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Abstract: Chitin and chitosan are natural compounds that are biodegradable and nontoxic and
have gained noticeable attention due to their effective contribution to increased yield and agro-
environmental sustainability. Several effects have been reported for chitosan application in plants.
Particularly, it can be used in plant defense systems against biological and environmental stress
conditions and as a plant growth promoter—it can increase stomatal conductance and reduce
transpiration or be applied as a coating material in seeds. Moreover, it can be effective in promoting
chitinolytic microorganisms and prolonging storage life through post-harvest treatments, or benefit
nutrient delivery to plants since it may prevent leaching and improve slow release of nutrients
in fertilizers. Finally, it can remediate polluted soils through the removal of cationic and anionic
heavy metals and the improvement of soil properties. On the other hand, chitin also has many
beneficial effects such as plant growth promotion, improved plant nutrition and ability to modulate
and improve plants’ resistance to abiotic and biotic stressors. The present review presents a literature
overview regarding the effects of chitin, chitosan and derivatives on horticultural crops, highlighting
their important role in modern sustainable crop production; the main limitations as well as the future
prospects of applications of this particular biostimulant category are also presented.

Keywords: chitosan derivatives; oligochitosan; vegetable crops; abiotic stress; biotic stress

1. Introduction

Modern agriculture needs to be adapted to the ongoing climate change and the grow-
ing food demands due to increasing population. Considering the finite natural resources,
sustainable cropping is of major importance, especially in horticultural crops that are more
susceptible to climate extremities and more demanding in terms of agricultural inputs [1,2].
In this context, biostimulant application is considered a novel, eco-friendly farming practice
that marries two otherwise contrasting concepts, namely crop intensification and sustain-
ability [3,4]. So far, biostimulant products form a significant part of the global farming
industry, showing increasing trends over the years and in the years to come [5]. There are
numerous reports regarding their positive effects on crops, especially under biotic and
abiotic stress conditions [6–8], while significant research is continuously conducted to find
and/or produce new biostimulatory products [9–11], as well as to reveal the mechanisms of
action behind the observed effects [12–14]. However, the variability in the composition of
biostimulant products, as well as the lack of common application protocols for the various
products, may create inconsistencies between the observed results and complicate the ef-
forts to reveal the actual mechanisms behind the biostimulatory effects, which may include
physiological processes, morphological changes and hormonal regulation [12,14–16].

Biomolecules 2021, 11, 819. https://doi.org/10.3390/biom11060819 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-8638-1312
https://orcid.org/0000-0002-4535-3075
https://orcid.org/0000-0002-2719-6627
https://orcid.org/0000-0002-0324-7960
https://www.mdpi.com/article/10.3390/biom11060819?type=check_update&version=1
https://doi.org/10.3390/biom11060819
https://doi.org/10.3390/biom11060819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11060819
https://www.mdpi.com/journal/biomolecules


Biomolecules 2021, 11, 819 2 of 18

Biostimulants’ beneficial activity involves the induction of root growth, the improve-
ment in nutrients uptake and the production of phytohormones, while osmotic adjustment
via synthesis of organic osmolytes has been also confirmed [17–20]. Biostimulants also
can be used to reduce application of mineral inorganic fertilizers and are being consid-
ered an environmental friendly practice with no significant adverse impacts on both fruit
quality and total yield [21–24]. Humic acids, fulvic acid, protein hydrolysates, seaweed
extracts, N-containing compounds, botanicals, seaweed extracts, chitosan and other related
biopolymers, beneficial bacteria and fungi and inorganic compounds are the main cate-
gories of plant biostimulants [25–27]. However, different classification approaches have
been suggested so far, based either on the origin of each biostimulant, namely biological
or non-biological, microbial and non-microbial, or on the mode of action which divides
biostimulants into phytohormonal and non-phytohormonal ones [28].

Modern crop production has to cope with biotic and abiotic stressors such as soil and
irrigation water salinity, water limitations, extreme and untimely weather phenomena
and infections from pathogens and pests, which severely affect crop performance and
quality of the final products [29,30]. In this context, the application of chitin, chitosan and
derived biopolymers can play a pivotal role due to their confirmed biostimulatory activity
in various crops, especially in vegetable species, which are more prone to stressors [31–33].
Different sources of chitin and chitosan in nature are Crustaceans (shrimp, lobster, king
crab), Fungi (Mucor rouxii, Aspergillus niger, Penicillum crysogenum, Lactarius vellereus),
Insects (lady bug, silk worm, wax worm, butterfly) and mollusks (shell oysters, squid
pen) [34]. Crustacean shells are the most notable chitin source, and chitin recovery involves
three steps consisting of demineralization, deproteination and elimination of pigments
and lipids [35,36]. Microbial proteases such as Bacillus sp., Lactobacillus sp., Pseudomonas
sp., Serrati marcescens, etc. are the most notable applied strains of chitin and chitosan
production [35].

Economic indicators such as return on investment, net present value and payback
period have been reported as important characteristics for a mass integrated biorefinery
approach to produce chitin and chitosan [36]. Considering the great amounts of chitinous
waste production (e.g., 2.1–2.7 Mt in 2011), there is great economic potential of finding
alternative uses of chitin and valorizing biowaste [37]. Various application have been sug-
gested for chitin obtained mostly from crustacean shells, which are also a very good source
for carotenoids recovery (e.g., astaxanthin) [38]. Due to its biological and physicochemical
properties, the most important applications of chitin and its derivatives are in (a) food
application, due to chitosan’s ability in lowering cholesterol by blocking the absorption
of cholesterols and dietary fat, which facilitates weight and body fat loss in the human
body [39], controls over-nutrition and achieves insulin resistance therapy [40,41]; and (b)
biomedical application, having tremendous biological benefits such as biodegradation,
biocompatibility, anticancer, antibacterial, non-toxicity, immune-stimulating effects, hemo-
static activity in cell culture, wound healing, tissue engineering and drug delivery [42].
Chitooligosaccharides and their derivatives are the appropriate agents capable of treating
or preventing various chronic inflammation such colitis, hepatitis, gastritis, periodontal
disease and through drug delivery systems [43–45]; (c) agricultural applications [46–48],
and (d) bionanotechnology, such as the versatile potential uses in cosmetics, photography,
ophthalmology, textile industry and water and waste treatment [49,50]. It has been also
reported that large-scale chitosan commercialization originates from the chemical alka-
line hydrolysis of shrimp chitin, with a cost of nearly USD 10/g (Sigma Chemical Con.,
St. Louis, MO 63118, USA) [51], but agro-industrial wastewaters have been also used as
alternative media for fungi grown in submerged fermentation, which are readily available
and have a low cost to use, saving around 38–73% of the total cost of the bioproduct
production [51,52]. However, cost production is flexible since it includes transportation
and labor costs, which vary significantly around the world [38].

Therefore, the present review provides an overview of the recent trends in biostimulant
application focusing on the effects of chitin, chitosan and derivatives on the main vegetable



Biomolecules 2021, 11, 819 3 of 18

crops, as well as on the main mechanisms of action. Finally, the main limitations and the
needs for future research will be presented.

2. Methods of Obtaining Chitin and Chitosan Used in Agricultural Production as
Biostimulants

Chitin and chitosan are produced by two major extraction methods, namely chemical
and biotechnological. Chemical processes are based on the use of strong acids and bases are
currently the most widely applied methods in both laboratory and industrial scale produc-
tion [53]. Two well-known methods of chitosan production are to extract chitosan directly
from cell walls of molds, and thermo-chemical or enzymatic methods of chitin deacety-
lation to remove the N-acetyl groups from chitin. At present, chitosan is manufactured
industrially through thermo-chemical hydrolysis of chitin’s amide bonds [53]. Several
forms such as solutions, flakes, fine powder, beads and fibers are available for commercial
preparations of chitosan [54]. Chitooligosacchrides can be produced through chemical,
physical, electrochemical and enzymatic degradation of chitin and chitosan [53]. The most
commonly applied chemical methods of chitooligosaccharides production include acid
degradation and oxidation degradation of chitin and chitosan [53].

The traditional systems for commercial preparation of chitosan from various sources
may lead to some drawbacks and many disadvantages since they are not cheap or environ-
mentally friendly, and have inconsistent molecular weight and degree of acetylation [55,56].
A promising economical method for innumerable application and the production of highly
viscous chitosan is the use of biotechnology fermentation processes, such as deproteination
and demineralization by organic acid bacteria and protease and deacetylation by chitin
deacetylase [56,57]. Chitosan can be promoted as a green product [35], and chitosan from
crustacean as a food industry waste is economically feasible [58–60]. Although chitosan
is mainly obtained from crustacean shells rather than from insect and fungal sources, the
commercialization of chitosan extraction from insect and fungal sources has increased in
recent years [35]. Techno-economic sensitive approaches have also been performed for
chitosan production from shrimp shell wastes [61].

The chemical methods for production of chitin and their derivatives that are currently
being applied on a commercial scale consist of two steps, namely, deproteinization by alkali
treatment and demineralization by acidic treatment under high temperature, followed by
the decolorization step which focuses on removing lipids and pigments [35]. Ambient
temperature and stirred bioreactors have been applied to improve the quality and to
shorten the process [50,62]. Crustacean wastes from the shrimp and crab industry are
pretreated with washing and grinding, and then the grinded exoskeleton goes through
depigmentation by ethanol. After that, the exoskeleton proceeds to the demineralization
stage by hydrochloric acid, and then the exoskeleton proceeds to the deproteinization stage
by sodium hydroxide and provides chitin. Finally, chitin goes through deacetylation by
sodium hydroxide and produces chitosan [61,63].

3. Practical Applications of Chitosan on Vegetable Crops

Chitosan is an environmentally and eco-friendly polymer with multipurpose applica-
tions in various fields such as agriculture, cosmetology, food, paper, pharmacy and textile
industries [64–68] and a potent agent for the removal of toxic pollutants [69,70]. It can be
used in plant production systems as a single compound or combined with other polymers
and elements [68,71]. It is considered one of the most abundant natural biopolymers. It
is derived from chitin and its structure consists of two sub-units, namely D-glucosamine
and N-acetyl-D-glucosamine, connected with 1,4-glycosidic bonds to each other [72,73].
Its ability to bind on other compounds allows the delivery of nutrients, pesticides and
biomolecules in plants systems [71,74,75]. The precursor of chitosan (chitin) is the sec-
ond most renewable source of carbon throughout the world, which makes chitosan a
very promising material for industrial applications, with more than 2000 tons produced
annually [76]. However, the preparation of chitosan via industrial methods produces a
final product that cannot be described accurately as chitosan since it contains various
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polymers with different degrees of polymerization and physical properties [72,77]. Despite
this downside, the benefits from chitosan application are far more important since it is
claimed to be GRAS (generally recognized as safe) and easily absorbed, inexpensive, easily
available and easy to manipulate [78,79].

The beneficial activities of chitosan are mostly associated with increased photosyn-
thetic activity, tolerance to abiotic stressors such as drought, salinity and extreme tem-
peratures, as well as with increased antioxidant enzymes activity and the expression of
defensive genes [80]. There are numerous examples of chitosan application on vegetable
crops; however, the obtained results are not always consistent since the various studies
differ in their methodological approach (time and dose of application), while chitosan-
based biostimulant products may also differ in chemical composition and chitosan content,
which further increases heterogeneity in biological effects [77,78,81–83]. The primary use
of chitosan in agriculture is based on its eliciting effects on the biosynthesis of protective
biomolecules against pests and pathogens [14,84,85], as well as on the up-regulation of
defensive genes [86,87].

It can be applied in various forms including seed coating, foliar spraying or soil incor-
poration and as a coating agent in fruit and vegetables for post-harvest protection [31,88,89].
The main activity of this biopolymer is plant protection against various biotic and abiotic
stressors via various mechanisms that must be unraveled. For example, the hydrophilic
nature of chitosan may alleviate stress effects by reducing water content in cells [14], while
it can also increase root length and reduce the transpiration rate, resulting in improved
water uptake and water use efficiency in plants [90,91]. Moreover, chitosan application
may result in plant growth improvement mostly through the increased nitrogen and
nutrients uptake, while it can be used as an extra carbon source in plant biosynthetic
processes [82,92]. Other activities include the effects of mycorrhization in tomato plants
through the regulation of the expression of endochitinase-encoding genes [81]. Moreover,
the foliar application of chitosan may serve as a physical barrier against pathogens [93],
while it can increase the thickness of cell walls in the leaves’ epidermis, contributing to
tolerance against pathogens attacks [94]. Its use as soil amendment has also found practical
applications in agriculture, resulting in increased yield in lettuce [95] and tomato [96] crops,
while it can remediate polluted soils through the removal of cationic and anionic heavy
metals and the improvement of soil properties [97–99]. Seed coating with chitosan may
increase germination percentage and seedling growth through the induction of antioxidant
enzymes [100–102], or the increased water absorption through the formation of a semi-
permeable coating on the seed surface [103,104]. Finally, coating fresh fruit and vegetables
with chitosan may increase shelf life [105], retain the quality and prevent spoilage from
food-borne pathogens [106–108] and microbes that affect human health [109].

Apart from the direct effects of chitosan, there are several applications of chitosan
derivatives and nanoparticles, which are used as carriers of nutrients and other compounds.
Chitosan-based biodegradable nanomaterials (NMs) consist of nanogels, nanospheres,
nanocapsules, nanoparticles and nanocomposites, which have been applied for plant
growth promotion and plant protection especially against viruses, fungi and bacteria,
providing a new and effective tool for sustainable crop protection [7,110,111]. For example,
chitosan-coupled copper nanoparticles (ch-CuNPs) have several advantages as a growth
promoter and fungicide, showing promising properties for substituting conventional
pesticides and ameliorating their hazardous impacts on the environment [112]. Chitosan
nanoparticles were also suggested to increase immunity against pathogens through the
induction of innate defense mechanisms and defense-related enzymes [97]. Moreover, the
application of nanochitosan solutions via soaking of seedlings or foliar spraying showed
better results in terms of onion crop performance and nutrient use efficiency [113]. The
advanced techniques in nanoparticle preparation have allowed the efficient capitalization
of chitosan’s beneficial effects not only in agriculture but also in the food industry through
functional packaging [67,68,114]. The use of bio-nanomaterials may also find uses in smart
genetic engineering in plants through the editing of plant genomes [71]. However, the use
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of such materials for human-related purposes is currently restricted and under debate and
further studies are needed to transfer the achieved knowledge from the laboratory to an
industrial scale and to manifest the positive effects with large-scale trials [71,115,116].

The most notable impacts of chitosan on various vegetable plants are presented in
Table 1.

Table 1. The effects of chitosan on vegetable crops.

Plant Scientific Name Plant Family Key Point Reference

Artichoke Cynara scolymus L. Asteraceae
Chitosan application promoted germination and plant

growth of artichoke and induced a significant decrease in
fungi infections.

[117]

Basil Ocimum basilicum
L. Lamiaceae

Chitosan may ameliorate harmful impacts of drought on
basil growth, as well as improve total phenol and

antioxidant activity.
[92]

Chitosan lactate foliar application may promote the
accumulation of bioactive substances; increase the activity of
antioxidant enzymes; improve photosynthetic rate and plant

growth.

[118]

Bean Phaseolus vulgaris
L. Fabaceae Chitosan increased the yield on normal or delayed sowing. [119]

Effective impact of nanocarriers composed alginate/chitosan
(ALG/CS) in promoting leaf area and the levels of

chlorophylls and carotenoids.
[120]

Bell pepper
Capsicum annuum

L. var. grossum
(L.) Sendt

Solanaceae Chitosan nanoparticles (CsNPs) indicated the significant role
in anti-biofilm activity against foodborne pathogens. [121]

Chitosan nano-coating (CsNC) lengthened the shelf life of
fresh-cut bell pepper. [121]

Chitosan treatments increased germination, improved
seedling growth and emergence in cold test. [122]

CaCl2-tea tree oil (TTO)/low molecular weight chitosan
(LMWCS) slowed down the microbial growth in fresh-cut

bell pepper.
[114]

Chickpea Cicer arietinum L. Fabaceae Chitosan nanoparticles-loaded application with thiamine
increased germination percentage and growth in chickpea. [123]

Foliar application stimulated protection of chickpea
seedlings against wilt disease, and increased indole acetic

acid (IAA) production in seedlings.
[124]

Chilli Capsicum
frutescence L. Solanaceae

Chitosan applied as seed treatment (1%) and foliar spray
(0.5%) combined application showed the highest

effectiveness in controlling anthracnose of chili and
stimulated yield and yield contributing characters.

[125]

Cucumber Cucumis sativus L. Cucurbitaceae Chitosan seed treatment resulted in 100% resistance against
damping off caused by Phytophthora capsici. [126]

Chitosan may synthesize defense-responsive enzymes and
stimulate phytohormones in cucumber plants. [102]

Eggplant Solanum
melongena L. Solanaceae

The synthesized nanocomposites improved both the
nematocidal activity and the plant systematic immune

response.
[127]

Faba bean Vicia faba L. Fabaceae
The new carboxymethyl chitosan-titania nanobiocomposites

may decrease negative effects of Bean yellow mosaic virus
(BYMV).

[128]

Ginger Zingiber officinale
Roscoe Zingiberaceae Chitosan and oligochitosan suppressed ginger rhizome rot

in storage. [129]

Chitosan and oligochitosan improved defense enzymes
activity in ginger. [129]

Lettuce Lactuca sativa L. Asteraceae Chitosan application at 2% in a Ni-contaminated soil may
significantly regulate Ni bioavailability. [130]



Biomolecules 2021, 11, 819 6 of 18

Table 1. Cont.

Plant Scientific Name Plant Family Key Point Reference

Chitosan nanoparticles (CNPs) loaded with indole-3-acetic
acid (IAA) indicated a beneficial impact on the hydroponic

lettuce growth.
[131]

Onion Allium cepa L. Amaryllidaceae Nano chitosan may improve the efficiency of traditional
fertilizers and promoted the net return per fed. [113]

Chitosan/polyacrylic acid hydrogel nanoparticles
(CS/PAA-HNPs) stimulated the yield, plant growth and

nutrient content in onion bulbs.
[132]

Okra Hibiscus esculentus
L. Malvaceae Chitosan foliar application at 100 or 125 ppm may be applied

at early growth stages to achieve higher yields. [133]

Pea Pisum sativum L. Fabaceae
Ascophyllum nodosum extract (ANE) and chitosan suppressed

pea powdery mildew by modulating Jasmonic acid and
Salicylic acid-upregulated signaling pathways.

[84]

Pepper Capsicum annuum
L. Solanaceae Nano-chitosan positively affected plant morphogenesis,

growth and physiology. [134]

Potato Solanum
tuberosum L. Solanaceae Chitosan application may significantly increase root fresh

and dry weight. [135]

Foliar spraying of chitosan combined with humic acid could
lead to higher tuber yield and yield components. [136]

Chitosan (75 mg/L) and oligo-chitosan (50 mg/L) can
increase plant growth and induce defense mechanisms for

drought stress tolerance.
[137]

Chitosan can inhibit the growth and spore germination and
induce resistance against Fusarium oxysporum. [138]

Growth and spore germination of Phytophthora infestans were
inhibited by chitosan. [139]

Sweet
potato Ipomoea batatas L. Convolvulaceae

Chitosan slowed down the cell growth, induced cell necrosis
and significantly affected fatty acid composition of

Ceratocystis fimbriata.
[140]

Tomato Solanum
lycopersicum L. Solanaceae Chitosan had positive effects on plant growth promotion

and control of Ralstonia solanacearum. [141]

Foliar application of salicylic acid and chitosan at 75 mg L−1

may be utilized at early growth stage for getting maximum
fruit yield in summer tomato.

[90]

Chitosan ameliorated viral load, stimulated gas exchange
and regulated PAL5 expression, while it decreased the

adverse impacts of Cucumber mosaic virus (CMV).
[142]

Chitosan indicated the appropriate results to inhibit the
infection caused by Rhizopus stolonifer on the tomato fruits. [143]

Chitosan combined with chelated copper had a higher
efficiency in the enzyme activation associated with
pathogenicity than chitosan or copper acting alone.

[94]

Chitosan + compost + arbuscular mycorrhizal fungi
application improved tomato growth. [144]

4. Activities and Applications of Oligochitosan

Oligochitosan (or chitooligosaccharides), with 3 to 10 saccharide residues of N-
acetylglucosamine or glucosamine, include homo or hetero oligomers obtained from chitin
by chemical or enzymatic hydrolysis [145], or though oxidative and ultrasonic degrada-
tion [146,147]. It is considered a plant elicitor and has similar effects as chitosan on plants
against biotic stress and plant growth improvement [148], while it also possesses significant
beneficial properties for human health [149]. Moreover, similarly to chitosan, the biological
activities of oligochitosan are also dependent on the degree of polymerization (DP) and the
acetylation pattern, as well as on the concentration of the applied compound and the plant
species [46]. In particular, oligochitosan with higher DP showed stronger elicitation effects
through the expression of defensive genes [150].
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The main activities of oligochitosan are associated to the induction of secondary
metabolites biosynthesis and the activation of plant innate immunity through signal per-
ception and transduction, expression of defensive genes and finally the accumulation of
protective secondary metabolites [151,152]. So far, most of the applications refer to field
crops and a limited number of studies evaluated the effects of oligochitosan on vegetable
crops. For example, oligochitosan application showed higher in vitro effectiveness than
chitosan in inhibiting mycelia growth of Phytophthora species [153,154], while it promoted
plant growth and yield in various vegetable crops such as common bean, potato, tomato,
chili pepper, spinach and eggplant [155–158]. The combined application of oligochitosan
and ε-poly-L-lysine in tomato plants showed synergistic effects against Botrytis cinerea in-
fections both under in vitro and in vivo conditions, suggesting their use as a bio-fungicide
alternative to synthetic fungicides [159]. Moreover, Li et al. [160] suggested that oligochi-
tosan induced the production of nitric oxide and hydrogen peroxide in Brassica napus L.
plants, which acted as signaling molecules in the regulation of stomata closure and the
expression of LEA protein gene for the protection against drought. Apart from protective
effects, oligochitosan may improve the functional properties of vegetable products, as al-
ready reported in case of white radish sprouts (Raphanus sativus L.) where seed germination
with oligochitosan-treated water resulted in a significant increase in the most abundant
glucosinolate, e.g., glucoraphasatin [161].

The use of oligochitosan has great potential for farming applications, especially in
crops with high added value as in the case of vegetable species. However, future research
is needed to define important parameters regarding the biostimulant product, such as
the degree of polymerization, and fine tune the application practices related to dose and
application time and method.

5. The Use of Chitin as Biostimulant

Chitin is a versatile polymer of β-1,4-N-acetylglucosamine widely abundant in nature,
and mainly obtained from prawn/crab shells for commercial purposes [38,72,162], while
the isolation of chitin from edible fungi production chain has also been considered [163,164].
It is composed after the polymerization of N-acetylglucosamine through the activity of
chitin synthases which are classified in three divisions and seven classes [165]. Chitin
is the second most abundant polysaccharide in living organisms after cellulose, being
the main structural compound in fungal cells and the skeleton of invertebrates [38,166].
The main differences of chitosan are its hydrophobic nature and the lower solubility in
water and several organic solvents, which pose restrictions in practical applications in
agriculture and significantly affect the biological properties of chitin [167]. Therefore, its
chemical modification and the derivatives obtained through chemical reactions are of major
importance towards the better exploitation and valorization of this biopolymer. The current
market trends show that the global chitin market is expected to reach USD 2900 million
by 2027, with healthcare, waste and water treatment and agrochemicals sectors being the
largest market segments [168].

The main application methods of chitin on plants consist of foliar spraying and direct
soil application, while it may be also applied on coating horticultural products to increase
their shelf life after processing [169–171]. When foliar spraying is applied, the positive
effects of chitin are associated with its direct act as a physical barrier against pathogen
infections or with indirect activities that induce the plant immune system as signaling
molecules for defense pathways [167,172,173]. Soil application effects are more complex
than foliar spraying and include (a) the increased bioavailability of nitrogen due to the
high content of chitin in this important macronutrient and the low C/N ratio [174], (b) the
increased activity of chinolytic organisms that may have antagonistic effects against plant
soil pathogens [175] and (c) the favorable effects on soil microbiota such as mycorrhiza and
rhizobia that act synergistically to plant and improve crop performance [176,177]. On the
other hand, the use of chitin in edible coatings of horticultural products may provide a
semipermeable physical barrier that regulates gas exchange and may delay ripening and
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decrease water losses and respiration rates [178]. However, these effects may differ since
chitin is a natural product and differences in composition and physicochemical properties
(e.g., nitrogen and ash content, degree of deacetylation, bulk density and viscosity) of
commercial products may result in differences in biological activities [179].

Several studies have evaluated the biostimulatory effects of chitin on vegetables crops.
For example, Rajkumar et al. [85] suggested that combining chitin with salicylic acid may in-
crease the population of Pseudomonas sp. strains SE21 and RD41 which act antagonistically
against Rhizoctonia solani, causing damping off in pepper plants. Moreover, chitin obtained
from yeast cell walls may increase the tolerance of tomato fruit against Botrytis cinerea [180].
Peat supplementation with chitinolytic plant growth promoting Bacillus subtilis AF1 re-
sulted in increased emergence and plant growth of pigeon pea seedlings [181], while the
amendment of peat substrate with chitin increased the rhizobiome of lettuce, resulting
in improved plant growth [182]. Chitin has also been used in biocontrol agents against
soil-borne and foliar plant pathogens and pests [183]. Considering the disadvantageous
properties of chitin that limit its direct application in plants, complex structures have been
suggested such as the protein/CaCO3/chitin nanofiber complex which improved plant
growth in hydroponically grown tomatoes [184], or polymeric chitin nanofibers which
exhibit eliciting activities [185]. Chitin nanofibers were also effective in inhibiting the
infections by Alternaria brassicicola and Colletotrichum fructicola in cabbage and strawberry
plants, respectively [186], as well as in increasing the tolerance against Fusarium wilt [187]
or improving nitrogen use efficiency and promoting the growth of tomato plants [188].
Moreover, the application of a formulation based on chitin and Trichoderma ameliorated the
occurrence of head rot (Sclerotinia sclerotiorum (Lib.) deBary) and root-knot (Meloidogyne
incognita Kofoid and White; Chitwood), while it also increased the yield of cabbage plants
grown under field conditions [189]. The application of betaine and chitin in lettuce plants
grown under a regulated water deficit irrigation regime increased crop performance, as
expressed by improved water use efficiency values [190]. Chitin oligosaccharide dithicy-
clobutane derivative showed nematicidal activity against Meloidogyne incognita in tomato
seedlings, an effect that could be associated with its glutathione binding activity [191].

Table 2 presents the most important effects of chitin application on vegetable crops.

Table 2. The effects of chitin on vegetable crops.

Plant Scientific Name Plant Family Key Point Reference

Cabbage and
strawberry

Brassica oleracea cv.
Shoshu and Fragaria
× ananassa) var.

Yotsuboshi

Brassicaceae
and Rosaceae

Chitin nanofibers induced plant resistance against
Alternaria brassicicola Colletotrichum fructicola and increased

plant growth.
[186]

Cabbage Brassicaceae Chitin and Trichoderma formulation [189]
reduced the incidence of complex diseases Sclerotinia

sclerotiorum and Meloidogyne incognita.

Chili pepper Capsicum annum L. Solanaceae
Chitin and salicylic acid application along with antagonists

(fluorescent pseudomonads SE21 and RD41) effectively
controlled damping off (Rhizoctonia solani) of seedlings.

[85]

Soil amendments with chitin effectively controlled
Meloidogyne javanica) and Fusarium solani infections. [192]

Eggplant Solanum melongena
L. Solanaceae Soil amendments with chitin obtained from crabs

suppressed Verticcilium wilt in plants. [193]

Lettuce Lactuca sativa L. Asteraceae Peat supplemented with chitin increased the growth of
lettuce plants and siderophore and chitinase genes. [182]

Soil application of chitin combined with foliar application
of betaine improved crop performance under water stress

conditions.
[190]

The application of chitin-rich residues in growth medium
increased lettuce plant growth and improved post-harvest

quality.
[194]
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Table 2. Cont.

Plant Scientific Name Plant Family Key Point Reference

Pigeon pea Cajanus cajan L. Fabaceae Peat supplemented with chitin increased seedling
emergence and growth of seedlings. [181]

Tomato Solanum
lycopersicum L. Solanaceae Post-harvest treatment of tomato fruit with chitin induced

resistance to Botrytis cinerea infections. [180]

Foliar application of chitin-based inoculum of Paenibacillus
elgii HOA73 inhibited gray mold infections in fruit. [183]

Nanofiber complex of protein/CaCO3/chitin increased
plant growth through efficient minerals release. [184]

Chitin nanofibers induced plant growth through the
increased nitrogen use efficiency. [188]

Complexes of protein/CaCO3/chitin and protein/chitin
nanofiber reduced Fusarium wilt incidence. [187]

Combined application of chitin and chitosan reduced the
incidence of Rhizoctonia solani, Fusarium solani and

Sclerotium rolfsii in plants.
[195,196]

Chitin incorporation in the soil reduced root galls from
nematode infections. [197]

Figure 1 shows the most notable advantages of chitin and chitin derivatives applica-
tion, while the chemical structures of chitin (C8H15NO6) and chitosan (C56H103N9O30) are
shown in Figure 2.
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6. Conclusions

Chitin, chitosan and chitosan oligosaccharides are natural biopolymers with numerous
activities in plants. So far, the practical applications of these compounds have shown
beneficial effects on the protection of horticultural plants against pathogens, and on plant
productivity and growth, especially under environmental constraints which highlight its
promising roles for crop cultivation under drought conditions in arid and semi-arid regions.
Among these compounds, chitosan seems to be the most economical option for improving
productivity and quality of various plants at the moment, especially in high added value
species such as horticultural crops. On the other hand, chitin single applications are
limited mostly due to practical limitations related to the hydrophobic and insoluble nature
of this compound. Therefore, various transformations must be considered in order to
valorize its beneficial effects on plants through the complexation with other compounds
or the nanofibrillation. Moreover, the diverse sources of chitin and derivatives make it
difficult to standardize the composition of commercial products, which may affect their
biological activities in plants. Finally, the farming sector is a very promising alternative to
exploit these natural biopolymers and provide farmers a sustainable tool to increase crop
productivity and the quality of the final product. However, further studies are needed to
improve reproducibility of the positive effects and to standardize the production processes
from the lab to an industrial scale. Both of these aspects will help towards improving the
application protocols of biostimulant products with standardized composition.
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