions could be identified within the PCA profile (Figure 5a). The 
treatment group walnut samples could be well-defined according to 
the positive score values of PC1 and PC2. Among them, the samples 
of groups V2, V3, and V4 were relatively close, which indicated that 
the volatile components of these samples were similar. There were 
significant differences between them and the V1 and V5 samples. 
Based on the PCA results, the A. flavus infection at different stages 
of mold growth on the walnut samples was well-separated. To obtain 

more details, the biplots were used (Figure 5b). As shown in Figure 5b, 
the direction and length of the vector indicated the contribution of 
the variables toward the two principal components. According to the 
above results, we could infer that the ethyl acetate-D was positively 
related to the control group of walnut samples. However, for the 
late-stage mold samples, 2-pentyl furan contributed greatly to the 
flavor profile. When walnut samples were subjected to midstage of 
A.  flavus growth, V1, V10, and V6 were positively correlated with 
the walnut samples. In the biplots, the relationship between specific 
volatile components and walnut samples at different contamination 
stages was demonstrated. This finding was consistent with the fin-
gerprints and heat maps.

4  | DISCUSSION

Today, global walnut production is increasing because of the in-
creasing consumer demand for this food. The global production 
of walnuts is approximately 1,500,000 metric tons, and China, the 
United States, and Iran are the major producers of walnuts (Amini 
& Ghoranneviss,  2016). However, walnuts are susceptible to in-
fection during storage, and their deterioration occurs due to the 
A.  flavus activity (Golge et  al.,  2016). Therefore, monitoring and 
controlling Aspergillus flavus-based quality during walnut storage 
is one of the main objectives of proper walnut storage. Moreover, 
rapid and nondestructive detection of walnut quality based on 

F I G U R E  5   Principal component 
analysis based on the signal intensity 
obtained from walnut samples
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A. flavus is also a critical issue for microbiologists, the walnut in-
dustry, and those monitoring the quality and safety of walnuts. 
However, rapid and accurate early warning methods for minimiz-
ing mold damage are still lacking, especially a type of fast and no 
pretreatment, nondestructive testing detection method, or real-
time online monitoring. In a word, identifying and determining the 
degree of A. flavus contamination in walnuts are necessary for the 
development of preservation techniques, and rapid and early de-
tection of A. flavus in walnuts is also critical at every stage of stor-
age and processing. HS-GC-IMS showed potential for evaluating 
walnut volatile composition over time with high-throughput ca-
pabilities. In recent years, HS-GC-IMS has been extensively used 
not only in the investigation of volatile compounds in food sci-
ence (Hernández-Mesa et al., 2019), but also in the identification 
of human pathogens (Jünger et al., 2008). This technique imple-
ments a convenient and efficient instrument with the advantages 
of simple sample preparation, easy operation, high sensitivity, and 
quick analytical speed. Even trace volatile compounds can also be 
detected in a short time with this technique (Li et al., 2019). As a 
consequence, HS-GC-IMS could be used to identify the volatile 
components of walnuts with different stages of A. flavus contami-
nation. These results provided valid targets for the development 
of sensors to evaluate the early mold contamination in stored 
walnut. And, based on the objectives identified in this study, it is 
helpful for us to propose an online monitoring and early warning 
system model, which is also the later research direction.

A total of 48 signal peaks from topographic plots were identified 
in walnut samples under different A. flavus contamination states in 
this study. The volatile components produced by fungal respiration 
were analyzed qualitatively and quantitatively to distinguish walnuts 
in the different contamination states. In addition, the results of PCA 
also clearly showed that the different samples were in relatively 
independent spaces and were well-distinguished. After the vola-
tile compounds were identified and multivariate data analysis was 
conducted, the potential biomarkers in different stages of A. flavus 
contamination of walnuts were highlighted. The compounds ethyl 
acetate-D, 3-methyl-2-butanol, cyclohexanone, V3, V4, and V15 
were strongest in the premold stages, and it can be seen that the 
signals weakened as growth time increased. These results indicated 
that it is possible to feasible to establish a suitable gas sensor to 
monitor early mold formation in stored walnuts.

In this study, a simple, specific, and reliable method was de-
veloped to evaluate the characteristic volatile compounds of wal-
nut samples contaminated by A. flavus by establishing their unique 
compound fingerprints with HS-GC-IMS and PCA, which required 
minimal sample preparation steps and reduced the time required for 
analysis. Given its advantages, HS-GC-IMS fingerprint coupled with 
PCA could be used to identify the degree of A. flavus contamination 
in walnuts. This study provides a new insight into monitoring the 
A. flavus contamination levels in walnuts. Besides, the most import-
ant thing is early monitoring of A. flavus contamination and is of great 
significance for global food security.
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