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Abstract

In this paper we have addressed the problem of analysing Next Generation Sequencing samples with an expected large
biodiversity content. We analysed several well-known 16S rRNA datasets from experimental samples, including both large
and short sequences, in numbers of tens of thousands, in addition to carefully crafted synthetic datasets containing more
than 7000 OTUs. From this data analysis several patterns were identified and used to develop new guidelines for
experimentation in conditions of high biodiversity. We analysed the suitability of different clustering packages for these
type of situations, the problem of even sampling, the relative effectiveness of Chao1 and ACE estimators as well as their
effect on sampling size for a variety of population distributions. As regards practical analysis procedures, we advocated an
approach that retains as much high-quality experimental data as possible. By carefully applying selection rules combining
the taxonomic assignment with clustering strategies, we derived a set of recommendations for ultra-sequencing data
analysis at high biodiversity levels.
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Introduction

The analysis of microbiological biodiversity has advanced

significantly with the inclusion of Next Generation Sequencing

(NGS) technologies [1]. While early biodiversity studies relied on

relatively small sample sizes to estimate biodiversity in the

population [2], [3], [4], modern sequencing technology allows

data retrieval from possibly thousands or even millions of

microorganisms, hence rendering more reliable and comprehen-

sive studies [5]. This capability can be further exploited by

combining several samples in a single experiment using tag-

encoded amplicon pyrosequencing [6], which permits subsequent

binning of data to samples.

The quality of the different NGS technologies and their

suitability for environmental studies is a recurrent subject in

specialised and comparative reviews [7], [8], [9], [10], [11]. Most

studies use Roche 454 technology to obtain the sequences, due to

its capacity to produce a large number of longer reads: up to a

million reads, with lengths ranging from 300 to 500 base pairs, and

a well-characterized, non-uniform mean error rate of 1%.

Recently, interest in using Illumina technologies has increased as

well as in the corresponding read lengths [12], [13], [14], [15].

Various approaches have been developed to deal with NGS-

induced errors [16], including the removal of reads with

ambiguous base calls [8], de-noising using various approaches,

pre-clustering, different methods for chimera detection, and the

removal of singleton sequences (ones that do not cluster with other

sequences, resulting in OTUs with a unique member sequence)

[17] or sequences below a given abundance threshold [18], [14].

Typical experiments consist of sequencing 16S rDNA using

specially targeted primers, something particularly well suited for

this approach as it contains several hypervariable regions that can

accommodate a large diversity [19]. Most studies are based on

sequencing only a fragment containing one or more hypervariable

regions, usually the V6, V3–V5, V4–V6 or V9 regions.

Traditionally, bacterial biodiversity has been measured by

estimating the number of culturable species present in the

population, however, it is now possible to collect genetic

information from unculturable organisms, which frequently

cannot be ascribed to characterised species. Deciding whether

these novel sequences should be assigned to a new species raises

the controversial issue of correspondence between taxonomy and

genetic variability. Operational Taxonomic Units (OTUs) at 3%,

5% and 10% dissimilarity are commonly used to estimate richness

as regards species, genus and phylum [20].

Recommendations for data analysis from NGS experiments

have recently been made [16] as a Standard Operation Procedure

(SOP) that uses a very demanding approach, discarding any

potentially questionable sequence and keeping only those whose

quality can be precisely verified. This large reduction in reads

available for study is justified when dealing with low diversity

environments, offering the great advantage of ensuring that only

the highest quality data is used to obtain the estimation. A different

approach consists of removing all reads with less than three copies

when the number of reads remaining is large enough to guarantee
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saturation [14], however, in this type of analyses, richness

estimators such as Chao1 cannot be used and so they must resort

to rarefaction analysis to verify richness saturation. A more

conservative approach using an abundance threshold has been

proposed to manage highly complex communities: a large number

of high quality reads differ by only 1 nucleotide from the expected

sequence, with variants occurring at every position, suggesting

they are sequencing errors [18], [13]. This approach allows

inclusion in the analysis of sequences that are not fully conserved.

Therefore, the approach chosen to filter and analyse the sequences

exerts a major impact on the results as each method has its own

strengths and weaknesses, and hence the choice of an adequate

approach is not an easy matter. The most restrictive approaches

are certainly an excellent option for low-diversity samples,

however, there are circumstances where richness estimation can

potentially require up to several hundred thousand reads [21]. A

less restrictive solution would facilitate the analysis of combined

samples in high-diversity situations, however, little work has been

conducted to determine recommendations for adequate sample

sizes considering major factors such as expected biodiversity, shape

of the population’s relative species abundance distribution and

expected minimal OTU composition. Indeed, current studies

usually include minimal analyses to understand relative OTU

distribution in the underlying populations, often reporting

Shannon-Weaver’s biodiversity index or using long-standing

controversial methods, such as pie charts [22].

The selection of the best tools to analyse different NGS datasets

is the subject of active research and many comparative analyses

usually consider datasets of relatively limited size and variable

levels of diversity [23], [24], [25]. A performance comparison of

the commonly used tools on data sets with a very high diversity will

provide useful guidance for the selection of the appropriate tool.

Our own research focuses on the analysis of samples from

agricultural soils treated with different herbicides, or supporting

different types of crops. In principle, we expect these environments

will harbour more complex bacterial communities with a

potentially high degree of diversity. Careful thought should be

given to ensure that less represented, yet possibly relevant, species

in the target environments are not being neglected. Considering all

these points, we set out to study in more detail various issues that

are specific to the analysis of NGS samples from complex

environments, aiming to obtain useful strategies to retrieve the

maximum amount of information on the underlying biodiversity

with minimal cost in reads. We started by comparing the relative

efficiency of the various tools used to calculate the OTUs; we then

sought to better understand the effect of the sampling and

population structure by analysing the behaviour of the observed

and predicted OTUs on carefully designed synthetic populations

and subsequently we considered the additional noisiness of real-

world situations using experimental datasets from a variety of

sources, leading us to propose a cost-effective work flow for data

analysis. This may have a major impact on the development of

agricultural strategies, management and policies.

Materials and Methods

Datasets
To better understand the expected behaviour of the current

estimators and methods, we produced two synthetic communities,

where the total sequences in each one had been derived from a

single, well-known reference sequence (E. coli full-length 16S

rRNA (1542 nt) and its V3–V5 region (592 nt)) by using

EMBOSS msbar [26] to add random point mutations (transitions,

transversions, insertions and deletions), until a distance of

approximately 3.5% was achieved (16S-20K and V3V5-20K data

sets). All the sequences were compared using NCBI-blast [27] to

identify the number of groups present at 3% dissimilarity.

A second set of communities was generated from reference

sequences available from VAMPS [28] (retrieved on 2012-03-05)

using the complete V3, V3–V5, V4–V6, V6, V6a, V9 regions and

full-length SSU. The reference databases were first clustered using

Otupipe [29] to identify representative sequences from separate

OTUs at a 3% distance; these were further cleaned by comparison

using BLAT [30] to obtain a list of sequences for each reference

database with a distance of at least 3% among them. We selected

10000 sequences from these in each case (7000 in the case of V6)

to generate communities following reference log-normal distribu-

tions produced with R [31], and parametrized using various values

for m and s (the mean and standard deviation of the logarithm).

New individuals were added to each OTU using EMBOSS msbar

to mutate each seed sequence to a distance of 1.25% the number

of times specified by the chosen distribution (refV3, refV3V5,

refV4V6, refV6, refV6a, refV9 and refSSU datasets).

Rarefaction analysis of these datasets will simulate sampling

from a natural community where most OTUs have only one

individual. To simulate a situation where each OTU has more

than one individual in the community, we built additional

communities with each OTU containing at least two or three

individuals, by duplicating and triplicating the datasets (x2 and x3

datasets). Full details on the procedures used in building the

synthetic communities are provided in File S1.

Finally, we have considered several published experimental

datasets from different environments: data obtained from agricul-

tural soil samples [32], from different grasslands [33], from Priest

Pot lake [34] and faecal samples [35]. These datasets are

considered to represent situations with an anticipated high or

medium diversity, and with sampling sizes that are characteristic

of the current 454 multiplexed experiments. All datasets are

available from the authors at the web site http://www.free-bit.

org/public/metagenomics/.

Data Analysis
When dealing with experimental datasets we relied on

UCHIME as a cost-effective approach to remove chimeras [16].

We applied chimera removal early in our pipeline using Otupipe,

both checking with the Gold reference database and using

frequency counts [29]. The reported chimeras were then removed

from the dataset prior to further analysis.

To obtain comparable results in each case, we applied the same

cleaning procedure described in the original publication to each

experimental dataset, except for the faecal samples, where no

undetermined bases (N) were allowed.

To identify eukaryotic, putative contaminants and questionable

sequences, we included a taxonomical analysis step. Seeking

maximum accuracy, NCBI-blast was used to search reads against

a reference database. Initially, we used the RDP [36] and Silva

databases [37], however, as comparisons against Silva ran

significantly faster and offered more sensitive assignments,

subsequent analyses relied only on comparisons with Silva. The

search output was then processed with MEGAN [38] to assign

reads to the different taxa.

We employed the taxonomical classification computed by

MEGAN to separate the reads into three groups: sequences

clearly belonging to the group of interest (in our case bacterial

sequences), sequences clearly identified as contaminants (in our

case only eukaryotic sequences, as no archaea reads were

identified in any of the experimental datasets analysed) and

unclassified reads (all others). Unclassified reads were then
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clustered separately to identify singletons and these were discarded

as questionable sequences. Unclassified reads remaining after the

removal of singletons were then pooled back with the group of

interest and the definitive analysis was performed on the sum of

both (in our case, unclassified reads minus singletons plus bacteria).

The initial OTU analysis was carried out using the RDP

pipeline, ESPRIT [39], MOTHUR [40], and Otupipe [29]. More

detailed subsequent analyses were carried out using Otupipe with

a minimum cluster size of 1. The output of Otupipe was processed

to extract the relevant information (File S1), such as chimerical

sequences, sequences clustered in singleton or doubleton groups,

relative richness and abundance analysis, and to calculate the

corrected value for Chao1 and ACE. Lastly, rarefaction curves

were built using Otupipe and the QIIME pipeline tools [41]. The

process was automated employing easy-to-use, self-explanatory,

command-line programs available on GitHub (http://github.

com/jrvalverde/MGtools) and listed in SeqAnswers (http://

seqanswers.com/wiki/CNB_MetaGenomics_tools). These are

provided in File S1.

Results

Analysis of Synthetic Datasets
The preliminary analysis was carried out using the ‘‘simplified’’

communities (obtained by generating random mutations from a

single original sequence), 16S, V3V5 and their duplicated and

triplicated versions (x2 and x3). To obtain an accurate estimate of

the diversity present we used NCBI-blast to compare each

sequence with all the others. The comparisons revealed that these

datasets contained 8647 and 8399 artificial OTUs at 3%

dissimilarity, respectively. As a first preliminary analysis step, we

compared the relative efficiency of the different tools (ESPRIT,

MOTHUR, RDP pipeline and Otupipe) to calculate the number

of OTUs at 3% dissimilarity of all the simplified ommunities. For

comparison purposes all runs were performed using a single

processor. In all cases, the analyses underwent an earlier

comparison step to reduce data complexity that consistently

identified one representative sequence for each synthetic OTU,

reducing further calculation: ESPRIT and MOTHUR correctly

identified the number of seed sequences in all the 16S and V3V5

datasets. Subsequent execution times were therefore independent

of the number of sequence copies in a community. However, there

were major differences among the different methods: subsequent

analysis in ESPRIT required the computation of a combinatorial

number (37,380,981 for 16S*-derived comminities) of pairwise

Needleman-Wunsch comparisons to build the distance matrix

needed to perform the clustering, thus explaining its long run time

(over two weeks); MOTHUR, instead, built a multiple sequence

alignment which, although less expensive, still required a long time

(over a week), while the RDP pipeline and Otupipe, used different

approaches that coped with large biodiversity datasets very

efficiently (minutes to hours), becoming more suitable for these

type of problems. For the sake of convenience, Otupipe was

selected as the tool of choice in all the subsequent analyses.

The results obtained from the synthetic communities highlight

some relevant trends in usual data analysis situations (Figure 1 and

Figure S1) that are confirmed irrespective of whether the analysis

was carried out on simplistic or more variable VAMPS-based

communities.

First, the response observed was the same in all cases,

irrespective of the 16S regions used, and dependent only on the

generated community parameters.

Second, the total number of OTUs was only observed when all,

or almost all, individuals in a community had been analysed. This

was also the case when every OTU had more than one member

sequence: although one might initially expect to have sampled all

OTUs at least once previously, the randomness implicit in the

sampling process renders this unlikely.

Third, regarding richness estimators, both the ACE and

corrected Chao1consistently tended to overestimate richness and

gave similar estimates in the base communities, Chao 1 being

more accurate when s,1 and ACE when s.1, with Chao1

giving better results when the communities contained two or more

individuals on each genetic lineage. Both ACE and the corrected

Chao1 increased rapidly at the start, with ACE producing an early

peak (better appreciated in Figure 1A), reaching a maximum value

above the actual community richness and subsequently decreasing

continuously until the actual richness was matched.

Fourth, the effect on the community parameters of increasing

OTU membership by duplicating or triplicating the datasets is

reflected as an increase in m with minimal changes in s.

Finally, when the OTUs were allowed to have only one

individual present in the community (base communities), both

produced a final value that grossly overestimated the actual

richness (as expected, given the predictive weight they assign to

singletons), even when all the individuals in the community were

covered. However, when we used the duplicated and triplicated

communities (Figure 1, Figure S1), OTU sampling evened out and

the estimators reached an acceptable estimate earlier.

The point where estimators begin to reach a plateau and

converge to the actual richness might be used to estimate a

minimum sampling size. Our analyses showed that this plateau

depends on expected biodiversity, community relative richness

distribution and minimum number of individuals present in the

community from any given OTU.

Analysis of experimental data sets
Experimental data are needed to gain a deeper understanding

of data analysis in situations where a large diversity is anticipated.

We selected four different kinds of datasets: in the data sheet from

the Priest Pot lake [34] the diversity was estimated using over ten

thousand short-length sequences of the V5 16S rRNA region. The

second kind of datasets consisted of soil samples from different

types of grasslands where diversity was estimated using a higher

number of sequences (around thirty thousand) of the larger V2–V3

16S rRNA region [33]: the datasets FMG1, FUG1, UPG1 and

UPG3 were selected as representing datasets with different ratios

of diversity to sample size. The third kind corresponded to soil

samples collected in 2011 from maize cultivars where the small

size V6 16S rRNA region was sequenced [32]: we selected the

largest sample corresponding to non-Bt-maize at the final

sampling time (SF4, 36314 sequences) and, since basically no

differences were found in the structure of the corresponding

rhizobacterial communities, pooled it with data from non-Bt-

maize at the first sampling time (SF2+SF4, 49646 sequences) and

from Bt-maize at the final sampling time (SF3+SF4, 63516

sequences) to obtain larger datasets. Finally, a fourth kind

comprised faecal samples from children, which were taken to

study gut microbiota using the V5–V6 hypervariable 16S rRNA

region [35]: we chose to analyse the largest samples: ERR011058

(10BF), ERR011062 (12BF) and ERR011080 (5EU) (21811,

25724 and 22714 sequences, respectively), with the first two

(258 and 262) also displaying higher diversity (about 2000

OTUs).

While the synthetic datasets provide an insight into an ideal

situation, the actual field data carries a significant payload due to

the random influences at various steps in the analysis, from initial

sampling, to purification, amplification and sequencing, all of
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Figure 1. Analysis of full-length 16S rRNA synthetic data. The data for various populations derived from VAMPS reference V3V5 database
constructed using various values of m and s is shown in graphs A, B and C, respectively. The left pane shows rarefaction curves for the base
population, and the right pane shows the curves for the derived duplicated population. Solid lines represent observed OTUs at 3% dissimilarity,
dotted lines represent the number of OTUs predicted by corrected Chao1 and dashed lines represent the number of OTUS predicted by ACE.
Increasing OTU membership results in greater values of m.
doi:10.1371/journal.pone.0058118.g001
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which may introduce an error in the estimation. To reduce these

errors, all the experimental datasets were filtered, as described by

the original authors, and to satisfy the minimal length constraints

required by the RDP pipeline, except for the faecal samples, where

no undetermined bases (N) were allowed. Additionally, as the

presence of chimeras is a non-negligible source of error, we

applied a chimera removal step immediately after, by means of

analysis with Otupipe and the removal of all reported chimeras.

The remaining sequences were analysed to calculate the rarefac-

tion curves for observed and predicted OTUs at 3% dissimilarity.

For the sake of simplicity, we herein report one dataset of each

kind. Figure 2 shows the graph of observed and predicted OTUs.

To better appreciate the final slope of each curve, the number of

reads and CHAO1 predictions for the last ten points are provided

in Table 1 and Table 2. The results for all the datasets are

reported as Figure S2 and Table S1.

Despite quality filtering and chimera removal, we were still

concerned about the hypothetical quality of the remaining

sequences. Experimental data lack a reference standard with

which to be compared, therefore, we resorted to analysing the

taxonomic affiliations of the clean reads. We used an NCBI-blast

search followed by MEGAN to classify the reads by NCBI

taxonomy. A similar distribution was observed in all experimental

cases (Table 3 and Table S2) where the vast majority of reads

belonged to bacteria, as expected. We accepted these already

filtered, high-quality sequences as ‘‘bona-fide’’ representing actual

data from the samples, acknowledging that they could contain

minor errors that are unlikely to affect the clustering analysis at 3%

dissimilarity. No archaea sequences were identified in any dataset.

Additionally, a minority of the sequences was assigned as

belonging to eukaryotes and we assumed them to be contaminants

that can be discarded considering their taxonomic affiliations and

small number. Finally, about 10–20% of the sequences could not

truly be assigned as bacteria or eukaryotes, according to

MEGAN’s criteria.

From the analysis of the synthetic datasets we learned of the

importance of increasing the chances of genetic groups being

sampled more than once. Unclassified sequences are a suitable

target to retrieve additional information, yet at the same time care

should be taken to eliminate any noisy sequence that could cause

richness overestimation. Careful inspection of NCBI-blast align-

ments indeed showed that most of the unclassified sequences were

Figure 2. Rarefaction curves from experimental data sets. Evolution of ACE, Chao1 and OTUs figures with the sample size. The continuous line
represents the OTUs distribution at 3% dissimilarity, the dotted and dashed lines represent the evolution of Chao1 and ACE respectively, with sample
size. The selected datasets are Priest Pot lake, grassland FMG1 pooled SF3+SF4 maize rhizosphere and ERR011062 faecal sample to measure diet
influence on gut microbiota; all were analysed after cleaning and chimera removal.
doi:10.1371/journal.pone.0058118.g002
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very likely acceptable sequences and should be included in the

study, although a small number of them were possible contam-

inants or sequences containing too many errors.

To avoid introducing biases in OTU computation, both

contaminants and erroneous sequences should be discarded. We

already knew from the taxonomic classification that contaminants

are exceedingly rare and we expected these to be unlikely to cluster

with other sequences. Regarding errors, a significant number of

these need to be introduced for a sequence to be misclassified at

3% dissimilarity, to the order of more than 6–9 errors for 200–300

nucleotides-long sequences, and, since errors happen randomly,

the likelihood of two sequences having the same error pattern is

remote, implying that these erroneous sequences should appear as

singletons. The other possible source of singletons in the

unclassified reads group might be sequences belonging to

hypothetical new species with a minute presence (one individual

in tens of thousands) that are likely to exert a very small impact on

the whole population and, in any case, although these remain as a

possible source for the identification of new species, they are

questionable and difficult to prove valid without additional

experiments. For these reasons, we decided to carry out an

additional clustering step on MEGAN’s unclassified sequences,

removing all singletons from them. The remaining sequences,

which can be assigned in clusters with at least two individuals,

were considered unlikely to be errors or contaminants, and were

pooled with the already identified bacterial sequences to be used

for further analysis.

The resulting datasets were analysed using clustering at 3%

dissimilarity to calculate the observed and estimated OTUs, and

build rarefaction curves. The results for the selected datasets are

summarised in Figure 3 and Table 1 and Table 2, and the total

results are provided as supporting information, Figure S2 and

Table S1. The values obtained after removing questionable

sequences with the help of taxonomy are in all cases smaller that

those previously obtained.

In the case of the Priest Pot data, where a moderate biodiversity

value was expected and the starting data showed a s of 1.4

(Table 4), the Chao1 estimator can be observed reaching the

plateau with a relatively moderate sample size (the average slope of

the last 10 rarefaction steps is 20.65). In the case of soil samples

from grasslands, the expected biodiversity was higher and,

although the rarefaction curve of the observed OTUs did not

saturate biodiversity, the Chao1 estimate was already stabilised or

close to stabilisation. When more sequences were considered and a

higher biodiversity was expected, as in the case of pooled data

from maize-culture soils, the effect of removing questionable

sequences was more evident, both in the number of observed

OTUs and in the behaviour of Chao1 estimates (Figure 3, Table 1

and Table 2). A special circumstance was observed in the case of

faecal samples used to estimate gut microbiota: in this case from

the rarefaction curves of the observed OTUs, Chao1 and ACE

and from the distribution parameters it seems that we are still far

from having adequate sampling to reach an accurate estimate of

total richness. Chao1 generally produced lower estimates than

ACE, even when s.1.

Discussion

Tools
ESPRIT is highly efficient in locating the relevant sequences

using k-mer filtering, however, it requires very lengthy running

Table 1. Average values of Chao1 for selected datasets.

Priest Pot clean FMG1 clean SF3+SF4 clean

Chao1 N. reads Chao1 N. reads Chao1 N. reads

1395.93 14200 3404 21800 10451.83 56300

1402.31 14300 3437.71 21900 10449.89 56400

1407.13 14400 3448.59 22000 10451.13 56500

1404.39 14500 3435.2 22100 10472.97 56600

1407.18 14600 3449.63 22200 10472.27 56700

1402.42 14700 3444.21 22300 10469.55 56800

1412.22 14800 3463.74 22400 10480.05 56900

1406.92 14900 3468.51 22500 10475.89 57000

1410.13 15000 3465.08 22600 10478.49 57100

1411.76 15100 3472.3 22700 10486.24 57200

The average of the last ten observed values of Chao1 and their corresponding
number of sampled sequences grouped for the selected datasets are listed to
provide a more accurate picture of its evolution at the end of the rarefaction
curve.
doi:10.1371/journal.pone.0058118.t001

Table 2. Average values of Chao1 for selected datasets after
removal of eukaryotic and questionable sequences.

Priest Pot -euk -uc1 FMG1 -euk-uc1 SF3+SF4 -euk -uc1

Chao1 N. reads Chao1 N. reads Chao1 N. reads

934.2 13700 2659.53 21300 7473.65 54600

937.55 13800 2682.41 21400 7470.07 54700

927.57 13900 2678.11 21500 7482.71 54800

933.61 14000 2676.06 21600 7484.6 54900

928.62 14100 2675.58 21700 7470.57 55000

925.43 14200 2682.09 21800 7471.06 55100

925.07 14300 2682.38 21900 7482.87 55200

939.48 14400 2688.07 22000 7479.05 55300

930.85 14500 2687.22 22100 7481.15 55400

933.29 14600 2690.67 22200 7482.47 55500

The average of the last ten observed values of Chao1 and their corresponding
number of sampled sequences grouped for the selected datasets after removal
of eukaryotic and unclassified singleton sequences are listed to provide a more
accurate picture of its evolution at the end of the rarefaction curve.
doi:10.1371/journal.pone.0058118.t002

Table 3. Frequencies of taxonomic grouped sequences in
each dataset.

Dataset N Eukaryota Bacteria Unclassified U/N

synthetic 16S 20001 5 15486 4510 0.23

Priest Pot lake 15553 156 12591 2806 0.18

FMG1 grassland 23292 5 20855 2432 0.10

SF3+SF4 maize soil 59656 70 49353 10233 0.17

For each dataset the following data is provided: total number of sequences
remaining after quality filtering and removal of chimeras and sequences that
are too short (N), number of sequences identified as being of eukaryotic origin
(Eukaryota), number of sequences identified as being of bacterial origin
(Bacteria), number of sequences that could not truly be assigned (Unclassified)
and proportion of unclassified sequences relative to the total number of
sequences (U/N).
doi:10.1371/journal.pone.0058118.t003

Estimating High Bacterial Diversity

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e58118



times to build the pairwise alignments for high complexity data. A

new version, ESPRIT-Tree, has been reported to provide

significant improvements but is not yet available for production

use, and has not been considered in this study. MOTHUR, which

makes use of multiple sequence alignments and simple distance

estimations, requires lower yet still lengthy running times. RDP

and Otupipe, on the other hand, can work with the largest datasets

in reasonable times with acceptable results. For this reason we

consider that the latter tools are preferable when dealing with high

complexity samples. The facility to locally run Otupipe presents a

convenient advantage over the RDP web-based work flow when

dealing with many datasets, albeit at the cost of requiring a

suitably powerful computer. It is worth noting that QIIME

bundles these (and many more) tools in a convenient way.

Generation of synthetic communities
We have generated synthetic communities with a very large

number of OTUs to stress test the analysis process. The

preliminary analysis was conducted with simple synthetic com-

munities generated under tightly controlled conditions: all

individuals had ‘‘evolved’’ from a single reference sequence by

accumulation of point mutations up to a 3.5% distance. We chose

to build communities derived from the E. coli V3V5 region as

representative of the current 454 read lengths, and from the full-

length 16S as representative of an ideal situation, where all

variability can be considered. These datasets were used to

compare tool efficiency and draw initial estimates as to the

complexity of the problem.

Experimental situations, however, may be better modelled by a

more skewed log-normal distribution and display a wider

variability. Furthermore, in real world experiments, regions other

than V3V5 are also considered. To account for these factors, we

generated communities derived from reference databases in

VAMPS covering the most commonly used regions as well as

the full-length SSU. It is well known that different organisms may

not be resolved as separate OTUs when using a given region [42].

For this reason, we clustered all the sequences in each database to

identify sequences representing separately identifiable OTUs.

Since a large OTU may be split in the clustering process, it is

still possible that some selected OTU representatives may be closer

than 3% to each other. To avoid introducing a possible confusion

Figure 3. Rarefaction curves from experimental data sets (-Euk -UC1). Evolution of ACE, Chao1 and OTUs figures with the sample size. The
continuous line represents the OTUs distribution at 3% dissimilarity, the dotted and dashed lines represent the evolution of Chao1 and ACE
respectively, with sample size. The selected datasets are Priest Pot lake, grassland FMG1 pooled SF3+SF4 maize rhizosphere and ERR011062 faecal
sample to measure diet influence on gut microbiota: results displayed were obtained after additional removal of eukaryotic sequences and
unclassified sequences that clustered as singleton OTUs.
doi:10.1371/journal.pone.0058118.g003
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factor to subsequent analyses, we then compared all representa-

tives using BLAT (which is more efficient than Blast and just as

reliable for distances below 3%) to obtain an initial set of

sequences, each of which may act as a seed for a separate OTU.

We next mutated selected seed sequences to generate the number

of individuals required to match various log-normal distributions.

The resulting synthetic communities represent an ideal situation

where the whole region considered could be sequenced reliably

from each sampled individual. Finally, when dealing with

macroscopic organisms, it is possible for many species to be

represented by only one individual in the community, however,

when dealing with microorganisms, this requirement may be too

restrictive, not only because the niche may accommodate a huge

number of individuals, but also because their fast duplication pace

renders the presence of genetically unique individuals more

unlikely. These situations have been simulated by ensuring the

presence of at least two or three copies of each synthetic sequence

in the community.

Since we used the VAMPS databases, our synthetic commu-

nities do include specimens from all known phyla, as would be

expected in real-world experiments. The main drawbacks of these

communities are that in real experimental situations, mutation

frequency varies across positions inside a given region, exhibiting

base-pairing dependent coevolution, the whole region may not

have been covered by the sequencing reads obtained, samples may

have been enriched for specific phyla, and sequencing errors

(which are usually cleaned up before the analysis process) may be

encountered. In order to simulate these effects one would have to

introduce additional uncertainty factors into the simulated

communities, to the point where they would be undistinguishable

from real experiments, and the reads would not be back-traceable

any more. Hence, under these circumstances it makes more sense

to relay subsequent analyses to actual experimental data.

Data analysis
Initial analysis of simple communities helps to identify that

sampling all existing genetically different specimens is very

difficult, as indicated by the rarefaction curves of observed species

in the x2 and x3 communities. This is still evident when VAMPS-

derived populations are analysed, implying that to look for the

saturation of observed OTUs alone may result in more expensive

experimental designs, and to require sequences to be perfectly

conserved more than once, or all OTUs to have a minimum

number of members, may also require larger sample sizes, hence

the use of richness estimators should generally be preferred.

We have compared the behaviour of corrected Chao1 and ACE

in different situations. Both of them produce large overestimates

when a population with many singletons is analysed. Less evident

is their behaviour in what might possibly be a more common

situation when dealing with bacterial biodiversity, i.e., that all

OTUs have at least two or more individuals. Under these

circumstances, employing random, incomplete sampling, we

expect the predictors to produce more accurate results. Indeed,

we can see that both predictors tend to reach a maximum estimate

(higher when using ACE), and then slowly decrease to match the

actual biodiversity value, once the whole population has been

sampled. This behaviour depends on population complexity and

the shape of the relative richness distribution. Two main routes

may be derived from these results: firstly, according to our

simulations, Chao1 behaves very well as a biodiversity estimator,

and secondly, useful guidelines for estimating sampling size may be

derived from studying the behaviour of a synthetic population with

a biodiversity and log-normal distribution similar to those

expected in the target population. However, we still have little

knowledge with respect to actual population abundance distribu-

tions; our simulated populations may not cover the full range of

distribution parameters and we assume that the whole region is

sequenced, which is not always the case, especially as many species

have very long hypervariable regions, and so, additional work is

needed to derive useful rules for predicting appropriate sample

sizes.

Our synthetic populations assume that reads used have been

reliably sequenced, while in real-life experiments errors are

introduced from a variety of sources. In this work to each

experimental dataset we have applied the same filtering proce-

dures originally reported by their authors to simplify the study and

to obtain results that are more directly comparable with those

already reported, the only exception being the datasets corre-

sponding to human faecal samples, where we discarded reads with

ambiguous bases (N).

Typically, the most stringent filtering processes will exclude a

large amount of reads from an extensive sequencing effort,

sometimes reducing their number to less than a tenth of the initial

amount, and unique sequences to cluster to less than two orders of

magnitude, yet still leaving enough reads to estimate biodiversity

in environments with an expected low diversity.

Since we are concerned with the efficient use of runs when

analysing samples with a relatively high diversity content, we took

a different route to ensure keeping high-quality reads, while

discarding the minimum amount of information possible. It is

known that a large number of high-quality reads may include a

minute number of random sequencing errors (to the order of 1%),

which can generally be accommodated by the diversity allowed,

according to the OTU definition.

We consider that chimera removal should be applied early in

the analytical process, and certainly during the quality selection

step, before definitive clustering takes place. UCHIME is reported

to be a versatile and cost-effective tool [16], and given the

efficiency of the Otupipe pipeline, we find it is worth running a

preliminary clustering that will enable UCHIME to combine both

frequency-based and Gold database reference comparison ap-

proaches for chimera detection. This initial step enables early

detection and removal of chimeras from the dataset at a non-

Table 4. Log-normal parameter fitting of experimental data.

Dataset m sd(m) s sd(s)

PriestPot 0.97 0.05 1.42 0.04

FMG1 1.10 0.03 1.23 0.02

FUG1 0.93 0.02 1.14 0.02

UPG1 1.35 0.04 1.42 0.03

UPG3 0.95 0.02 1.19 0.02

SF4 0.98 0.02 1.15 0.01

SF2+SF4 0.96 0.01 1.12 0.01

SF3+SF4 1.01 0.01 1.16 0.01

ERR011058 0.38 0.02 0.86 0.01

ERR011062 0.40 0.02 0.90 0.01

ERR011080 0.66 0.04 1.28 0.03

The values estimated by fitting the richness distributions of each experimental
data set to a log-normal distribution for the parameters m and s are provided in
columns m and s. The estimated standard deviation for the estimation of each
of these values is stated as sd(m) and sd(s).
doi:10.1371/journal.pone.0058118.t004
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significant cost and may be used to gather useful information to

estimate population distribution.

Combining taxonomic analysis with OTU clustering enables

the inclusion of a larger number of additional reads in the analysis,

potentially increasing its resolving power. We consider all reads

that can be identified to be of bacterial origin as ‘‘bona-fide’’

sequences. This leaves about 10%–20% unclassifiable reads from

which additional information can be retrieved. This group of

unclassifiable reads can be considered as having acceptable

sequences, unacceptable sequences containing errors, and ques-

tionable sequences that might (or might not) represent completely

new species. The random distribution of sequencing errors can be

used to discern acceptable sequences: if the number of errors is too

high to permit their identification, it is extremely unlikely that any

two erroneous sequences would display the same pattern, hence

being reported as singletons after a clustering step of unclassified

reads. Thus removal of singletons from the unclassifiable subset

should mean the removal of all the unacceptable sequences.

Arguably, this could eliminate some valid reads from new species,

however, it is difficult to ascertain whether they are legitimate

without additional experimental data, they represent less than one

individual among tens of thousands in the population, and

therefore we expect their functional contribution to be small, so

that discarding them is most likely harmless.

Application of this protocol to experimental data produces

OTU counts and estimates that are less affected by the presence of

contaminants, chimeras and erroneous sequences, resulting in

more rigorous estimates. When analysing faecal samples we

detected a greater discrepancy between observed and estimated

OTUs than previously reported [35], where a greater ambiguity

(up to two N in the sequences) was allowed and different

parameters, analysis workflow and software tools were used. It has

been previously reported that these differences in the analytical

procedure may lead to different results [24]. In any case, the

significant difference between observed and estimated OTUs

detected indicates a large presence of singletons that, when

combined with the population parameters, points to the fact that

we might be far from reaching saturation and measuring total

alpha diversity.

The approach we have used to evaluate biological diversity is an

inclusive one, and reflects the maximum number of reads that can

reasonably be considered, without significantly distorting diversity

estimation. As such, it allows for maximum efficiency in evaluating

sequencing runs by reducing the amount of discarded sequences to

the bare minimum, while only keeping reads that can be expected

to be significant and correctly clustered at the same time.

Supporting Information

Figure S1 Analysis of synthetic data. The data collected from all

the synthetic datasets is summarized as rarefaction curves for

observed OTUs at 3% dissimilarity, corrected Chao1 and ACE.

Each row in the file contains the results for a given population and

its duplicated and triplicated derivatives. The first two rows display

the results obtained for the simplistic 16S and V3V5 populations,

subsequent rows display the results for all VAMPS-derived

populations arranged first by reference database (refV3, refV3V5,

refV4V6, refV6A, refV6, refV9 and refSSU) and then by log-

normal distribution parameters, from lower to higher s. Yellow:

observed OTUs average, red: Chao1 average, blue: ACE average,

as a function of sample size.

(PDF)

Figure S2 Rarefaction curves from experimental data sets.

Evolution of Chao1 and OTUs figures with the sample size. The

dashed line represents the ACE average, the dotted line represents

the Chao1 average and the continuous line the OTUs distribution

at 3% dissimilarity. Left column (clean): results obtained after

quality filtering and removal of chimeras and short sequences.

Right column (-euk -UC1): results obtained after additional

removal of eukaryotic sequences and unclassified sequences that

clustered as singleton OTUs. Yellow: observed OTUs average,

red: Chao1 average, blue: ACE average, at 3% dissimilarity and as

a function of sample size.

(PDF)

File S1 Methods and tools for population generation and

analysis. This archive contains the programs and scripts developed

to perform the analyses described in the paper. All the scripts have

been written for UNIX-like systems (such as Linux, MacOS X or

Windows with Cygwin); they are self-documenting (when run with

option ‘-h’) and are released under the EU-GPL license. Detailed

descriptions of the protocols used and the rationale behind them

are included as plain text files. Driver scripts to reproduce the

generation and analyses of synthetic datasets are also provided.

Third party tools and databases from external origin have not

been included and should be obtained from their respective

authors.

(ZIP)

Table S1 Average values of Chao1 for all datasets. The average

and the last ten observed values of Chao1 and their corresponding

number of sampled sequences grouped in each case are listed to

provide a more accurate picture of its evolution at the end of the

rarefaction curve.

(DOC)

Table S2 Frequencies of taxonomic grouped sequences in each

dataset. For each dataset the following data are provided: total

number of sequences remaining after quality filtering and removal

of chimeras and sequences that are too short (N), number of

sequences identified as being of eukaryotic origin (Eukaryota),

number of sequences identified as being of bacterial origin

(Bacteria), number of sequences that could not truly be assigned

(Unclassified) and proportion of unclassified sequences relative to

the total number of sequences (U/N).

(DOC)
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