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Abstract
Bacterial adaptation to stressful environments often produces evolutionary constraints whereby increases in resist-
ance are associated with reduced fitness in a different environment. The exploitation of this resistance-cost trade-off 
has been proposed as the basis of rational antimicrobial treatment strategies designed to limit the evolution of drug 
resistance in bacterial pathogens. Recent theoretical, laboratory, and clinical studies have shown that fluctuating 
selection can maintain drug efficacy and even restore drug susceptibility, but can also increase the rate of adaptation 
and promote cross-resistance to other antibiotics. In this paper, we combine mathematical modeling, experimental 
evolution, and whole-genome sequencing to follow evolutionary trajectories towards β-lactam resistance under fluc-
tuating selective conditions. Our experimental model system consists of eight populations of Escherichia coli K12 
evolving in parallel to a serial dilution protocol designed to dynamically control the strength of selection for resist-
ance. We implemented adaptive ramps with mild and strong selection, resulting in evolved populations with similar 
levels of resistance, but with different evolutionary dynamics and diverging genotypic profiles. We found that muta-
tions that emerged under strong selection are unstable in the absence of selection, in contrast to resistance muta-
tions previously selected in the mild selection regime that were stably maintained in drug-free environments and 
positively selected for when antibiotics were reintroduced. Altogether, our population dynamics model and the 
phenotypic and genomic analysis of the evolved populations show that the rate of resistance adaptation is contin-
gent upon the strength of selection, but also on evolutionary constraints imposed by prior drug exposures.
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A
rticle Introduction

Antibiotic resistance in response to the industrialized con-
sumption of antibiotics represents one of the most critical 
problems in human health (Kåhrström 2013; Davies and 
Davies 2010). Indeed, the scarcity of new antibiotics under 
development contrasts with the widespread prevalence of 
resistant strains to all classes of antibiotics discovered to 
date (Alanis 2005; Årdal et al. 2020). The increasing fre-
quency of drug-resistant pathogens has forced the issue 
of how to exploit antibiotics best to preserve their efficacy 
(Bush et al. 2011; Baym et al. 2016). In general, antimicrobial 
chemotherapy is based on high-dose, long-course antibiot-
ic treatments, a treatment strategy based on the notion 
that overdosing with antibiotics is, at worst, a therapeutic-
ally neutral choice and, as a result, there is no harm in taking 
drugs for prolonged periods. However, recent clinical stud-
ies have argued that the same clinical outcome can be 

achieved with a short-course antibiotic therapy without 
imposing such strong selective pressure in favor of 
drug-resistance (De Waele and Martin-Loeches 2018; 
Spellberg and Rice 2019).

Other strategies to reduce the selective pressure on any 
given antimicrobial substance are to appropriately com-
bine different drugs (Chait et al. 2007; Barbosa et al. 
2018; Jahn et al. 2021) or to alternate antibiotics in time 
(Kollef et al. 1997; Niederman 1997). In principle, sequen-
tial treatments can minimize resistance by exploiting an 
evolutionary trade-off, known as collateral sensitivity, in 
which evolving resistance to one antibiotic causes hyper-
sensitivity to a different drug (Szybalski and Bryson 
1952). This strategy is based on the assumption that, by al-
ternating selective pressures, the physiological cost of 
maintaining resistance mechanisms would be strong en-
ough to select for loss of the resistance allele and thus re-
store drug susceptibility (Andersson and Hughes 2010). 
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Indeed, there is mounting theoretical (Pena-Miller et al. 
2012b; Aulin et al. 2021), clinical (Imamovic et al. 2018), 
and laboratory (Imamovic and Sommer 2013; Kim et al. 
2014; Fuentes-Hernandez et al. 2015; Pál et al. 2015; 
Roemhild and Schulenburg 2019; Barbosa et al. 2021; 
Batra et al. 2021) evidence suggesting that sequential treat-
ments can slow the rate of resistance adaptation com-
pared with single-drug treatments.

Unfortunately, restricting the use of antimicrobial sub-
stances, either by reducing overall drug consumption 
(Sabuncu et al. 2009; De Bus et al. 2016) or with treatment 
protocols based on prioritizing and restricting certain anti-
biotics (van Duijn et al. 2018), does not necessarily correl-
ate with a decrease in resistance (Beardmore et al. 2017). 
Moreover, even if drug efficacy is restored after a period 
of relaxed selection, it is unclear what the rate of resistance 
acquisition would be if antibiotics were reintroduced into 
the environment. Do evolutionary trajectories follow the 
same path as before? Or are there historical contingencies 
that modify the rate of adaptation when exposed again to 
antibiotics?

Experimental evolution has been an essential tool to ad-
dress these questions and to unravel the interaction be-
tween selection, chance, and historical contingency in 
microbial populations (Weinreich et al. 2006; Jansen 
et al. 2013; Blount et al. 2018; Roemhild et al. 2018; 
Santos-Lopez et al. 2021). By combining experimental 
microbiology with whole-genome sequencing, previous 
studies have been able to follow evolutionary trajectories 
towards resistance and studied the accumulation of muta-
tions in different ecological contexts. This approach has 
been widely used to study the evolutionary dynamics 
that results from combining antibiotics (Hegreness et al. 
2008; Pena-Miller et al. 2013; Barbosa et al. 2018; Jahn 
et al. 2021) or deploying them sequentially (Imamovic 
and Sommer 2013; Kim et al. 2014; Fuentes-Hernandez 
et al. 2015; Pál et al. 2015; Roemhild and Schulenburg 
2019; Barbosa et al. 2021; Batra et al. 2021), as well as to 
study adaptation to temporal (Toprak et al. 2012; 
Lindsey et al. 2013; Oz et al. 2014; Jahn et al. 2017) and spa-
tial (Baym et al. 2016; Fuentes-Hernández et al. 2019) 
changes in the environmental drug concentration.

A previous study showed that strains that evolved in 
drug-free environments for over 50,000 generations were 
more susceptible to most antibiotics than their ancestor, 
with most of the change occurring during the first 2,000 
generations (Lamrabet et al. 2019). When these strains 
were challenged to a range of drug concentrations, evolved 
mutants showed, on average, a reduced capacity to evolve 
resistance relative to their ancestor, thus suggesting that 
genetic background influences evolutionary pathways 
towards phenotypic resistance (Card et al. 2019). In a 
follow-up study, whole-genome sequencing revealed that 
resistance was produced by divergent genetic changes 
from exposure to different drugs, but also a consequence 
of different genetic backgrounds (Card, Thomas, et al. 2021).

Other studies have shown that, as selection increases, 
the benefit associated with drug-resistance mutations is 

enhanced, thus increasing mutant frequency in the 
population and reducing overall genetic diversity. 
Consequently, strong selective pressures often display 
similar phenotypic trajectories towards resistance 
(Toprak et al. 2012) and are known to mitigate the effect 
of historical contingencies (Pennings 2012; Santos-Lopez 
et al. 2021). Population bottlenecks are also major deter-
minants of the repeatability of adaptation as they affect 
genetic drift (De Visser and Krug 2014). Previous studies 
have shown that bottleneck sizes are important drivers 
of the evolutionary dynamics of drug resistance 
(Martínez 2012; Vogwill et al. 2016; Mahrt et al. 2021), 
with intermediate bottlenecks associated with a high de-
gree of parallel evolution (Vogwill et al. 2016; Garoff 
et al. 2020; Mahrt et al. 2021; Windels et al. 2021), and 
that resistance adaptation is maximized under low anti-
biotic selection and severe bottlenecks, but also under 
weak bottlenecks and strong selection (Mahrt et al. 2021).

In this paper, we combine a population dynamics model 
with experimental evolution and whole-genome sequen-
cing to show that bacterial populations evolved under a se-
vere bottleneck and different selective pressures produce 
multiple genotypes with similar levels of resistance. We 
will show that resistance mutations selected under mild 
selection are stable in the population in the absence of se-
lection and, in consequence, the rate of resistance adapta-
tion increased when antibiotics were reintroduced into the 
environment. In contrast, strongly selected mutants were 
cleared from the population once the antibiotic was 
withdrawn.

Results
We performed a parallel evolutionary experiment consist-
ing of clonal populations of Escherichia coli MG1655 evolv-
ing to time-varying concentrations of ampicillin (AMP), a 
β-lactam antibiotic that is prescribed in the clinic for upper 
respiratory tract infections. The evolutionary experiment 
consists of three phases. First, we introduced a clonal 
population into a gradient of 22 logarithmically spaced 
antibiotic concentrations (supplementary table S1, 
Supplementary Material online). After 24 h, we diluted 
one of these populations 1 : 50 and transferred a sample 
into another antibiotic gradient with replenished growth 
media. We repeated this process daily until all evolved po-
pulations exhibited a 10-fold resistance compared to the 
ancestral strain. We refer to this selective phase of the ex-
periment as PHASE 1.

For PHASE 2, we transferred a sample of each evolved 
population into drug-free environments and performed 
serial dilutions for seven days. Finally, PHASE 3 consists of 
transferring populations sampled from the end of PHASE 

2 into another adaptive ramp (following the same serial di-
lution protocol used in PHASE 1). During all phases, we de-
termined every day the critical drug concentration such 
that the optical density was below detectable limits 
(OD600 < 0.05), a critical dose we refer to as the minimum 
inhibitory concentration (MIC). A population sample was 
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frozen for further phenotypic analysis and genome se-
quencing every time we detected an increase in MIC (see 
supplementary fig. S1, Supplementary Material online).

Rate of Adaptation Correlates with the Intensity of 
the Selective Pressure
For the selective phases of the experiment (PHASE 1 and 
PHASE 3), we implemented adaptive ramps following two 
different transfer protocols: a mild selection regime (MS; 
illustrated fig. 1A) consisting of transferring daily the popu-
lation exhibiting 50% inhibition with respect to the drug- 
free control (IC50), and a strong selection regime (SS; 
fig. 1D), where we transfer each day a sample obtained 
from the environment with the highest concentration of 
antibiotics with observable growth (∼IC90). We inocu-
lated four independent replicates for each selection regime 
from an ancestral clonal population (referred to as WT). 
Supplementary figure S2, Supplementary Material online 
illustrates how the concentration of ampicillin the trans-
ferred population was exposed to increase as the popula-
tion became resistant to the antibiotic.

By experimental design, all populations achieved com-
parable resistance levels at the end of the adaptive ramp, 
although the number of generations elapsed before reach-
ing the target resistance varied dramatically between selec-
tion regimes. In the MS regime, a 10-fold increase in 
resistance was achieved, on average, after 106.2 ± 38.4 
generations, while populations exposed to SS reached 
the same level of resistance after only 40.8 ± 5.4 genera-
tions (fig. 1B). This result is consistent with previous stud-
ies that have tracked variants in time and reported an 
accelerated rate of fixation of resistant mutations when 
evolving under SS than under MS (Mahrt et al. 2021).

To quantify the difference in the adaptation of the po-
pulations between the two regimes, we estimated the rate 
of adaptation in terms of the total resistance improvement 
achieved in N generations, ΔMIC = MICN − MIC0, and the 
interpolated time at which resistance of the population 
reached half its maximum value, measured in generations, 
tadapt. Then we quantified the rate of adaptation as ρ = 
ΔMIC/(2∗tadapt) (Hegreness et al. 2008; Pena-Miller et al. 
2013). As illustrated in figure 1C, the rate of adaptation 
for replicates evolved under SS is larger (mean ρ = 0.006, 
s.e. = 0.0001, n = 4) than replicates evolved under the 
mild selection regime (mean ρ = 0.002, s.e. = 0.0003, 
n = 4; two-tailed t-test, p- value < 0.001).

Genome Sequencing Revealed that Strength of 
Selection Shaped Mutation Spectra
We performed whole-genome sequencing of the ancestral 
strain and six replicate populations at the end PHASE 1 
(three for MS and three for SS). First, note that MS accu-
mulated more mutations compared to SS during the se-
lective phase of the experiment (supplementary fig. S6, 
Supplementary Material online). This is consistent with a 
previous report showing that, for β-lactam antibiotics, 
the number of mutations accumulated in an adaptive 

laboratory experiment was higher in SS than in MS (Oz 
et al. 2014). Also, populations that evolved under MS 
need more generations to reach comparable resistance le-
vels to SS and therefore MS promotes the accumulation of 
more mutations during its path towards β-lactam resist-
ance. Moreover, in high antibiotic concentrations, serial di-
lutions are performed in populations with a lower yield (in 
our experiment, IC90), thus imposing a severe bottleneck 
that can lead to stochastic clearance of low-frequency mu-
tants in the SS regime.

Supplementary tables S2–S3, Supplementary Material
online and figure 1E show mutations that reached a fre-
quency higher than 10% in at least one replicate popula-
tion. For SS, we identified three mutations with a 100% 
frequency by the end of PHASE 1: an IS1-mediated mutation 
in acrR [a transcriptional regulator of an efflux pump op-
eron (Wang et al. 2001; Olliver et al. 2004; Pena-Miller et al. 
2013) that modulates the level of expression of acrAB (Ma 
et al. 1996)], a non-synonymous mutation in rpoD (a RNA 
polymerase σ70 factor), and an intergenic IS-mediated 
short indel that involves clpX and lon genes that encode 
proteases which are known to share substrates (Smith 
et al. 1999). ClpX is part of the ClpXP two-component pro-
tease in E. coli that is involved in cell division through FtsZ 
degradation (Camberg et al. 2011) and therefore asso-
ciated with resistance to antibiotics that target the cell 
wall (Bæk et al. 2014), while Lon is an ATP-dependent pro-
tease associated with a wide range of cellular activities (Luo 
et al. 2008), including regulating transcript levels of marA 
and their target genes acrR, acrA, and tolC (Nicoloff and 
Andersson 2013; Bhaskarla et al. 2016). Lon has been 
shown in vitro to modify drug-resistance levels when there 
is a loss of function (Matange 2020; Zou et al. 2021). Both 
proteins, ClpX and Lon, have been associated with in-
creased resistance (Bæk et al. 2014; Liu et al. 2022).

MS mutations reaching 100% frequency by the end of 
PHASE 1 were two non-synonymous substitutions affecting 
ftsI, a gene involved in cell division (Yao et al. 2012) that 
has been previously reported as a β-lactam-resistant deter-
minant (Ghigo and Beckwith 2000; Buddelmeijer and 
Beckwith 2004; Oz et al. 2014; Batra et al. 2021), and a non- 
synonymous point mutation in phoQ (a large IS-mediated 
deletion of 40 genes). Also, two intergenic IS-mediated in-
sertions involving mgrB and yobH reach a very high fre-
quency (70%); mgrB is a small transmembrane protein 
produced in the PhoPQ signaling system, which has been 
shown to increase adaptation to stressful environments 
by remodeling the lipid A of the outer membrane 
(Barbosa et al. 2017, 2019; Kato et al. 1999; Prost et al. 2007).

In our experiment, only mutations in clpX/lon were 
found in replicates of both selection regimes. We also 
found that MS exhibited a certain degree of parallelism, 
with four mutations (including resistance mutations in 
ftsI and dauA/prs) present in more than one replicate 
population (red squares in fig. 1E). Conversely, none of 
the mutations identified in populations evolving under 
SS was present in more than one replicate, consistent 
with previous studies arguing that high genetic drift 
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imposed by strong bottlenecks can reduce parallel evolu-
tion by increasing genetic variation across replicate popu-
lations (Mahrt et al. 2021).

Rapid Resistance Acquisition is Unstable in Drug-free 
Environments
To further explore the mutational profile associated with 
different selection regimes, we sequenced 53 

representative colonies isolated from the evolved popula-
tions. As anticipated by the population sequencing, muta-
tions in phoQ and ftsI were prevalent in the MS regime. 
Other resistant mutations, notably dauA/prs, were found 
in both selection regimes (a complete list of mutations 
can be found in supplementary table S5, Supplementary 
Material online).

We cultivated in drug-free media these clonal populations 
and obtained time-resolved optical densities that we used to 

%

A B

C
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D

FIG. 1. Adaptive ramp with  different strengths of selection. (A) Schematic illustration of the mild selection regime (MS), consisting of exposing a 
clonal population (Day 0) to a range of 22 drug concentrations (increasing AMP concentrations are represented from left to right, and MIC is 
denoted with a star). After 24 h of growth, we measure the resulting optical density achieved in each drug concentration (illustrated in color 
gradient) and obtain a sample of the population that exhibited 50% inhibition with respect to the drug-free control (Day 1). Thereafter, the 
selected population (highlighted by the box) is used to inoculate another dose–response experiment (Day 2). We repeat this process until ob-
serving an order of magnitude increase in resistance in the evolved populations (Day N). (B) Resistance levels (measured in terms of normalized 
MIC) as a function of time, for both selection regimes (MS in dark, SS in light). Each line denotes an independent replicate, with the mean re-
sistance represented by the solid line. Notably, 10× MIC is achieved in 7 days under SS and 22 days under MS (dotted lines). (C ) Rate of adap-
tation estimated for each replicate exposed to adaptive ramps with different strengths of selection (bars represent replicates evolved under MS, 
and bars under SS). In all replicates, resistance adaptation is accelerated under SS. (D) Illustration of an adaptive ramp with strong selection. This 
protocol is based on transferring daily the population surviving in the highest drug concentration (denoted with a box) into another dose–re-
sponse experiment. As with MS, the serial transfer experiment was performed until achieving a 10-fold increase in resistance relative to Day 1. (E) 
Mutated genes identified after exposing a clonal population to adaptive ramps with different strengths of selection. Each row represents a dif-
ferent replicate population (MS on top, and SS at bottom). Only mutations not present in the drug-free control, and with frequencies of at least 
10% or that appeared in more than one population are shown (top: genes selected for during PHASE 1 in MS, bottom: SS. Supplementary tables 
S2–S3, Supplementary Material online for a complete list of mutations). Squares illustrate genes with mutations in more than one replicate 
population.
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characterize the mutant’s growth dynamics. Growth rates of 
clones evolved under strong and mild selection regimes were 
significantly different (two-tailed t-test, p- value < 0.05; 
supplementary fig. S3, Supplementary Material online), 
with isolates obtained from the mild-selection regime 
presenting, on average, an increased growth rate 
(mean = 10.59, s.e. = 0.332, n = 29) in the absence of anti-
biotics with respect to clones that had evolved under SS 
(mean = 9.69, s.e. = 0.199, n = 89).

Moreover, we used a flow cytometer to measure the 
relative frequency at the end of a competition assay of 
the ancestral and evolved populations against a fluores-
cent susceptible bacteria (Wiser and Lenski 2015) (see 
Methods for details). As illustrated in supplementary 
figure S4, Supplementary Material online, we were not 
able to observe significant differences in competitive fit-
ness between populations that evolved under SS and 
MS. Interestingly, when populations were cultivated in 
drug-free media before the competition assay, populations 
previously evolved in SS completely compensated their fit-
ness cost (mean = 1.02, s.e. = 0.01; t-test p- value < 0.05), 
suggesting that mutations evolved under SS are unstable 
in the absence of selection.

To evaluate the stability of resistance mechanisms ac-
quired during the selective phase of the experiment, we 
sampled populations from different time points of PHASE 1 
(every time there was an increase in resistance) and per-
formed serial dilutions in drug-free environments for seven 
days (∼30 generations). As shown in figure 2A, stability of re-
sistance genes appears to be negatively correlated with the 
level of drug resistance they provide, independently of the se-
lective regime (R2 = 0.844 for MS, and R2 = 0.714 for SS). For 

populations with comparable resistance levels, those that 
evolved under SS exhibited a reduction in resistance relative 
to their MS counterparts after counter-selection (slope of the 
best-fit line: 0.121 for MS and 0.189 for SS; ANCOVA 
p- value < 0.05). This is consistent with previous studies 
showing that the higher the selective pressure, the more rap-
idly resistance is cleared from the population once the anti-
biotic is removed (Andersson and Hughes 2010; Barbosa 
et al. 2021; Card, Jordan, et al. 2021).

Following PHASE 1, we transferred all replicate popula-
tions into drug-free media and performed serial dilutions 
in a constant environment (PHASE 2 illustrated in fig. 2B). 
After seven days without selection for resistance, all 
replicate populations exhibited a significant reduction 
in MIC relative to the end of PHASE 1 (two-tail t-test, 
p- value < 0.05, df = 6). In contrast, we found no 
significant differences in resistance levels after the drug- 
free period between selection regimes (two-tail t-test, 
p- value = 0.2, with SS and MS reducing 89.5% ± 0.45 
and 81.8% ± 9.6 their resistance levels, respectively). 
Crucially, despite presenting a similar reduction in resist-
ance after counter-selection, both selection regimes exhib-
ited different dynamics of resistance loss during PHASE 2; 
MS maintained high levels of resistance levels for more 
than ∼10 generations, in contrast to SS, that reduced 
more than half its resistance during the first generations.

Stable Resistance Mutations Identified through 
Genomic Analysis
After the 7-day period of relaxed selection, we sequenced 
three populations of each selection regime and found 

A B C

D

FIG. 2. Evaluating the stability of resistance of populations evolved under different selection regimes. (A) Reduction in resistance after a period of 
relaxed selection (PHASE 2) appears to be negatively correlated with the level of resistance achieved after the adaptive ramp (PHASE 1). Each point 
corresponds to a population sampled at different time-points of PHASE 1 (every time there was a measurable increase in MIC of the population). 
Lines denote best-fit linear regression for data obtained for each regime (R2 = 0.844 and R2 = 0.714 for MS and SS, respectively). Note how 
populations that evolved under SS appear to be more unstable than mutations emerging under mild selection, independently of the degree 
of resistance. (B) Schematic representation of PHASE 2 of the evolutionary experiment consisting of transferring the evolved populations obtained 
at the end of PHASE 1 into a drug-free environment, and performing a 7-day serial dilution protocol in the absence of selection for resistance. (C ) 
Reduction in resistance measured daily during PHASE 2. Dots represent a dose–response experiment for different replicate populations, and blue 
solid line is the mean over all replicates (N = 4). (D) Populations evolved under SS present a rapid reduction in resistance after growing in a 
drug-free environment for eight serial dilutions (∼30 generations).
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FIG. 3. Genomic analysis of evolutionary experiment. (A,B) The trajectory of mutations with a frequency greater than 10% over the different 
phases of the experiment (top: SS, bottom: MS). Note how resistant mutations that reach 100% frequency during PHASE 1 under SS (i.e. acrR, 
clpX/lon, and rpoD) are unstable in the absence of selection, thus reducing in frequency during PHASE 2. In contrast, resistant mutations appearing 
at the end of PHASE 1 under mild selection are stable in the absence of selection (notably, phoQ and ftsI), and can even continue to increase in the 
absence of the antibiotic (dauA/prs and mgrB/yobH), resulting in an accelerated rate of adaptation when antibiotics are re-introduced into the 
environment. (C ) For each treatment, the accumulation of mutations per replicate in time (generations). Dot size represents the MIC level at the 
end of each phase. Note that PHASE 1 is longer for MS than SS, it takes twice the number of generations for MS populations to reach the MIC. 
PHASES 2 and 3 comprise a similar number of generations in both cases. (D) Number of new mutations in each phase. Only mutations not present 
in the previous phase are taken into account. Mild selection shows more variation between replicates. (E) Top panel: Proportion of mutations 
types for both treatments. All detected mutations are considered without filtering by frequency in the population. Bottom panel: Proportions of 
mutations types for both treatments, only mutations detected in more than 10% of the population in at least one phase are taken into account.
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that resistance mutations in phoQ and ftsI, that were previ-
ously detected at 100% in MS during PHASE 1, were still fixed 
in the population at the end PHASE 2. Mutations in dauA/prs 

and mgrB/yobH were present at lower frequencies during 
PHASE 1 and were observed in 100% of the population after 
removing selection for resistance (see supplementary 
tables S2 and S3, Supplementary Material online).

In contrast, mutations in rpoD were present at 100% 
during PHASE 1 in SS but were completely cleared from 
the population during the selection-free period, probably 
due to a high cost previously reported for mutations af-
fecting subunits of RNA polymerases (Jordan et al. 2022). 
Resistance mutations in acrR and clpX/lon identified in 
the strong selective regime in 100% of the population de-
creased in frequency and were observed at 60% after the 
non-selective phase. Also of interest is the presence of a 
non-synonymous mutation in the sensor histidine kinase 
envZ, observed at a 100% frequency by the end of PHASE 2.

We also sequenced populations evolved under MS at 
the end of PHASE 3 (see fig. 3A). Crucially, for the MS regime, 
resistance mutations in phoQ, ftsI and dauA/prs present in 
the population since PHASE 1 can still be found in 100% of 
the population at the end of PHASE 3. Other mutations, not-
ably dauA/prs and mgrB/yobH that appeared during PHASE 

1 and increased in frequency during PHASE 2, were observed 
at 100% at the end of PHASE 3. Other mutations that rapidly 
increased in frequency when antibiotics were reintroduced 
were a short insertion in the mipA coding region, a small 
deletion in the coding region of cpxA, and a mutation in 
the multidrug efflux pump subunit acrB that appeared 
during PHASE 3 and reached fixation.

For SS, mutations in clpX/lon and acrR that decreased in 
frequency during PHASE 2 recovered and were found in 
100% of the population at the end of PHASE 3 (fig. 3B). 
Mutations in rpoD that were cleared during PHASE 2 could 
not be found in the population after antibiotic reintroduc-
tion. A protein involved in the pathway peptidoglycan bio-
synthesis, LdtC, was observed at a high frequency by the 
end of PHASE 3. We also sequenced clones, both from the 
evolved and the control populations, to confirm the pres-
ence of mutations observed in the sequenced populations 
(supplementary fig. S8 and table S5, Supplementary 
Material online).

As illustrated in figures 3C and 3D, MS populations accu-
mulated more mutations than SS in all phases 
(supplementary fig. S6, Supplementary Material online). 
As expected for populations under selection, both regimes 
exhibited high non-synonymous to synonymous SNP ra-
tios. Intergenic mutations were also similar in both regimes, 
while IS-mediated mutations were more frequent during 
SS. Interestingly, though IS-mediated mutations are a small 
proportion of all detected mutations, their proportion in-
creases when we take into account only high-frequency 
mutations (above 10%; fig. 3E). As expected, IS-mediated 
mutations detected during PHASE 1 appear to be reversible, 
in particular for MS where only a single IS-mediated muta-
tion was maintained in the population in the absence of se-
lection. For populations evolved under SS, IS-mediated 
mutations decreased in frequency during PHASE 2 but 
were not cleared from the population (supplementary fig. 
S7, Supplementary Material online).

B

C

A

*

*

x10-3

FIG. 4. Rate of adaptation when antibiotics are reintroduced into the 
environment depends on previous drug exposures. (A) Fitness of po-
pulations sampled at the end of each phase relative to a fluorescent 
E. coli. During the non-selective phase of the experiment (PHASE 2), 
populations evolved under SS completely compensated for the 
cost associated with resistance, conversely to populations evolved 
under MS that exhibited a higher fitness cost. In PHASE 3, all popula-
tions exhibit a reduced fitness cost compared to the susceptible 
strain. (B) Increase in resistance as a function of time (measured in 
generations); solid lines represent the first adaptive ramp (PHASE 1) 
and dotted lines the adaptive ramp inoculated with samples ob-
tained from the end of PHASE 2. Note how phenotypic trajectories 
are similar for SS (orange lines), contrarily to MS (blue lines), where 
resistance adaptation is significantly faster in PHASE 3 compared with 
PHASE 1 (acceleration highlighted with the arrow). (C ) Comparison 
between rates of adaptation estimated for PHASE 1 and PHASE 3 
(left: MS, right: SS) shows that resistance accelerated under MS, 
but not under SS.

7

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac185#supplementary-data
https://doi.org/10.1093/molbev/msac185


Cisneros-Mayoral et al. · https://doi.org/10.1093/molbev/msac185 MBE

Acceleration in Rate of Adaptation is Contingent on 
Evolutionary History
The genomic analysis showed that resistance mutations se-
lected under different selection regimes have diverging sta-
bility profiles in the absence of selection. To probe if the loss 
of resistance observed in SS was associated with a fitness 

cost compensation occurred during the selection-free per-
iod, we performed competition experiments between sam-
ples obtained at the end of each phase against a susceptible 
strain and observed a significant increase in relative fitness 
after relaxed selection (two-tail t-test p- value < 0.05) in 
contrast to MS (two-tail t-test p- value = 0.27).
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FIG. 5. Numerical simulations of the population dynamics model. (A) Theoretical dose-response curves estimated for each bacterial strain: a 
susceptible wild-type (Bwt), a mildly-resistant type (Bm) and a strongly resistant strain (Bs). Resistant mutations occur at a rate ϵ (see inset). 
A trade-off between resistance and fitness-cost is represented by resistant strains surviving at higher drug concentrations, albeit with a reduced 
density at lower doses with respect to Bwt. (B) Rate of adaptation as a function of the strength of selection. Solid lines represent the rate of 
adaptation computed for PHASE 1, while dotted lines denote the rate of adaptation estimated for PHASE 3. The increase in rate of adaptation 
is maximized at intermediate strengths of selection; therefore, we argue resistance acquisition accelerates (gray arrow). (C,D) Relative frequencies 
of each bacterial type as a function of time computed by numerically simulating the evolutionary experiment; from an initial population com-
posed exclusively of Bwt cells, we simulate a serial dilution experiment (boxes on top of each plot denote the environmental conditions: drug-free 
in light color and high drug concentrations in dark). After solving the system for two days in drug-free media, we simulate an adaptive ramp with 
different strengths of selection (PHASE 1). (C ) considering mild selection, and, (D) under strong selection. In both cases, once the level of resistance 
has achieved a 10-fold increase relative to the first day, the antibiotic is withdrawn from the environment for 7 days (PHASE 2), before re-starting 
the adaptive ramp (PHASE 3). Crucially, the duration of PHASE 3 is shorter than PHASE 1, suggesting that drug resistance adaptation accelerated at 
intermediate selective pressures.
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To evaluate if these diverging stability patterns in resist-
ance mutations influence the rate of adaptation upon 
antibiotic reintroduction, we sampled populations from 
the end of PHASE 2 and re-started an adaptive ramp follow-
ing the same protocol as before. As in PHASE 1, we observed 
a rapid increase in resistance in all populations during 
PHASE 3, regardless of the treatment protocol used. Again, 
we continued the serial dilution experiment until all repli-
cate populations reached at least a 10-fold increase in MIC 
(mean MIC = 12.8 ± 4.3 for MS, and mean MIC = 13.4 ± 
11.8 for SS). Supplementary figure S5, Supplementary 
Material online shows the MICs of populations and clones 
sequenced throughout all experiment phases.

In PHASE 1, populations evolved under MS adapted sig-
nificantly more slowly than those in the SS regime. In con-
trast, during PHASE 3, adaptation to the antibiotic ramp 
followed similar trajectories in both selective regimes. As 
illustrated in figure 4B, a 10-fold increase in resistance 
was achieved after 49.9 ± 11.9 generations and 44.8 ± 
6.4 generations for MS and SS, respectively. For MS, this 
is a significant increase in adaptation rate, as a 10-fold in-
crease in of resistance was achieved until 106.2 ± 38.4 gen-
erations during PHASE 1. Also of note, MS achieved higher 
levels of resistance during PHASE 3 compared to PHASE 1.

We computed the rate of adaptation of both selection 
regimes under selection. As shown in figure 4C, for SS, we 
did not observe a significant change in the rate of adapta-
tion between both selective phases (t-test p- value = 0.35; 
H0: mean rate of adaptation in both phases are equal). In 
contrast, during PHASE 3, MS exhibited a higher rate of 
adaptation compared to PHASE 1 (two-tailed t-test 
p- value < 0.005), suggesting that evolutionary history 
can influence resistance adaptation to subsequent drug 
exposures.

Population Dynamics Modeling of Resistance 
Adaptation in Dynamic Environments
To further explore the interaction between the strength of 
selection and the evolutionary history, we used a simple 
mathematical model consisting of multiple subpopula-
tions exposed to a bactericidal antibiotic and competing 
for a single exhaustible resource. First, we assumed the 
population is composed of three bacterial types: a suscep-
tible bacteria, denoted Bwt, and two resistant subpopula-
tions, Bm and Bs, emerging from Bwt through a 
single-point mutation occurring at a rate ϵ (see inset dia-
gram in fig. 5A).

Suppose we denote with S ≥ 0 the concentration of a 
single limiting resource. In that case, we can model its up-
take by a bacterial population through a function denoted 
u(S), a Monod-type term that depends on the extracellular 
resource concentration (Smith and Waltman 1995; 
Peña-Miller et al. 2012a). Therefore, growth rate of differ-
ent strains can be characterized by the following growth 
kinetic parameters: ρ, denoting the resource conversion 
rate, K the half-saturation constant, and a maximum re-
source uptake rate, μ.

In our experimental system, we observed a trade-off be-
tween the degree of resistance and fitness cost in the ab-
sence of antibiotics, a property that we can express 
theoretically by considering that, at low antibiotic concen-
trations, uwt(S) > um(S) > us(S). To model the bactericidal 
effect of AMP, we consider that the killing rate of each bac-
terial type is proportional to its density and the environ-
mental drug concentration, with κ denoting the killing 
efficacy of the antibiotic. So, if κwt > κm > κs then, at 
high antibiotic concentrations, resistant strains (i.e. Bm 
and Bs) present larger bacterial densities than the suscep-
tible strain (Bs), as illustrated in figure 5A.

By numerically solving the model (equations described 
in the Methods and with parameter values defined in 
supplementary table S6, Supplementary Material online) 
we observed that, similarly to the experimental data, the 
rate of adaptation for the MS regime was significantly low-
er than for SS, with a 10-fold increase in resistance 
achieved in almost twice as many transfers for MS com-
pared to SS. At the end of the adaptive ramp (PHASE 1), 
the population structure was significantly different in 
both cases. In contrast to MS, where the population con-
sisted almost entirely of Bm, the population evolved under 
SS exhibited the presence of both resistant types (Bm and 
Bs). As a result, when removing the antibiotic from the en-
vironment (PHASE 2), both drug-resistant subpopulations 
are outcompeted by the susceptible strain and cleared 
from the population. In our numerical experiments, the 
rate of decay was faster under SS (fig. 5D) than when simu-
lating an MS adaptive ramp (fig. 5C).

Consequently, when antibiotics are reintroduced into 
the system after seven seasons of relaxed selection, a 
10-fold increase in resistance is achieved faster than during 
PHASE 1 for both selective regimes. For MS, resistance adap-
tation during PHASE 3 was more than 60% faster than in 
PHASE 1, while for SS, the same level of resistance was 
reached 25% faster. We repeated this numerical experi-
ment for adaptive ramps with increasing selective pressures 
and found that, as anticipated by the experimental data, 
the rate of drug-resistance adaptation is maximized at 
intermediate strengths of selection (gray arrow in fig. 5B).

Discussion
Antimicrobial substances are the main selective agents re-
sponsible for the evolution and dissemination of antibiotic 
resistance genes, both in the environment (Berendonk 
et al. 2015) and in clinical settings (Medeiros 1997). But 
evolutionary change is not only driven by the deterministic 
force of natural selection but also by genetic variation pro-
duced by random mutations. Moreover, mutations may 
exhibit epistatic interactions and express different pheno-
types when present in different genetic backgrounds (Card 
et al. 2019; Lukačišinová et al. 2020; Rousset et al. 2021). 
The complex interaction between the strength of selection 
and contingencies imposed by pre-existing genetic vari-
ation can have profound consequences on microbial evo-
lutionary dynamics, with examples ranging from the 
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evolution of innovation (Meyer et al. 2012) and 
loss-of-function (Galardini et al. 2019), to compensation 
(Levin et al. 2000) and reversibility of costly mutations 
(Crill et al. 2000; Rebolleda-Gómez and Travisano 2019).

We used experimental evolution to probe the effect of 
different selective pressures and evolutionary histories in 
resistance adaptation during recurrent drug exposures. 
Similarly to previous studies (Jahn et al. 2017; Mahrt 
et al. 2021), during the selective phase of our experiment, 
the rate of adaptation was proportional to the strength of 
the selective pressure. Furthermore, we found that adap-
tive ramps with different strengths of selection resulted 
in populations with analogous fitness in environments 
containing high doses of AMP. Importantly, despite exhi-
biting similar phenotypes, the genomic analysis of the 
evolved and ancestral populations revealed that the inten-
sity of the selective pressure was an important factor in the 
resulting genotypic profile (Oz et al. 2014; Mahrt et al. 
2021). A consequence of exhibiting genetic heterogeneity 
is that when the environment changes, then the fitness 
cost associated with resistance mutations can also be high-
ly variable. For instance, a previous study showed that 
strongly selected mutations enhanced cross-resistance to 
other antibiotics compared to mutants selected under 
MS (Oz et al. 2014).

In this manuscript, we focused on evaluating the stabil-
ity of resistance mutations when selection is removed from 
the environment. We found that strongly selected mu-
tants presented reduced fitness compared to the suscep-
tible strain and were cleared from the population once 
the antibiotic was withdrawn from the environment. In 
particular, we found that drug-resistance mutations in 
acrR and rpoD selected in the SS regime were cleared dur-
ing PHASE 2. In contrast, resistance mutations in ftsI and 
phoQ evolved under MS were stably maintained in the 
population throughout all phases of the experiment. The 
stability of resistance mutations can be problematic 
when characterizing the level of resistance of clinical iso-
lates. Indeed, our data suggest that equally resistant strains 
(analogous MIC, but with different mutational profiles re-
sulting from diverging evolutionary histories) can modify 
the evolutionary trajectories towards β-lactam resistance 
in subsequent drug exposures. However, precisely because 
the strength of selection and evolutionary history interact 
to select and maintain genes in the population, it should 
not be expected that resistance genes identified in our in 
vitro experimental system would exhibit similar resistance 
and stability profiles in a clinical setting.

Another important aspect driving bacterial evolution-
ary dynamics is bottlenecks size (Vogwill et al. 2016; 
Garoff et al. 2020; Mahrt et al. 2021; Windels et al. 2021). 
In our experimental system, we considered a relative 
bottleneck size that is akin to scenarios of low- and high- 
selective pressures; in low-drug environments [e.g. drug- 
polluted natural environments (Martinez 2009)], the 
population size is large and the strength of selection is 
mild, while in high-drug environments (e.g. clinical use of 
antimicrobials) populations usually undergo severe 

bottlenecks (e.g., transmission between host, host’s im-
mune system, tissue heterogeneity). To explore the role 
of different bottleneck sizes, we adapted our population 
dynamics model and assumed that a fixed initial density 
of cells is inoculated at the beginning of each season, 
with subpopulation frequencies obtained from the end 
of the previous season. Supplementary figure S10, 
Supplementary Material online illustrates that intermedi-
ate selection promotes the stability of resistant mutations 
in the population, resulting in an accelerated rate of adap-
tation upon antibiotic introduction. Note, however, that 
the increase in the rate of adaptation is less than when 
considering a relative bottleneck size. This is expected, as 
stronger bottlenecks are susceptible to stochastic effects 
and a greater rate of loss of beneficial mutations to genetic 
drift (Vogwill et al. 2016; Moxon and Kussell 2017).

The experimental protocol used in this study was de-
signed to evaluate the evolutionary dynamics of bacterial 
populations in response to recurrent periods of selection, 
similar to those imposed by sequential treatment proto-
cols. But environments that alternate selective pressures 
for and against resistance mutations can also be found 
elsewhere, particularly when considering that the health 
of humans, the environment, and animals are intercon-
nected (Hernández-González and Castillo-Ramírez 2020). 
Indeed, drug-polluted natural environments are ubiqui-
tous due to the use of antimicrobial substances in agricul-
ture and as animal growth promotion (Szekeres et al. 2018; 
Zhou et al. 2018; Martinez 2009), with mounting evidence 
demonstrating a correlation between anthropogenic 
drug pollution and selection for antibiotic-resistance in 
human pathogens (Berendonk et al. 2015; Kraemer et al. 
2019; Hernández-González and Castillo-Ramírez 2020). 
Altogether, our theoretical and experimental results sug-
gest that sub-lethal doses of antibiotics found in natural 
environments, which, in principle, only impose a mild 
selection for resistance (Gullberg et al. 2011; Fuentes- 
Hernández et al. 2019), are sufficient to maintain highly 
resistant mutations at low frequencies in the population, 
thus enhancing the rate of resistance adaptation when 
exposed again to high doses of antibiotics.

Materials and Methods
Strains and Culture Condition
All experiments were conducted using Escherichia coli 
MG1655 grown in M9 minimal media supplemented 
with 1 g/l of casaminoacids, 2 g/l of glucose, and 5% of gly-
cerol. All cultures were grown in 96-well plates with a vol-
ume of 200 l, incubated at a temperature of 30◦C and 
shaken at 150 rpm using an orbital incubator. We used 
ampicillin sodium salt (Sigma A0166) in stock at 100 mg/ 
ml diluted in water.

Antibiotic Susceptibility Determination
To determine the susceptibility to the antibiotic, we per-
formed dose–response curves to Ampicillin in 96 
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microtiter plates with a maximum volume of 200 l. The ex-
periment started with a stock solution of Ampicillin at a 
concentration of 100 mg/ml, which we diluted to make a 
dose–response curve consisting of 22 concentrations 
supplementary table S1, Supplementary Material online. 
Cultures in the plates were incubated at a temperature 
of 30◦C, and shaken at 150 rpm using an orbital incubator. 
After 22 h of growth, optical density at 630 nm (OD) using 
a plate reader (BioTek EL808x). To estimate the MIC of the 
population, we used dose–response experiments in liquid 
media by exposing the population to a logarithmically 
spaced vector of drug concentrations. We estimated the 
percentage of inhibition based on the final OD of each 
population with respect to the control with no antibiotic. 
By numerically interpolating the dose–response curve, we 
estimated the critical doses used for MS (50% inhibition, 
IC50), and for SS (90% inhibition, IC90).

Experimental Evolution
Our experimental protocol is adapted from Oz et al. 
(2014). For the evolutionary experiments, the antibiotics 
dilutions of all 96-well plates were prepared with an 
OpenTrons pipetting robot using a bespoke script coded 
in Python. The experiment is based on four replicates of 
a dose-response curve of Ampicillin with a range of 22 dif-
ferent concentrations (see supplementary table S1, 
Supplementary Material online). We evolved eight popula-
tions in parallel following two strategies: four populations 
were sampled each day based on from populations that 
grew on concentrations where inhibition achieved at least 
90% (referred to as SS), and also populations that exhibited 
50% inhibition (MS) with respect to the drug-free control. 
The volume of each selected populations was diluted at 1:5 
in fresh medium, before transferring a sample of each 
population into a dose–response experiment (with the 
same range of drug concentrations as before). We re-
peated this serial dilution protocol until all populations 
achieved a 10-fold increase in resistance (8 days for SS, 
and 22 days for MS). Every time we observed an increase 
in the MIC in one of the replicates, we froze the population 
at −80◦C for subsequent phenotypic and genotypic 
analysis.

We then continued the serial dilution protocol for se-
ven additional days in the absence of antibiotics (PHASE 

2), and measured the MIC of the evolved populations 
every day using the same range of drug concentrations 
as before. Finally, PHASE 3 consists in transferring the result-
ing populations to the adaptive ramp described in PHASE 1. 
All the experiment was done following the previous proto-
col, the cultures were grown for 22 h, and we estimated the 
final optical density with a plate reader (BioTeK EL808x) 
and measured the MIC as before, these populations were 
kept in the freezer for subsequent analysis. To compute 
the generations elapsed during each transfer, we first con-
vert the optical density measured each day (OD600, in ar-
bitrary units) into cells per milliliter. This was achieved 
by estimating the number of cells per unit volume using 

a flow cytometer for cultures with a range of optical dens-
ities, and extrapolating from the best-fit line 
(slope = 8.6048 and intercept = 11.353). We then esti-
mated the number of generations elapsed using the ex-
pression log2 (Bi/(η · Bi−1)), where Bi denotes the 
number of cells per milliliter at the end of transfer i, and 
η > 0 a constant dilution parameter (in this experiment 
η = 0.02). Raw data and Python code used for analysis 
and visualization can be found in https://github.com/ 
ccg-esb-lab/evoamp/.

Genome Sequencing
Whole-genome sequencing was performed for popula-
tions and some clones at the end of the three phases of 
the experiment. For sampling clones, frozen samples 
from the evolutionary experiment from the three Phases 
were inoculated using 150 l of each sample in four Petri 
dishes with LB agar using pearls at an appropriate dilution 
and selected all the individual clones that appeared on the 
plate after one day of incubation at 30◦C; then we grew 
each clone in a 96-well plate in M9 with the appropriate 
glucose and incubated at 30◦C for 24 h with liquid media 
to obtain growth curves and enough culture to isolate 
DNA. The growth rate of each sample was analyzed using 
the fitderiv program (Swain et al. 2016). Using the growth 
rate, we performed a K-means algorithm to generate 
groups that have similar growth rates. The algorithm ran-
domly selected one member from each group for sequen-
cing. Genomic DNA was isolated from each clone using the 
DNeasy Blood & Tissue, QIAGEN kit.

For the population-level sequencing, frozen samples 
from evolutionary experiments were revived overnight 
and gradually increased the volume and concentration 
of Ampicillin until the populations reached a high optical 
density and survive in a concentration of 10× MIC (20 g/ml). 
We first sampled 2 of the 4 replicas for each experiment at 
the end of the three phases, two for MS and two of SS; 
Genomic DNA was isolated from each population using 
the DNeasy Blood & Tissue, QIAGEN kit. We then sampled 
2 more populations in PHASE 1 and PHASE 3, one of each 
treatment and we revived them overnight in LB media, 
without antibiotics, for four days for PHASE 1 and six days 
for PHASE 3. The populations were diluted 1:5 and gradually 
increased in volume and ampicillin concentration until po-
pulations reached a high optical density and survive in a 
concentration of 10 MIC (20 g/ml). Genomic DNA was iso-
lated from each population using the DNeasy Blood & 
Tissue Kit, QIAGEN.

All samples were genotyped by Illumina WGS using a 
NextSeq platform in a 2 × 75 bp paired-end configuration. 
We sequenced clones of each population with 40× cover-
age and populations with 100× coverage for each sample. 
Reads were trimmed using Trimmomatic (Bolger et al. 
2014) with the following parameters: LEADING:3 
TRAILING:3303 SLIDINGWINDOW:4:15 MINLEN:50. 
Clones and populations variant calling analysis was per-
formed with breseq v0.35.7 (Deatherage and Barrick 
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2014), using default parameter settings. Option -p was 
used when analyzing population samples. We used 
Escherichia coli K12 substrain MG1655 genome as refer-
ence (Refseq sequence: NC000913.3). Comparisons be-
tween different phases of the experiment and with the 
reference genome were performed and were compared 
with gdtools from breseq. To assess the impact of muta-
tions on antibiotic resistance we filtered out mutations 
that were also present in controls, and mutations that 
never reached a frequency of 10% in different phases of 
the experiment For the analysis of genotypes, we choose 
three replicas of the four of each treatment, with a control 
at the end of the experiment and the ancestral strain for 
each treatment, resulting in a total of 28 time points. 
Sequencing data were deposited at the NCBI under the 
BioProject ID PRJNA771356.

Competition Experiments
Wild type E. coli MG1655 strain harboring the pFPV25.1 
plasmid (E. coli + pFPV25.1), which expresses the gfpmut3a 
gene from the rpsM constitutive promoter (Valdivia and 
Falkow 1996) was used to evaluate the potential growth 
penalty attributable to the mutations generated in evolved 
populations in competition experiments. E. coli + 
pFPV25.1 strain and evolved populations (see 
supplementary table S2–S3, Supplementary Material on-
line) were grown 14 h in 5 ml of LB Broth-Lennox 
(Condalab) supplemented or not with Ampicillin (2 mg/ 
ml) at 30◦C with shaking (230 rpm). Then, these bacterial 
cultures were inoculated (1:100 in LB) and grown at 30◦C 
with shaking up to reach an OD at 630 nm of 0.6 (3.5–4 h), 
corresponding to an exponential growth phase. Next, 
mixed cultures (competitive growth) were started by in-
oculating pairs of the bacterial cultures (E. coli + 
pFPV25.1 combined with any of the evolved populations) 
at a ratio of approximately 1:1 (250 + 250 l) in 125-ml 
flasks containing 25 ml of fresh LB without antibiotics 
and incubated at 30◦C with shaking for 6 h. At 0 and 6 h, 
culture samples were taken to estimate the relative frac-
tion of each of the two strains using flow cytometry. 
Briefly, samples containing ∼108 cells were taken from bac-
terial mixed cultures and washed and resuspended in 1 ml 
of 0.22-m-pore-size filtered 1X phosphate-buffered saline 
(PBS). Then, 50,000 events per sample using 525/40 nm fil-
ter (GFP) were read on a Beckman Coulter Life Sciences 
CytoFLEX flow cytometer. Quantitative measurements 
and distribution of fluorescence were determined with 
the CytExpert software program (Beckman Coulter Life 
Sciences).

Population Dynamics Model
We used a simple mathematical model of microbial 
growth under resource limitation to study the evolution-
ary dynamics of a clonal bacterial population exposed to 
increasing concentrations of antibiotics. Bacterial growth 
rate was modeled as a saturating function of the environ-
mental resource concentration, S, with the Monod term: 

u(S) = μB/(K + B) where μ represents the maximum re-
source uptake rate and K the half-saturation constant. 
Therefore, bacterial growth rate of each bacterial strain 
is given the resource uptake function multiplied by ρ, a re-
source conversion coefficient that represents the efficiency 
of each bacterial type in converting resource molecules 
into biomass.

For simplicity, we consider three bacterial types: a sus-
ceptible wild-type (Bwt), a mildly-resistant strain (Bm), 
and a strongly-resistant strain (Bs). If we denote the con-
centration of antibiotic as A ≥ 0, then bactericidal activity 
can be represented by parameter κ (by definition, 
κwt > κm > κs). We consider that resistance is associated 
with a fitness cost in the absence of positive selection for 
genes encoding resistance mechanisms, by introducing 
constraints in parameter values such that, in low-drug en-
vironments, uwt(S) > um(S) > us(S) (see supplementary 
table S6, Supplementary Material online for parameter va-
lues used). Resistance acquisition occurs by a single point 
mutation occurring at a rate 0 < ϵ ≪ 1. We consider 
that resistance can be reversed at a rate ϵ, but that Bs can-
not mutate into Bm, or vice versa.

Then the population dynamics occurring in a single day 
can be written as a set of differential equations:

dS
dt

= −uwt(S) · Bwt − um(S) · Bm − us(S) · Bs, (1a) 

dA
dt

= −A(αwtBwt + αmBm + αsBs), (1b) 

dBwt

dt
= (1 − 2ϵ)ρwt · uwt(S) · Bwt + ϵ(ρs · us(S) · Bs

+ ρr · ur(S)Br) − κwtBwtA,
(1c) 

dBm

dt
= (1 − ϵ)ρm · um(S) · Bm + ϵρwt · uwt(S) · Bwt

− κmBsA,
(1d) 

dBs

dt
= (1 − ϵ)ρ · us(S) ·Bs + ϵρwt · uwt(S) · Bwt − κsBsA. (1e) 

Now, to model a serial dilution experiment we will 
consider that each transfer has a duration of T hours, 
with t ∈ [0, ]T. Therefore, the state of the system 
in day i can be represented with the vector 
xi(t) = (Si(t), Ai(t), Bi

wt(t), Bi
m(t), Bi

s(t)). In particular, to re-
flect that the evolutionary experiment considers an 
initial population consisting exclusively of susceptible 
cells, we consider that the initial conditions the first 
day are x0(0) = (S0(0), A0(0), B0

wt, 0, 0). For subsequent 
days, i > 0, a relative bottleneck can be modeled by 
considering that the initial conditions of the system can 
be written as xi(0) = (Si(0), Ai(0), Bi

wt(0), Bi
m(0), Bi

s(0))= 
(S0, Ai

0, η · Bi−1
wt (T), η · Bi−1

m (T), η ·Bi−1
s (T)), where η > 0 re-

presents a dilution parameter, and S0 is a fixed parameter 
denoting the daily initial concentration of limiting re-
source. To model absolute bottlenecks, we assume the to-
tal initial density to be fixed (B0 = 1 × 106), with a 
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population structure determined from the frequencies of 
each strain at the end of the previous transfer. Finally, 
the drug concentration used each day, Ai

0, is defined based 
on the treatment regime under consideration. Numerical 
simulations of the model were performed in Matlab, 
with scripts available in https://github.com/ccg-esb-lab/ 
evoamp/.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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