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Studies have found that pathogenic fungi and plants have sRNA transboundary regulation
mechanisms. However, no researchers have used computer methods to carry out
comprehensive studies on whether there is a more remarkable similarity in the
transboundary regulation of plants by pathogenic fungi. In this direction, high-throughput
non-coding sRNA data of three types of fungi and fungi-infected plants for 72 h were
obtained. These include the Magnaporthe, Magnaporthe oryzae infecting Oryza sativa,
Botrytis cinerea, Botrytis cinerea infecting Solanum lycopersicum, Phytophthora infestans
and Phytophthora infestans infecting Solanum tuberosum. Research on these data to
explore the commonness of fungal sRNA transboundary regulation of plants. First, using the
big data statistical analysis method, the sRNAwhose expression level increased significantly
after infection was found as the key sRNA for pathogenicity, including 355 species of
Magnaporthe oryzae, 399 species of Botrytis cinerea, and 426 species of Phytophthora
infestans. Secondly, the target prediction was performed on the key sRNAs of the above
three fungi, and 96, 197, and 112 core nodes were screened out, respectively. After
functional enrichment analysis, multiple GO and KEGG_Pathway were obtained. It is found
that there are multiple identical GO and KEGG_Pathway that can participate in plant gene
expression regulation, metabolism, and other life processes, thereby affecting plant growth,
development, reproduction, and response to the external environment. Finally, the
characteristics of key pathogenic sRNAs and some non-pathogenic sRNAs are mined
and extracted. Five Ensemble learning algorithms of Gradient Boosting Decision Tree,
Random Forest, Adaboost, XGBoost, and Light Gradient Boosting Machine are used to
construct a binary classification prediction model on the data set. The five indicators of
accuracy, recall, precision, F1 score, and AUC were used to compare and analyze the
models with the best parameters obtained by training, and it was found that each model
performed well. Among them, XGBoost performed very well in the five models, and the AUC
of the validation set was 0.86, 0.93, and 0.90. Therefore, this model has a reference value for
predicting other fungi’s key sRNAs that transboundary regulation of plants.
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INTRODUCTION

Fungal diseases, accounting for 70–80% of plant diseases, can
infect each other, have an infestation process, and continue to
persecute the growth and development of plants, resulting in a
reduction in output and causing substantial economic losses to
the world. Among them, fungi such as Magnaporthe oryzae and
Phytophthora infestans are more harmful to food, and fungi such
as Botrytis cinerea are more harmful to fruits and vegetables. In
the development of agriculture for about 10,000 years, humans
have been fighting against plant fungal diseases, a hot issue
studied for a long time (Dean et al., 2012). Therefore, a more
comprehensive understanding of fungi infecting plants and
effective prevention and control is significant in reducing
various losses.

Magnaporthe oryzae is distributed worldwide and occurs at
every stage ofOryza sativa growth. About 30% of theOryza sativa
loss in the world is caused by Magnaporthe oryzae every year
(Deng et al., 2017), which can feed at least 60 million people
(Nalley et al., 2016). At the same time, the fungus can also infect
food crops such as Triticum aestivum L, Secale cereale L, millet,
Setaria italica and Avena sativa L (Chakraborty et al., 2021; Roy
et al., 2021). LLBotrytis cinerea infects a wide range and can harm
more than 470 plants such as Solanaceae, Cucurbitaceae and
Rosaceae (Fillinger and Elad, 2016). The pathogen has always
been a model for studying the molecular mechanism of the
interaction between the host and the pathogen (Liu et al.,
2018). Late blight caused by Phytophthora infestans is one of
the most destructive Solanum tuberosum diseases globally and the
most important yield-limiting factor in Solanum tuberosum
production (Haverkort et al., 2016). Effectively preventing and
controlling Magnaporthe oryzae, Botrytis cinerea, Phytophthora
infestans and other kinds of fungi has always been a hot research
issue. Therefore, this article explores the infection mechanism of
Magnaporthe oryzae to Oryza sativa, Botrytis cinerea to Solanum
lycopersicum, and Phytophthora infestans to Solanum tuberosum
from a new perspective. It is particularly important to formulate
persistent and broad-spectrum control strategies for Oryza sativa
resistance toMagnaporthe oryzae, Solanum copersicum resistance
to Botrytis cinerea, Solanum tuberosum resistance to
Phytophthora infestans, and even the entire plant kingdom to
resist fungi.

sRNA was first discovered in 1993, and more and more
researchers are currently studying sRNA and have made a lot
of progress Li and Li, 2018). Studies have found that some small
double-stranded RNA (dsRNA) can degrade mRNA and cause
gene silencing, which is called RNA interference (RNAi) (Guo
and Kemphues, 1995; Fire et al., 1998). It is present in all
eukaryotic cells, such as fungi, plants, and animal cells. The
process is that dsRNA is decomposed into two sRNAs under
the action of RNaseIII enzyme, one of which is added to RISC
(RNA-induced silencing complex) to inhibit protein production.
Studies have found that sRNA can transmit and silence each
other’s genes between objects with vitality. This phenomenon is
cross-species RNAi (Cai et al., 2018a). Recent studies have shown
that fungal sRNA can cross borders into plants and play a
regulatory role (Deng et al., 2018; Kusch et al., 2018; Zanini

et al., 2021). In 2013, a study confirmed Botrytis cinerea
transports toxic sRNA utility factors into Arabidopsis cells,
silences immune-related genes, and successfully verified that
the three sRNAs of Bc-siR3.1, Bc-siR3.2 and Bc-siR5 are in
Botrytis cinerea. Play an active role in the pathogenicity of the
disease (Weiberg et al., 2013). When the Arabidopsis ago1-27
mutant was infected by Verticillium dahliae, it resisted the fungal
infection; In Arabidopsis ago7-2, dcl4-2, rdr2-4, and rdr6-15
mutants of RNA silencing pathways that are infected, severe
symptoms appear (Ursula et al., 2009; Weiberg et al., 2013). A
study in 2016 indicated that sRNA effectors produced by Botrytis
cinereaDicer protein 1 (BC-DCL1 and BC-DCL2) were delivered
to Solanum lycopersicum and Arabidopsis cells, and the host
immune gene was silenced. It also showed that sRNAs
targeting BC-DCL1 and BC-DCL2 in Arabidopsis and
Solanum lycopersicum can silence the BC-DCL gene and
reduce the pathogenicity and growth of Botrytis cinerea. This
discovery indicates a bidirectional cross-border RNAi between
plants and fungi, and then experimentally verified that the
application of genes targeting BC-DCL1 and BC-DCL2 on the
surfaces of fruits, vegetables and flowers can significantly inhibit
Botrytis cinerea disease (Wang et al., 2016). Research by Ming
Wang and other researchers in 2018 showed that a small part of
the sRNA of powdery mildew fungi has targets in plants,
indicating that there may be cross-kingdom RNA transfer
between powdery mildew fungi and their respective plant hosts
(Kusch et al., 2018). Cai Q found that Arabidopsis thaliana can
transport its sRNA into Botrytis cinerea tissues. By inhibiting
related genes of Botrytis cinerea, it prevents and resists the
pathogenicity of Botrytis cinerea (Cai et al., 2018b). In 2019,
researchers sequenced the sRNA of Sclerotinia sclerotiorum
in vitro and infecting Arabidopsis thaliana respectively, and
found that at least 374 distinct highly abundant sRNAs were
produced during the infection process. Target prediction was
performed and it was found that the targets were enriched in
functional domains related to plant immunity (Derbyshire et al.,
2019). The above findings lay the foundation and broaden ideas
for an in-depth discussion of plant fungi. This article assumes that
the transboundary regulation of plants and fungi is widespread.

With the wide application of extensive biological data analysis
that has achieved good results in the biological field, and the
sRNA data of fungi and plants are becoming more and more
perfect, this provides a basis for the cross-border research of fungi
and plants sRNA. Some researchers used the SVM model to
predict the key sRNA ofMagnaporthe oryzae (Zhang et al., 2019).
Some researchers used the Random Forest model to predict the
key sRNA of Phytophthora infestan (Liu et al., 2020). Some
researchers used multiple machine learning models to predict
the key sRNAs of Phytophthora infestans and Magnaporthe
oryzae pathogenicity (Zhang et al., 2020). The researchers have
proved that machine learning models have excellent effects on
predicting the pathogenicity of key sRNAs in fungi, especially the
Random Forest and AdaBoost models, both of which belong to
Ensemble learning.

However, they only classify and predict one or two kinds of
fungi, and the prediction models used for each type of fungi are
inconsistent. For this reason, this paper uses a variety of ensemble
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FIGURE 1 | Overall research flow chart. In the first and fourth rows, Mo is the abbreviation of Magnaporthe oryzae sRNA, MO_Os_72 is the abbreviation after
Magnaporthe oryzae sRNA infecting Oryza sativa 72 h, Bc is the abbreviation of Botrytis cinerea sRNA, Bc_Sly_72 is the abbreviation after Botrytis cinerea sRNA
infecting Solanum lycopersicum 72 h, Pi is the abbreviation of Phytophthora infestans sRNA, Pi_St_72 is the abbreviation after Phytophthora infestans sRNA infecting
Solanum tuberosum 72 h. In the second and third rows are the corresponding genomes.
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learning models to predict the pathogenic key sRNAs of three
kinds of fungi with huge differences to find a generic model. In
this paper, we studies the sRNA data before and after
Magnaporthe oryzae infects the Oryza sativa, Botrytis cinerea
infects the Solanum lycopersicum, and Phytophthora infestans
infects the Solanum tuberosum. The key sRNAs in the infection
process were mined through data analysis, and functional
enrichment analysis was performed on them to find the
functional commonality of the three fungal sRNAs in the
transboundary regulation of plants. At the same time, five
ensemble learning methods are used to construct a binary
classification prediction model, and five indicators are used to
evaluate the model to select the optimal model. Thus, this article
provides a reference for selecting key sRNA algorithm models for
predicting fungal pathogenicity, provides a direction for the study
of other fungal sRNAs transboundary regulation of plants, and
provides a theoretical basis and new ideas for the prevention and
control of plant fungal diseases.

DATA AND METHODS

This article uses multiple databases to obtain all the relevant data
of three fungi (Magnaporthe oryzae, Botrytis cinerea,
Phytophthora infestans) and three plants (Oryza sativa,
Solanum lycopersicum, Phytophthora infestans). Taking the
changes of fungi before and after infecting plants as the
research direction, the data obtained are analyzed and the key
sRNA sequences that cause disease are screened. The overall
process of this article is shown in Figure 1.

Data Source and Preprocessing
Data Sources
Seven kinds of data were obtained from GEO database (https://
www.ncbi.nlm.nih.gov/geo/), including: Magnaporthe oryzae
mycelium SRNA data set (GSM1059882), Magnaporthe oryzae
mycelium infected Oryza sativa leaves 72 h mixed data set
(GSM1059888); Botrytis cinerea mycelium sRNA data set
(GSM1101910), 72-h mixed data set of Botrytis cinerea
mycelium infecting Solanum lycopersicum leaves
(GSM1101915); Data set of Phytophthora infestans rep1 sRNA
(GSM1212963) and rep2 sRNA (GSM1212964), Phytophthora
infestans infected Solanum tuberosum leaf tissue 72 h mixed data
set (GSM1545158). Eight kinds of data were obtained from
NCBI, including: Magnaporthe oryzae genome data
(Pyricularia oryzae 70-15 (assembly MG8)) and Oryza sativa
genome data (Oryza sativa Japonica Group (assembly IRGSP-1.
0)), Botrytis cinerea genome data (Botrytis cinerea B05.
10 (assembly ASM14353v4)) and Solanum lycopersicum
genome data (Solanum lycopersicum (assembly SL3.0)) and
Phytophthora infestans genome data (AATU01) and Solanum
tuberosum genome data (AEWC01) and Oryza sativa mRNA
data (https://www.ncbi.nlm.nih.gov/nuccore) and Solanum
lycopersicum gene annotation (https://www.ncbi.nlm.nih.gov/
assembly/GCF_000188115.4). Obtain the Solanum
lycopersicum mRNA data (SL2.5) from the Ensemble plant
database (http://plants.ensembl.org/index.html). Obtain the

Solanum tuberosum transcript data (PGSC_DM_v3.4_
Transcript-UPDATE) and genome annotation data (PGSC_
DM_v3.4_gene) from the SPUD database (http://solanaceae.
plantbiology.msu.edu/index.shtml).

Adapter, Quality Information, Length Processing
After obtaining the data needed for the research, it was found that
the data format obtained from the GEO database was in SRA
format. To facilitate subsequent operations, the Sratoolkit tool
(https://hpc.nih.gov/apps/sratoolkit.html) was used to convert it
into the standard fastq format. Since the obtained sRNA data is
high-throughput sequencing, removing the adapters from the
sequence is necessary. This article uses Cutadapt (https://
cutadapt.readthedocs.io/en/stable/) to remove the adapters.
Due to the obtained data of Botrytis cinerea and the 72-h
data of Botrytis cinerea infecting Solanum lycopersicum, the
process of removing adapters and masking low-quality and low-
complexity sequences has been carried out. Therefore, this
article will no longer perform the processing mentioned
earlier on these two kinds of data, only controlling the
length. After the data is removed adapters, the sRNA data of
the two fungi and the 72 h mixed data of the corresponding
plant of the fungus infection, the length and the number of
sequences corresponding to the length are distributed as shown
in Figure 2.

The source article (Raman et al., 2013) of the Magnaporthe
oryzae data and the mixed data of the Magnaporthe oryzae
infecting Oryza sativa for 72 h, there is no quality information
processing operation (Raman et al., 2013). Therefore, this article
does not perform quality control operations on it, only performs
quality control operations on the data of Phytophthora infestans
and the mixed data of the 72 h of Phytophthora infestans infecting
Solanum tuberosum. Use fastQC tools (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) for quality
control, and set at least 80% of the bases in each sRNA
sequence to have a quality value greater than or equal to 33.
In addition, this article only studies base sequences with a length
of 18–25, so it is necessary to control the length and only keep the
sRNA sequences that match the length.

After the above processing, it is necessary to perform sequence
expression statistics on the six kinds of sRNA data respectively.
The specific method is: deduplicate the data to obtain the
sequence type, use the data sequence after deduplication, and
count the number of occurrences of each sequence in the data file
before deduplication is the expression level of the sequence. The
statistical results of the number of six sRNA types (not the
number) are shown in Table 1.

sRNA Sequence Mapping to the Genome
As this article studies fungal sRNA transboundary regulation of
plants, it is necessary to find sRNA sequences with apparent changes
in expression before and after fungal infection of plants. However,
and the data obtained in the previous step, we cannot guarantee that
it is a completely fungal sRNA sequence, it may contain pollution
and plant sRNA sequence. Therefore, this study uses the tools
bowtie2 (https://sourceforge.net/projects/bowtie-bio/files/bowtie2/)
(the short sequence is mapped to the genome, set strict
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matching, and the mismatch parameter is 0) and samtools (http://
www.htslib.org/download/) (operation sam and bam toolset) tomap
sequences to fungal and plant genomes. Sequences that match the
fungal genome and those that do not match the plant genome are
retained. The operation process is shown in Figure 3.

Among them, Phytophthora infestans rep1, rep2, after
removing adapters, quality information and length control but

not yet mapped to the genome, the number of sequence types are
1,027,945 and 1,214,340, respectively. For the convenience of the
next work, this article mixes the two data sets and then performs
the mapping operation. The average expression is used as the
subsequent data of this experiment. The number of sequence
types obtained is 1,879,202, which is quite different. So, it makes
sense for us to select two repeated experiments for mixing. After

FIGURE 2 | The length distribution diagram after removing the adapters before and after the infection. (A) shows the sRNA data of Magnaporthe oryzae after
removing the adapters, (B) shows the sRNA data of Magnaporthe oryzae infected with Oryza sativa for 72 h after removing the adapters. (C) shows the sRNA data of
Phytophthora infestans rep1 after removing the adapter, (D) shows the sRNA data of Phytophthora infestans rep2 after removing the adapter, (E) shows the sRNA data
of Phytophthora infestans infected with Solanum tuberosum for 72 h after removing the adapters. The abscissa in the figure represents the length of the sequence,
and the ordinate represents the number corresponding to the length of the sequence.

TABLE 1 | Data volume statistics before and after removing adapters, length and quality control.

Raw data After adapter (not deduplicated) Length and quality control (deduplicated)

Magnaporthe oryzae 12376438 350381
Oryza sativa, 72 hpi (Magnaporthe oryzae) 103911039 1208229
Botrytis cinerea 584047
Solanum lycopersicum, 72 hpi (Botrytis cinerea) 812186
Phytophthora infestans _1 3341758 1027945
Phytophthora infestans _2 4296476 1214340
Phytophthora infestans _mean 1879202
Solanum tuberosum, 72 hpi (Phytophthora infestans) 11016347 1077596
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themapping, the number of sequence types of the sixsRNA data is
counted, and the statistical results are shown in Table 2.

Standardization of sRNA Expression and
Selection of Key sRNA
Standardization of Expression
It is found fromTable 2 that the number of sRNA types and expression
levels of the three fungi before and after infection have undergone
tremendous changes. In order to avoid errors in obtaining the sRNA
sequence whose expression level is significantly higher after infection
than before infection, it is necessary to standardize the expression level
tomake it comparable. This paper uses twomethods to standardize the
data. First, themillion-standardizationmethod is used for the data after
removing the adapters, quality information and length control. Second,
the specific calculation method is denoted in Eq. 1:

xii � 100w × xi

sumi
(1)

Where xii is the count of each sRNA sequence after
normalization, xi is the expression level of each sRNA
sequence before normalization, and sumi is the sum of the
expression level of all sRNA sequences. On this basis, the
quartile standardization method is used for the data mapped
to the genome (fungi and plant). First, sort the expression levels of

sRNA sequences in descending order, select the expression levels
at each 3/4 position as a reference value, and convert them into
corresponding multiples.

Select Key sRNA
Based on the statistics of sRNA sequences, there are 87299 species
of Magnaporthe oryzae before infection, and 10,981 species after
72 h of infection. Among them, there are 6,099 species of
sequences that coexist before and after infection. There are
4,882 newly generated sequences after infection; there are
303,592 species of Botrytis cinerea and 16553 species after 72 h
of infection. Among them, 8,477 species of data coexist before and
after infection, and there are 8,076 newly generated sequences
after infection; there are 1,121,519 species of Phytophthora
infestans before infection, and sequences 87068 species after
72 h of infection. There are 23237 species of sequences that
coexist before and after infection, and there are 63831 newly
generated sequences after infection; For the convenience of
viewing, the statistical results are shown in Figure 4.

The above figure shows that after the fungus infects the plant,
the number of types of sRNA sequences is significantly reduced.
This article believes that after standardizing the sRNA sequence,
the expression level of fungi after infection is significantly
increased compared with that before infection, that is, the
sRNA sequence with a fold increase in the expression level

FIGURE3 | Flow chart of sRNA sequence mapping to genome.

TABLE 2 | Data volume statistics after Map.

Library sRNA species mapped
to the fungus

genome

Species after removal
of plants sRNA

Magnaporthe oryzae 87443 87299
Oryza sativa, 72 hpi (Magnaporthe oryzae) 11194 10981
Botrytis cinerea 306783 16553
Solanum lycopersicum, 72 hpi (Botrytis cinerea) 21550 812186
Phytophthora infestans 1128507 1121519
Solanum tuberosum, 72 hpi (Phytophthora infestans) 91925 87068
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after infection relative to the pre-infection and higher expression
level after infection is the key sRNA sequence for fungal
transboundary regulation of plants. This article is divided into
two parts to study the sRNA sequences whose expression levels
increase significantly after infection. The first part is the sRNA
sequences that co-exist before and after infection with
significantly increased expression levels. The specific
calculation method is denoted in Eq. 2:

R � count of reads after infection − count of reads before infection

count of reads before infection

(2)
Among them, R is the growth rate after infection relative to

before infection, count of reads after infection is the
expression level of a certain sRNA sequence after infection,
and count of reads before infection is the expression level of
the corresponding sequence before infection.

The key sRNAs in this paper are based on both the growth rate
and the expression level, and the relevant data after the infection
is screened. Among them, Magnaporthe oryzae was a sequence
co-existing before and after infection and met the two conditions
of growth rate greater than 2 and expression level greater than or
equal to 25, and 214 sequences were obtained; Botrytis cinerea is a
sequence co-existing before and after infection and meeting the
two conditions of growth rate greater than or equal to 2 and
expression level greater than or equal to 7, resulting in 175
sequences; Phytophthora infestans is a sequence coexisting
before and after infection, and simultaneously meets the two
conditions of growth rate greater than 2 and expression level
greater than or equal to 200, resulting in 248 sequences. The
differences in the expression levels of the three fungal sRNAs
before and after infection are shown in Figure 5.

The second part of the key sRNA is the newly produced sRNA
sequence after the fungus infects the plant. For Magnaporthe
oryzae, 141 with expression level greater than or equal to 30 is

selected, for Phytophthora infestans, 178 with expression level
greater than or equal to 60, and for Botrytis cinerea 224 with
expression greater than or equal to 18. The statistical results are
shown in Table 3.

In this paper, 355 species of Magnaporthe oryzae, 399 species
of Botrytis cinerea, and 426 species of Phytophthora infestans
selected from the above two parts were used as key sRNAs for
subsequent processing.

Target Gene Prediction and Select the Core
Node
Based on the three types of key sRNA sequences screened out
above, in order to find the relevant biological processes and
regulatory pathways in the cross-border regulation of the three
fungal sRNAs, target predictions were performed on the three key
sRNAs. This article uses the Tapir tool (http://bioinformatics.psb.
ugent.be/webtools/tapir/) to make predictions, converts the files
storing key sRNA sequences into fasta format using codes,
replaces all T with U. Then use the mRNA data of Oryza
sativa, the CDS data of Solanum lycopersicum, and the
transcript data of Solanum tuberosum respectively for target
prediction. After the target is predicted, the identifier is
extracted from the result file by programming. The identifier
can be matched to the corresponding gene ID or protein ID from
the mRNA, transcript, CDS, or gene annotation file. In this paper,
the Oryza sativa mRNA data file contains its gene ID; the
Solanum lycopersicum CDS file also contains its gene ID; the
Solanum tuberosum transcript file has neither gene ID nor
protein ID. This article uses gene annotation files to match the
corresponding gene ID. The above matching process needs to be
programmed to achieve. After matching, functional analysis can
be performed in a variety of tools. This study uses the String
online tool (https://www.string-db.org/cgi/input?sessionId=
btV3GVJkiL7j&input_page_show_search=on).

FIGURE 4 | Venn diagram of the number of sRNA types before and after infection.Mo is the abbreviation for the number ofMagnaporthe oryzae sRNA species, and
MO_Os_72 is the abbreviation for the number ofMagnaporthe oryzae sRNA species afterMagnaporthe oryzae infecting Oryza sativa for 72 h. Bc is the abbreviation for
the number ofBotrytis cinerea sRNA species, andBc_Sly_72 is the abbreviation for the number ofBotrytis cinerea sRNA species afterBotrytis cinerea infecting Solanum
lycopersicum for 72 h. Pi is the abbreviation for the number of Phytophthora infestans sRNA species, and MO_Os_72 is the abbreviation for the number of
Phytophthora infestans sRNA species after Phytophthora infestans infecting Solanum tuberosum for 72 h. (A) shows the intersection and complementary set of the
number of sRNA species before and afterMagnaporthe oryzae infects Oryza sativa. (B) shows the intersection and complementary set of the number of sRNA species
before and after Botrytis cinerea infects Solanum lycopersicum. (C) shows the intersection and complementary set of the number of sRNA species before and after
Phytophthora infestans infects Solanum tuberosum.
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The corresponding relationship between sRNA and mRNA or
CDS or transcript is 1 to 0 to multiple. After running the target
prediction on the server, the number of key sRNA types of the three
fungi, the number of targeted mRNA/CDS/Transcript, the number of
types after deduplication, the number of genes targeted for plants, the
type of gene ID after deduplication, and related network PPI
enrichment p-value are counted, as shown in Table 4.

From the above Table, it can be found that the target
prediction results of the three fungi targeting plants are
relatively large, and the p-value is significant, resulting in a
vast network, and obvious pathway enrichment is not easy to
be found. Therefore, we need to screen the core nodes separately
to find obvious enrichment functions and regulatory pathways.

In this paper, the core nodes are screened in two steps. The first
step is to change the confidence between nodes in the network. The
default confidence in String is 0.400, and we customize it to 0.600,

which has higher confidence. After updating the set confidence,
export the tsv file in the String database. The tsv file stores the two
protein nodes that interact with each other, the annotations of the
two nodes, and the corresponding confidence.

The second step is based on the first step to filter by the size of
the node degree. This paper controls the degree of the node
through programming, repeatedly importing it into the String
database to observe the effect, and finally selects the node of the
appropriate degree. Among them,Oryza sativa retains nodes with
a degree greater than or equal to 5 and obtains 96 core nodes, as
shown in Supplementary Table S1; Solanum lycopersicum
retains nodes with a degree greater than or equal to 8 and
obtains 197 core nodes, as shown in Supplementary Table S2;
Solanum tuberosum retains nodes with a degree greater than or
equal to 5 and obtains 112 core nodes, as shown in
Supplementary Table S3.

FIGURE 5 | Differences in sRNA expression levels co-existing before and after infection. The abscissa is the sequence index, sorted according to the sequence
dictionary order, and the ordinate is the amount of expression. Red indicates the expression level before fungus infection, and blue indicates the corresponding
expression level after fungus infection. It can be seen from the figure that there is a significant difference in expression before and after infection. (A) shows the number of
sRNA species co-existing before and afterMagnaporthe oryzae infectsOryza sativa and the expression level of each sRNA. (B) shows the number of sRNA species
co-existing before and after Botrytis cinerea infects Solanum lycopersicum and the expression level of each sRNA. (C) shows the number of sRNA species co-existing
before and after Phytophthora infestans infects Solanum tuberosum and the expression level of each sRNA.

TABLE 3 | Key sRNA data volume statistics.

Data Key sRNA Key_inner Key_outer

Oryza sativa, 72 hpi (Magnaporthe oryzae) 355 214 141
Solanum lycopersicum, 72 hpi (Botrytis cinerea) 399 175 224
Solanum tuberosum, 72 hpi (Phytophthora infestans) 426 248 178

TABLE 4 | Key sRNA targeting statistics.

Target sRNA mRNA/CDS/Transcript Deduplication Gene Gene deduplication PPI enrichment
p-value

Magnaporthe oryzae 355 2,860 2,539 2,539 1,657 0.765
Botrytis cinerea 399 2,704 1975 1975 1975 0.291
Phytophthora infestans 426 3,325 2,221 2,221 1,519 7.15e-14
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Predictive Model Construction
Negative Sample Selection
This article uses the three key sRNAs mined in 2.2.2 as three sets
of positive sample data sets. After removing the positive samples
from the infected sequence, it is found that the number of positive
samples and non-positive samples of the three fungi is very
different. There will be a serious imbalance problem if these
samples are directly regarded as negative samples, so negative
samples need to be selected. This article first analyzes the length
distribution of the sequence in all negative samples and the
statistics of the expression of each length. It then extracts each
length separately to ensure that the extracted negative sample
sequence has the same proportions as all non-positive samples.
Finally, the uniform sorting method in the roulette method is
used to extract negative samples with a ratio of positive and
negative samples of 1:4. To facilitate viewing, the number of
sRNAs, the number of non-positive samples, the ratio of positive
samples to non-positive samples, the number of negative samples,
and the number of positive and negative samples of the three
fungi are counted, as shown in Table 5.

sRNA Feature Extraction and Processing
Before using machine learning to build a model, it is necessary to
extract the feature vectors required by the model. Based on the
previous sRNA research, this article extracts the features of the
sRNA sequences of the three fungi, including 25 base positions,
sRNA sequence length, and GC content, Minimum free energy,
5′-end single base, 5′-end double base, 3′-end single base, 3′-end
double base and 84 Motif frequency (1-3nt), a total of 116
Features. If the sequence length is less than 25, use N to fill in
the vacant bases for base positions. The minimum free energy is
obtained in this article using the RNAfold tool (http://rna.tbi.
univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). The input is
the fasta format of the positive and negative sample set, and
the corresponding sRNA sequence and minimum free energy are
output. The output sRNA sequence is not in the format we need,
and it needs to be converted through programming. In this paper,
when constructing the model, it is found that when the features
are added with 5′-end single base and 3′-end single base, the
classification effect is better than only 5′-end double base and 3′-
end double base, so extract these four features. Motif frequency
(1-3nt): 1nt includes 4 types of features, counting the number of
occurrences of A, T, G, and C in each sequence; 2nt includes 16
types of features, 2nt includes 16 types of features, counting the
number of occurrences of AA, AT, etc in each sequence; 3nt
includes 64 types of features, counting the number of occurrences
of AAA, AAT, etc in each sequence; Since the constructed model
requires digital features, it is necessary to encode the sequence

features by onehot. For N, A, C, G, and T, perform four-bit
sequential encoding, and for AA (00010001), AC (00010010), . . . ,
TT (10001000) perform eight-bit encoding.

After encoding, the base positions are changed from the
original 25 features to 100 after encoding. The sequence
length, GC%, and MFE remain unchanged. 5′-end single base
and 3′-end single base are changed from the original One feature
becomes the encoded 4 features, 5′-end double base and 3′-end
double base are changed from the original one feature to the encoded
eight features. The number of 84 features of the Motif frequency (1-
3nt) remains unchanged, and eventually, the original 116 features
become the encoded 211 features. There are 3 continuous features,
208 discrete features, and there is a big gap between the continuous
feature values. In order to make all data with different magnitudes
into the same magnitude and to ensure that the data is comparable,
the “Z_Score”method is used to standardize all features. The specific
calculation method is denoted in Eq. 3:

Feature’ � Feature − μ

σ
(3)

After the features are standardized, redundant features are
removed by identifying high-relevance features, zero-importance
features, and low-importance features. Among them, 54 are
Magnaporthe oryzae, 39 are Botrytis cinerea, 32 are Phytophthora
infestans. The remaining 157 characteristics of Magnaporthe oryzae,
172 characteristics of Botrytis cinerea, and 179 characteristics of
Phytophthora infestans were used for subsequent model construction.

Model Cross-Validation to Select Optimal Parameters
In this paper, the samples of the three fungi are divided into
verification data and training data according to 1:3. To construct
a binary classification model, use five ensemble learning algorithms:
GBDT (Gradient Boosting Decision Tree), AdaBoost, Random
Forest, XGBoost, and LightGBM (Light Gradient Boosting
Machine). Then, through the combination of network search and
cross-validation, the five classification models of the three data sets
are separately trained with parameters. As a result, each data set
model has the optimal effect. For the binary classification, there will
be deviations between the model prediction and the actual situation,
so this article uses four indicators of accuracy, recall, precision, and
F1 Score to analyze it. The specific calculation is denoted in Eqs 4–7:

Accuracy � TP + TN

TP + TN + FP + FN
(4)

Precision � TP

TP + FP
(5)

Recall � TP

TP + FN
(6)

TABLE 5 | Statistics of positive and negative samples.

Sample Positive sample Non-positive sample Proportion Negative samples Positive and
negative samples

Magnaporthe oryzae 355 10626 1:30 1,420 1,775
Botrytis cinerea 399 16154 1:40 1,596 1995
Phytophthora infestans 426 86642 1:203 1,704 2,130
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F1 Score � 2TP
2TP + FP + FN

(7)

Among them, T refers to True, F refers to False; P refers to the
positive sample, that is, the key sRNA data set of each type of
fungus in this article, and N refers to the negative sample, that is,
the corresponding part of the non-key sRNA data set obtained by
screening using the roulettemethod. So TP is the correct number of
key sRNA for each type of data in the three types of fungi data set,
TN is the number of correct non-key sRNA for each type of fungus
data set; FN is the number of pathogenic key sRNAs in each type of
data set that were incorrectly classified into corresponding fungal
non-critical sRNAs, and FP is the number of non-critical sRNAs in
each type of data set that were classified into critical sRNAs.

This article takes accuracy as the main evaluation index, recall
rate, precision and F1 score as additional evaluation indexes and
uses a combination of grid search and cross-validation to train the
parameters. The parameters are trained using a combination of
grid search and cross-validation. The results obtained after
training are shown in Table 6.

RESULTS

Functional Enrichment Analysis
Import the 96, 197, and 112 core nodes selected in 2.3 into the
String database again, select the corresponding plants and
perform a mapping search. The results show that the overall
PPI enrichment p-value of the Oryza sativa network is 9.66e-15,

and the overall PPI enrichment p of the Solanum lycopersicum
network -value is less than 1.0e-16, and the overall PPI
enrichment p-value of the Solanum tuberosum network is less
than 1.0e-16, both of which have high accuracy.

In the network enrichment pathway results, it was found that
Oryza sativa has 83 Biological Process (Gene Ontology), 25
Molecular Function (Gene Ontology), 16 Cellular Component
(Gene Ontology), and 25 KEGG_Pathway. It is found that
Solanum lycopersicum has 5 Molecular Function and 29
KEGG_Pathways. It is found that there are 26
KEGG_Pathways in Solanum tuberosum. The above results
False discovery rate are all <0.05. The above GO and
KEGG_Pathway can be shown in Supplementary file
Supplementary Tables S4–S8.

In order to analyze these regulatory pathways more intuitively,
this article plots the number of genes contained in the regulatory
pathways and the reliability of the pathways and enrichment
factors in the bubbles figures. The bubble plots corresponding to
Botrytis cinerea is shown in Figure 6. Bubble plots for
Magnaporthe oryzae and Phytophthora infestans are shown in
Supplementary Figures S1, S2 in Supplementary file. Take the
negative logarithm-log_10 (p_value) processing to the false
discovery rate. −log_10 (p_value) is proportional to the
credibility of the pathway, and the number of genes is
proportional to the pathway effect.

Commonization of Enrichment Pathways
According to the statistical analysis of 3.1, the intersection of
Molecular Function (GO) targeting Oryza sativa (25 items) and

TABLE 6 | The optimal parameters obtained from the training of the five models.

Ensemble Learning Parameter Magnaporthe oryzae Botrytis cinerea Phytophthora infestans

Gradient Boosting Decision Tree n_estimators 20 49 95
max_depth 3 5 3
learning_rate 0.1 0.1 0.1
max_features auto sqrt auto
subsample 0.6 0.8 0.8

Random forest n_estimators 50 50 68
max_depth 6 7 9
criterion gini entropy entropy
max_features sqrt auto auto
oob_score false false false

Adaboost n_estimators 60 60 60
max_depth 3 4 3
learning_rate 0.03 0.1 0.08
criterion entropy entropy entropy
max_features auto auto auto

XGBoost n_estimators 20 60 50
max_depth 3 6 3
subsample 0.5 0.8 0.6
gamma 3 4 3
min_child_weight 5 4 1

Light Gradient Boosting Machine n_estimators 45 55 58
max_depth 3 5 5
learning_rate 0.1 0.1 0.1
num_leaves 5 9 18
bagging_fraction 0.6 0.6 0.6
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targeting Solanum lycopersicum (5 items) is 3; the intersection of
KEGG_Pathway targeting Oryza sativa (25 items) and targeting
Solanum lycopersicum (29 items) is 16; The intersection of
KEGG_Pathway targeting Solanum tuberosum (26) and Oryza
sativa (25) is 11; the intersection of KEGG_Pathway targeting
Solanum tuberosum (26) and Solanum lycopersicum (29) is 15.

The Molecular Function (GO) targeting Oryza sativa and
targeting Solanum lycopersicum are displayed according to the
process ID (process description, false discovery rate of
Magnaporthe oryzae, false discovery rate of Botrytis cinerea),
followed by GO:0005524 (ATP binding, 0.0215, 0.0074), GO:
0008144 (drug combination, 0.0273, 0.0112), GO:0016772
(transferase activity to transfer phosphorus-containing groups,
0.0328, 0.0135). The false discovery rate is the proportion of false
in all discoveries. The smaller the value, the better.

For the KEGG_Pathway targeting Oryza sativa and Solanum
lycopersicum, display it from bottom to top according to the
description of the pathway (Magnetic blast fungus false discovery
rate, Botrytis cinerea false discovery rate), In order Ribosome
(1.30E-06,1.11E-05), Carbon metabolism (1.11E-05, 1.87E-12),
Ribosome biogenesis in eukaryotes (6.25E-05, 4.26E-06),
Glycolysis/Gluconeogenesis (0.00038, 0.0001), Ubiquitin
mediated proteolysis (0.0021, 0.0252), Arginine and proline
metabolism (0.0026, 0.0026), Citrate cycle (TCA cycle) (0.003,
3.19E-08), Aminoacyl-tRNA biosynthesis (0.003, 0.0011),

biosynthesis of secondary metabolites (0.0049, 5.66E-09),
Pyruvate metabolism (0.0062, 1.67E-11), Lysine degradation
(0.0128, 0.0062), Tryptophan metabolism (0.0156, 0.0098),
Phenylalanine tyrosine and tryptophan biosynthesis (0.0191,
0.0098), Spliceosome (0.0291, 0.00057), Metabolic pathways
(0.0322, 1.60E-14), Carbon fixation in photosynthetic
organisms (0.0355, 3.08E-07).

Regulation of gene expression is essential for plant growth and
development. Metabolism is the general term for a series of
chemical reactions that maintain plant life, enabling plants to
grow and reproduce, maintain structure, and respond to the
external environment (Carrington and Ambros, 2003; Lai, 2003).
Analyze the above-mentioned regulatory pathways by further
consulting the data, and describing them according to the name
(ID, category). Related to gene expression are Ribosome (03010,
translation), Ribosomes biogenesis in eukaryotes (03008,
translation), Ubiquitin mediated proteolysis (04120, folding,
classification and degradation), and Aminoacyl-tRNA
biosynthesis (00970, translation), Spliceosome (03040,
transcription). Related to metabolism: Carbon metabolism
(01200, global), Glycolysis/Gluconeogenesis (00010,
carbohydrate metabolism), Arginine and proline metabolism
(00330, amino acid metabolism), Citrate cycle (TCA cycle)
(00020, carbohydrate metabolism), Biosynthesis of secondary
metabolites (01110, global), Pyruvate metabolism (00620,

FIGURE 6 | Bubble diagram of Botrytis cinerea targeting Solanum lycopersicum’s KEGG_Pathway.
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carbohydrate metabolism), Lysine degradation (00310, amino
acid metabolism), Tryptophan metabolism (00380, amino acid
metabolism), Phenylalanine tyrosine and tryptophan
biosynthesis (00400, amino acid metabolism), Metabolic
pathways (01100, global), Carbon fixation in photosynthetic
organisms (00710, energy metabolism). Related to defense is
the Biosynthesis of secondary metabolites (01110).

The KEGG_Pathway that targets Solanum tuberosum and
Oryza sativa is displayed according to the description of the
pathway (false discovery rate of Phytophthora infestans, false
discovery rate of Magnaporthe oryzae), Followed by Metabolic
pathways (1.46E-07, 0.0322), Ribosome (2.16E-07, 1.30E-06),
Carbon metabolism (1.26E-06, 1.11E-05), Ribosomal
biogenesis in eukaryotes (1.41E-06, 6.25E-05), Glycolysis/
Gluconeogenesis (9.15E-06, 0.00038), Biosynthesis of
secondary metabolites (1.78E-05, 0.0049), Aminoacyl-tRNA
biosynthesis (0.00099, 0.0031), Pyruvate metabolism (0.0055,
0.0062), Circadian rhythm-plant (0.0141, 0.00074), Pentose
phosphate pathway (0.0211, 0.0031), Spliceosome (0.0282,
0.0291).

Among them, Ribosome (03010, translation), Ribosome
biogenes in eukaryotes (03008, translation), Aminoacyl-tRNA
biosynthesis (00970, translation), and Spliceosome (03040,
translation) are related to gene expression. Related to
metabolism: Metabolic pathway (01100, global), Carbon
metabolism (01200, global), Glycolysis/Gluconeogenesis
(00010, carbohydrate metabolism), Biosynthesis of secondary
metabolites (01110, global), Pyruvate metabolism (00620,
carbohydrate metabolism), Pentose phosphate pathway (00030,
carbohydrate metabolism). Related to defense is the biosynthesis
of secondary metabolites (01110). Circadian rhythm-Plants
(04712) control many important physiological processes of
plants, such as flowering and fruiting, growth, metabolism,
and response to biotic and abiotic stresses (Carrington and
Ambros, 2003; Lai, 2003).

For the KEGG_Pathway targeting Solanum tuberosum and
Solanum lycopersicum, display according to the description of the
pathway (false discovery rate of Phytophthora infestans, false
discovery rate of Botrytis cinerea), followed by Metabolic
pathway (1.46E-07, 1.60E-14), Ribosome (2.16E-07, 1.11E-05),
Carbon metabolism (1.26E-06, 1.87E-12), Ribosomal biogenesis
in eukaryotes (1.41E-06, 4.26E-06), RNA transport (2.38E-06,
0.00029), Glycolysis/Gluconeogenesis (9.15E-06, 0.0001), Glycine
serine and threonine metabolism (1.61E-05, 0.0225), Biosynthesis
of secondary metabolites (1.78 E-05, 5.66E-09), Biosynthesis of
amino acids (0.00019, 1.11E-05), Purine metabolism (0.00029,
0.0352), Glyoxylate and dicarboxylate metabolism (0.00034,
0.0038), Aminoacyl-tRNA Biosynthesis (0.00099, 0.0011),
Pyruvate metabolism (0.0055, 1.67E-11), Starch and sucrose
metabolism (0.0115, 0.00068), Spliceosome (0.0282, 0.00057).

Among them are Ribosome (03010, translation), Ribosome
biogenes in eukaryotes (03008, translation), RNA transport
(03013, translation), Aminoacyl-tRNA biosynthesis (00970,
translation), and Spliceosome (03040, transcription) related to
gene expression. Related to metabolism: Metabolic pathways
(01100, global), Carbon metabolism (01200, global),
Glycolysis/Gluconeogenesis (00010, carbohydrate metabolism),

Glycine serine and threonine metabolism (00260, amino acid
metabolism), Biosynthesis of secondary metabolites (01110,
global), Biosynthesis of amino acids (01230, global), Purine
metabolism (00230, nucleotide metabolism), Glyoxylate and
dicarboxylate metabolism (00630, carbohydrates metabolism),
Pyruvate metabolism (00620, carbohydrate metabolism),
Starch and sucrose metabolism (00500, carbohydrate
metabolism). Related to defense is the Biosynthesis of
secondary metabolites (01110).

There are 9 intersections of KEGG_Pathway that co-target the
three plants, as shown in Figure 7. According to the description
of the pathway (false discovery rate of Phytophthora infestans,
false discovery rate ofMagnaporthe oryzae, false discovery rate of
Botrytis cinerea), the Metabolic pathways (1.46E-07, 0.0322,
1.60E-14), Ribosome (2.16E-07, 1.30E-06, 1.11E-05), Carbon
metabolism (1.26E-06, 1.11E-05, 1.87E-12), Ribosome
biogenesis in eukaryotes (1.41E-06, 6.25E-05, 4.26E-06),
Glycolysis/Gluconeogenesis (9.15E-06, 0.00038, 0.0001),
Biosynthesis of secondary metabolites (1.78E-05, 0.0049,
5.66E-09), Aminoacyl-tRNA biosynthesis (0.00099, 0.0031,
0.0011), Pyruvate metabolism (0.0055, 0.0062, 1.67E-11),
Spliceosome (0.0282, 0.0291, 0.00057). The term description,
observed gene count, and false discovery rate are shown in
Figure 8.

Among the above-mentioned related to gene expression are
Ribosome (03010, translation), Ribosome biogenesis in
eukaryotes (03008, translation), Aminoacyl-tRNA biosynthesis
(00970, translation), and Spliceosome (03040, transcription).
Related to metabolism: Metabolic pathway (01100, global),

FIGURE 7 | Venn diagram of three fungal sRNA targeting plant
KEGG_pathway. In the figure, Os_KEGG is the KEGG_Pathway of
Magnaporthe oryzae targetingOryza sativa. Sly_KEGG is the KEGG_Pathway
of Botrytis cinerea targeting Solanum lycopersicum. St_KEGG is the
KEGG_Pathway of Phytophthora infestans targeting Solanum tuberosum.
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Carbon metabolism (01200, global), Glycolysis/Gluconeogenesis
(00010, carbohydrate metabolism), Biosynthesis of secondary
metabolites (01110, global), Pyruvate metabolism (00620,
carbohydrate metabolism). Related to defense is the
Biosynthesis of secondary metabolites (01110).

Comparison and Analysis of Models Based
on Optimized Parameters
In order to compare the classification effects of the above three
fungal data sets corresponding to the five ensemble learning

models, this paper sets them to the parameters in Table 6.
Then the five-fold cross-validation training sample set is used
to calculate the four indicators. The results for Botrytis cinerea is
shown in Figure 9. The corresponding results for Magnaporthe
oryzae and Phytophthora infestans are shown in Supplementary
Figures S3, S4 in the Supplementary file.

It can be found that the five ensemble learningmodels perform
well under the four indicators. In addition, to prevent the
machine learning model from comparing the predicted
probability value and the threshold value to judge whether it
is a key sRNA by the size. Using Receiver Operating

FIGURE 8 | . KEGG_pathway parallel histogram of three fungal sRNA targeting. The figure above shows 9 KEGG_Pathways that co-exist in Phytophthora infestans,
Magnaporthe oryzae and Botrytis cinerea. The upper bar graph is the KEGG_Pathway targeted by Phytophthora infestans sRNA, the bar in the middle is Magnaporthe
oryzae, and the lower bar graph is the KEGG_Pathway targeted byBotrytis cinerea sRNA. The x-axis is the number of genes observed in the pathway. The y-axis in the figure
is sorted in ascending order of the false discovery rate of Phytophthora infestans. The color of the false discovery rate is displayed in the right label.
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Characteristic Curve to analyze the five integrated learning
algorithms of three fungi separately, the area under the curve
is the value of AUC. The ordinate of the curve is the recall rate,
and the abscissa is the false positive rate (FRR). The specific
calculation method is denoted in Eq. 8:

FPR � FP

TN + FP
(8)

As shown below, Supplementary Figure S5 (in the
supplementary file), Figure 10, and Supplementary Figure S6
(in the supplementary file) are the evaluation curve of the binary
classification model constructed by the five ensemble learning
models on the three fungal validation set samples, including
444 Magnaporthe oryzae, 499 Botrytis cinerea and
553 Phytophthora infestans.

Based on the analysis and summary of the above three figures,
the following conclusions can be drawn: the area under the curve
of the five ensemble learning models for the three fungi is

relatively large, and the whole is smoother, and there is no
under-fitting and over-fitting. In 2019, some researchers used
the SVM model to predict the key sRNA ofMagnaporthe oryzae,
and the final model had an accuracy of 83% and an AUC of 0.85
(Hao et al., 2019). In 2020, some researchers used the Random
Forest model to predict the key sRNA of Phytophthora infestans,
and the final model had an accuracy of 85.23% and an AUC of
0.9169 (Liu et al., 2020). Some researchers used five models of
Light Gradient Boosting Machine, Random Forest, KNN,
Classification And Regression Tree, and SVM to predict the
key sRNAs of Phytophthora infestans pathogenicity, and
compared them with multiple indicators, and found that
Random Forest was significantly better than other
classification models in all indicators. Using KNN, SVM,
Naive Bayes, Decision Tree, Random Forest and Adaboost six
models to predict the key sRNA of Magnaporthe oryzae
pathogenicity, it is found that Adaboost has a better
classification effect, SVM and Random Forest have Over-

FIGURE 9 | Evaluation of five models of Botrytis cinerea.
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fitting phenomenon, KNN, Naive Bayes (NB), Decision Tree
prediction effect is poor (Zhang et al., 2020). In this paper, it can
be found that GBDT, XGBoost, and Light GBM perform better
than Random Forest and Adaboost. The accuracy and AUC
statistical results of the training set and validation set are
shown in Table 7. Since Magnaporthe oryzae has fewer key
sRNAs, its accuracy, precision, and AUC value are lower than
those of the other two fungi. Therefore, this paper selects the
XGBoost model with the highest AUC value on Magnaporthe
oryzae and higher AUC values in the other two fungi. The model
performs well under other indicators as the final model.

DISCUSSION

Limitations of sRNA Sequence
This article only analyzes the up-regulated sequences with
apparent changes in fungal sRNA expression and does not
involve the study of down-regulated sequences and
differentially expressed sequences of plant sRNA. The may be
related to plant defense and resistance to fungi (Fei et al., 2016;

Zanini et al., 2019), and its role needs to be further explored. On
the other hand, because this article only studies the sRNA data
before and after the infection of the three fungi from the database,
and only the data 72 h after infection. Because this is a newer
direction, there are insufficient data. In response to this problem,
the class method can be used, that is, using the existing
homologous fungal sRNA or sRNA after fungal infection of
homologous plants, if they have common fungal sRNA and
plant mRNA, their targeting has more similarity. In addition,
studies have shown that spraying artificially synthesized sRNAs
targeting pathogen virulence-related genes on plants can inhibit
the infection and growth of fungi (Koch et al., 2016; Wang and
Jin, 2017; Zhu et al., 2019). Despite the high cost of sRNA
synthesis and short shelf life, the future use of sRNAs as
biopesticides is promising compared to the time required to
breed pathogen-resistant crops to obtain stable transgenic lines
(Wang et al., 2016). Therefore, in the near future, there will be
more and more relevant data. In the case of sufficient data in the
future, based on the research process of this article, we can study
more kinds of fungal sRNA transboundary regulation of plants
and plant sRNA transboundary regulation of fungi, explore the

FIGURE 10 | ROC curves of five models of Botrytis cinerea.
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interaction mechanism between fungi and plants in order to find
out more comprehensive commonality and difference. This will
bring new ideas for plant prevention and control of fungal
diseases, and provide a more comprehensive theoretical basis
for formulating persistent and broad-spectrummethods for plant
prevention and control of fungi.

Discover the Significance of Biological
Processes and Regulatory Pathways
In this paper, the three key sRNA sequences are respectively
targeted to the corresponding plant mRNA/CDS/transcripts, and
then mapped to the corresponding genes for functional
enrichment analysis. The large number of nodes makes
screening out the core nodes for the final functional
enrichment analysis necessary. The study found that three
fungi target multiple GO and multiple KEGG_Pathway. The
commonality analysis of the three fungal targets found that
multiple GO and multiple KEGG_Pathway coexisted, and the
KEGG_Pathway was further reviewed and analyzed. This article
analyzes the co-existing KEGG_Pathway by further consulting
data. The results of this paper show that fungal sRNAs have
certain commonalities in transboundary regulation of plants, and
the key sRNA sequences mined can participate in the regulation
of plant gene expression and metabolism, etc., which affect plant
growth, development, reproduction, and response to external
environments. In addition, this article only analyzes the fungal
cross-species regulation of plants from the data level and the
theoretical level, but there are few related studies. Therefore,
whether the research is entirely correct or not needs to be verified
by biological experiments. However, many researchers have
found through biological experiments that fungal differentially
expressed sRNAs are involved in the necrotrophic infection
phase, including gene expression in metabolism, translation-
related and defense responses (Zanini et al., 2019; Hunt et al.,
2019; Derbyshire et al., 2019), which is consistent with the
conclusions of this paper. This laid a theoretical foundation
for preventing and controlling fungal diseases and opened up
new research directions.

The Universality of the Model
Because organisms are divided into large to small categories in
kingdoms, phylums, classes, woods, families, genera, and species.
Among the three plants, Solanum lycopersicum and Solanum
tuberosum belong to the same genus (Solanum), while Oryza
sativa is very different from Solanum lycopersicum and Solanum
tuberosum and belongs to the same phylum (plant phylum).
Among the three fungi, Magnaporthe oryzae, Botrytis cinerea,

and Phytophthora infestans belong to the same kingdom, and
they are three completely different phyla. The larger the
category gap, the larger the genetic gap. This study used three
completely different fungi to infect three plants with huge
differences, and the XGBoost model performed very well, so
this model can not only be used to predict the key sRNAs of
the three fungi that regulate the three plants across borders in this
article. The model can also be used to predict the key sRNAs of
other fungi that regulate plants across borders, and the predicted
classification results have reference value. In addition, among a
variety ofmachine learningmodels, there aremanymodels that are
suitable for binary classification prediction of samples. Some
studies have shown that the fusion of models with larger
differences has a better classification effect (Zhang et al., 2020).
Researchers can also identify important features of pathogenic key
sRNAs, and mine the commonalities of pathogenic sRNA
characteristics.
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