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Abstract

PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network in-

ference method that begins with a model of transcription factor–target gene interactions and uses

message passing to update the network model given available transcriptomic and protein–protein

interaction data. PANDA is used to estimate networks for each experimental group and the network

models are then compared between groups to explore transcriptional processes that distinguish the

groups. We present pandaR (bioconductor.org/packages/pandaR), a Bioconductor package that imple-

ments PANDA and provides a framework for exploratory data analysis on gene regulatory networks.

Contact: johnq@jimmy.harvard.edu or dschlauch@fas.harvard.edu

Availability and Implementation: PandaR is provided as a Bioconductor R Package and is available

at bioconductor.org/packages/pandaR.

1 Introduction

While correlation-based networks are widely used in transcriptomic

data analysis, such networks do not explicitly model the biological

mechanisms involved in regulating gene expression, such as the

binding of transcription factors (TFs) to the regulatory regions of a

gene. Passing Attributes between Networks for Data Assimilation

(PANDA) (Glass et al., 2013) is an integrative network inference

method that explicitly models interactions between TFs and their

putative target genes. PANDA starts with an initial network model

derived from motif-based TF–target mapping to the genome, and

uses a message-passing framework to refine that initial model in

each phenotype given gene expression and other data. PANDA does

not directly incorporate co-expression information between regula-

tors and targets. Instead, edges in PANDA networks reflect the over-

all consistency between a TF’s regulatory profile with the target

gene’s co-expression. In a number of applications, PANDA has pro-

vided insight into the regulatory context of genes and TFs associated

with disease and other phenotypes (Glass et al. 2014, 2015; Lao

et al., 2015; Vargas et al., 2016).

2 Materials and methods

2.1 PANDA
PANDA’s regulatory network model is fundamentally a bipartite

graph in which TFs are connected to target genes. In PANDA’s mes-

sage passing model, the edge weights are calculated based on the evi-

dence that information from a particular TF is successfully passed to

a particular gene. This evidence comes from the agreement between

two estimated quantities on each edge, referred to as the availability

and the responsibility (Fig. 1).

The availability is an estimate of the responsiveness of a gene j to

TF i. The assumption in calculating the availability is that genes

with correlated expression are likely to be regulated by a common

TF. Hence, the availability is based on correlation in expression be-

tween gene j and other genes with the strength of evidence for regu-

latory interactions (edges) between TF i and other genes. Analogous

to this, the responsibility is an estimate of the influence of TF i on

gene j, and models the fact that TFs that form a complex are more

likely to regulate the same target gene. The estimated responsibility

is therefore based on the concordance between the set of TFs known
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to interact with TF i (based on protein–protein interaction (PPI)

data) and the respective strength of evidence of a regulatory associ-

ation between those other TFs and gene j. Both the availability and

responsibility are estimated using a modified version of the

Tanimoto similarity. We define this similarity between two nodes, i

and j, as Ti;j ¼
P
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p . In the case of availability, xk

is the correlation between gene j and gene k, and yk is the edge

weight between TF i and gene k. In the case of responsibility xk rep-

resents whether a PPI exists between TF i and TF k, and yk is the

edge weight between TF k and gene j.

The edge weight between TF i and gene j is then updated based on

the mean of the responsibility and availability. PANDA iteratively es-

timates edge weights until the process converges to the most parsimo-

nious structure for information flow given the data. The result is a

network model, represented by edge weights for every pairwise com-

bination of TFs and genes, based on evidence from gene expression,

sequence motif and PPI data. In analysis of simulated data, and data

from systems in which confirmatory ChIP evidence are available,

PANDA has been shown to outperform other competing methods

(Glass et al., 2013).

pandaR implements the PANDA algorithm in an easy-to-use

Bioconductor package. Beginning with gene expression, TF gene inter-

action priors, and optional PPIs, pandaR generates a regulatory net-

work for m TFs regulating n genes and presents it as an m�n

adjacency matrix. It also provides the user with an estimated TF-by-TF

‘cooperativity network’ and gene-by-gene ‘co-regulation network’, both

estimated by PANDA and reported as complete graphs representing the

evidence for TF cooperation and gene co-regulation, respectively.

pandaR also provides a number of exploratory data visualizations

of the inferred network’s properties and diagnostic tools. Our hypoth-

esis in developing PANDA was that gene regulatory networks differ

between biological states and that changes in the network are linked

to phenotypic differences. Therefore, the pandaR package extends the

PANDA network inference model by including a number of functions

that can aide in comparing network structures between phenotypes.

For example, the function plotGraph(topSubnet) integrates with

igraph to generate a bipartite visualization of the PANDA networks.

Because networks are often organized into functionally coherent

communities, users can investigate and plot community structure

using plotCommunityDetection(topNet). Additional network

comparison functions include plotZ(pandaResultControl,

pandaResultCase), which presents a scatterplot of the edge

weights between two inferred networks. This function integrates with

ggplot2, allowing the user to define graphics based on genes and TFs

to easily identify functionally relevant sets of differential edge weights.

We also implemented a function calcDegreeDifference() to

calculate a gene’s degree or the degree difference between regulatory

networks. Since it is important to benchmark the predicted edges of

pandaR and compare its performance with alternative methods, we

have included a function, validateNetwork(), which integrates

the package ROCR and can be used to compare PANDA’s network in-

ference results against a known reference standard. Finally, users can

also use the function lioness(), which uses a unique linear inter-

polation method to estimate network models for each individual sam-

ple in a population (Kuijjer et al., 2015). Unlike other methods that

project gene expression onto an existing network, the lioness()

function uses a leave-one-out method to estimate each individual edge

weight in the network.

2.2 Data input
pandaR accepts input data in a variety of formats. Gene expression

data can be input as either a data.frame, matrix, or as a

Bioconductor ExpressionSet. TF gene interaction priors for the regu-

latory network can be input as a matrix or data.frame, with triplet

columns specifying a putative regulatory edge from a TF (column 1)

to gene (column 2) with a defined weight (column 3), typically ini-

tialized as 1.0; the regulatory prior is generally based on mapping

TF motifs to target genes based on genomic sequence information.

PPI data are not required but can be input as a either a matrix or

data.frame that includes protein pairs and an interaction weight.

Annotation type is not restricted except that node names for

genes in the regulatory file must match node names in the gene ex-

pression file and TF names must match in both the regulatory and

PPI inputs.

2.3 Example
An example data set generated from a subset of human gene expres-

sion data is available by running: data(pandaToyData).

The primary function in pandaR is called using

pandaResult<–panda(pandaToyData$motif,

pandaToyData$expression, pandaToyData$ppi)

where pandaResult is a ‘panda’ object that contains matrices

describing the complete bipartite gene regulatory network and com-

plete networks for gene co-regulation and TF cooperation. Due to

the completeness of the input data, edge weights for the regulatory

network are reported for all m�n TF–gene edges.

The distribution of these edge weights has approximate mean 0

and standard deviation 1. The edges are therefore best interpreted in a

relative sense. Strongly positive values are indicative of relatively

greater evidence of a regulatory TF–gene association and smaller or

negative values can be interpreted as lacking evidence of regulatory

interaction. Consequently, users often want to see only a high edge

weight subset of the complete network in order to focus on the most

strongly supported regulatory interactions. This filtering is performed

using the topedges function. A network containing the top 1000

edge scores as binary edges can be obtained using the command

topNet<–topedges(pandaResult, 1000)

The network can be further simplified to a TF set of interest by using

the subnetwork method,

Fig. 1. The PANDA algorithm takes as input protein–protein interaction data,

a transcription factor–gene interaction network prior and gene expression

data. Three networks representing inferred TF–TF co-operativity, TF–gene

regulatory processes and gene co-regulation are then iteratively updated

using message passing until the model converges
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trFactors<–c(“TLX1”,”VDR”,”RXRA”,”PPARG”)

topSubnet<–subnetwork(topNet, trFactors)

to limit the output to a subset of TFs and the genes that they are

found to regulate.
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