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Plasma lipidomics analysis finds long chain cholesteryl esters to
be associated with Alzheimer’s disease
P Proitsi1, M Kim2, L Whiley2, M Pritchard1, R Leung1, H Soininen3, I Kloszewska4, P Mecocci5, M Tsolaki6, B Vellas7, P Sham8,
S Lovestone9, JF Powell1,11, RJB Dobson1,10,11 and C Legido-Quigley2,11

There is an urgent need for the identification of Alzheimer’s disease (AD) biomarkers. Studies have now suggested the promising
use of associations with blood metabolites as functional intermediate phenotypes in biomedical and pharmaceutical research. The
aim of this study was to use lipidomics to identify a battery of plasma metabolite molecules that could predict AD patients from
controls. We performed a comprehensive untargeted lipidomic analysis, using ultra-performance liquid chromatography/mass
spectrometry on plasma samples from 35 AD patients, 40 elderly controls and 48 individuals with mild cognitive impairment (MCI)
and used multivariate analysis methods to identify metabolites associated with AD status. A combination of 10 metabolites could
discriminate AD patients from controls with 79.2% accuracy (81.8% sensitivity, 76.9% specificity and an area under curve of 0.792) in
a novel test set. Six of the metabolites were identified as long chain cholesteryl esters (ChEs) and were reduced in AD (ChE 32:0,
odds ratio (OR) = 0.237, 95% confidence interval (CI) = 0.10–0.48, P= 4.19E− 04; ChE 34:0, OR = 0.152, 95% CI = 0.05–0.37,
P= 2.90E− 04; ChE 34:6, OR = 0.126, 95% CI = 0.03–0.35, P= 5.40E− 04; ChE 32:4, OR = 0.056, 95% CI = 0.01–0.24, P= 6.56E− 04 and
ChE 33:6, OR = 0.205, 95% CI = 0.06–0.50, P= 2.21E− 03, per (log2) metabolite unit). The levels of these metabolites followed the
trend control4MCI4AD. We, additionally, found no association between cholesterol, the precursor of ChE and AD. This study
identified new ChE molecules, involved in cholesterol metabolism, implicated in AD, which may help identify new therapeutic
targets; although, these findings need to be replicated in larger well-phenotyped cohorts.
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INTRODUCTION
A better understanding of the biological mechanisms underlying
Alzheimer’s disease (AD) is required. AD is a devastating illness
that currently affects over 496,000 people in the UK (www.alz.org.
uk). It is one of the major challenges for health care in the 21st
century and with estimated longer life expectancy, the number of
demented patients worldwide are expected to reach 81.1 million
in 2040.1 The lack of current treatments for AD and the lack of a
definite and early diagnosis highlights the absence of a
comprehensive understanding of the biological mechanisms
underlying the changes that occur during the process of
neurodegeneration. This underscores the urgent need for
biomarkers that would lead to novel treatment strategies and
improve the lives of those affected.2 Current sulcal cerebrospinal
fluid or brain imaging biomarkers are costly, can cause discomfort
to the patient and are impractical at large scale. For example, the
Medicare Evidence Development and Coverage Advisory Com-
mittee concluded that there was too little evidence to show that
amyloid positron emission tomography (PET) scans improve AD
outcomes or that its benefits outweigh the harms and high cost.3

A blood-based biomarker could act as a screening tool to identify

at-risk individuals for further investigation or recruitment into
clinical trials.
Studies have now demonstrated the potential of using blood

metabolites, the repertoire of molecules (size o1000–1500 Da)4

present in cells and tissue,5 as functional intermediate phenotypes
in biomedical and pharmaceutical research.6 Metabolic phenotyp-
ing and its subset lipidomics is the rapidly evolving field of the
comprehensive measurement, in a non-targeted manner, of
ideally all endogenous metabolites in a biological sample.7 These
small-to-medium molecules are the final products of interactions
between gene expression, protein expression and the cellular and
external environment, and represent an essential aspect of the
phenotype of an organism.8 In addition, it is now known that there
is a communication between the brain and the periphery and is
increasingly believed that the damage to the blood–brain barrier
caused by AD increases theoretically the chance of metabolites
crossing to the brain.2,9,10 Coupled with the fact that blood is
relatively easily accessible, plasma metabolites are an ideal source
of noninvasive biomarkers and a molecular ‘footprint’ of disease.
Recently, a number of non-targeted blood metabolomic studies

(liquid chromatography-mass spectrometry (LC-MS) or direct
infusion mass spectrometry (MS)) in AD have emerged,
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highlighting the role of lipid compounds, such as sphingolipids,11

bile acids,12 desmosterol13 and phosphatidylcholines (PCs).14–16 In
a LC-MS/NMR screen followed by subsequent quantification, we
previously identified three lipid PC molecules (PC16:0/20:5,
PC16:0/22:6 and 18:0/22:6) that were progressively diminished in
subjects with mild cognitive impairment (MCI) and AD patients.16

Interestingly, the latter two were found to be markers in a recent
study where a panel of 10 lipids showed 90% area under curve
(AUC) for preconversion to amnestic MCI or AD.14

Lipid metabolism has been extensively implicated in the
pathogenesis of AD through cell biological17,18 and genetic
studies.19–22 Further support comes from brain tissue metabolo-
mic studies, which have shown changes in lipid compounds such
as lysobisphosphatidic acid, sphingomyelin, sphingolipids and
desmosterol in the brains of AD patients.23–26

In this study, we performed untargeted lipidomics utilizing
plasma samples from 36 AD patients, 40 healthy controls and 48
individuals with MCI with the aim of discovering new molecules
that could diagnose AD patients from controls and MCI and
improve our current knowledge of molecules associated with AD
and their underlying biology.

MATERIALS AND METHODS
Patient sample collection
This study utilized 124 age and gender matched plasma samples (36 AD
patients, 48 MCI individuals and 40 controls) from the Dementia Case
Register (DCR) at King’s College London and the EU funded AddNeuroMed
study.16,27 Normal elderly control subjects were recruited from non-related
family members of AD patients, care-givers’ relatives, social centres for the
elderly or GP surgeries and had no evidence of cognitive impairment. AD
and MCI subjects were recruited primarily from local memory clinics, and
as such the MCI cohort was expected to be composed largely of subjects
with a likely AD end point. Overlapping samples from this study were
previously used by Whiley et al.16 to measure the relative amounts of three
PCs to a PC internal standard in plasma. Relevant ethics board approved
the study and informed consent was obtained for all subjects. Each patient
was required to fast for 2 h before sample collection and 10ml of blood
was then collected in tubes coated with sodium ethylenediaminetetraa-
cetic acid to prevent clotting. Whole blood was centrifuged to form a
plasma supernatant, which in turn was removed and placed at − 80 °C until
further use.

Lipidomics
Sample treatment. Sample treatment has been described elsewhere,4,16

20 μl of plasma was added to a glass HPLC vial containing a 400 μl glass
insert (Chromacol, Welwyn Garden City, UK). Ten microlitres of high purity
water and 40 μl of MS-grade methanol were added to each sample,
followed by a 2min vortex mix to precipitate proteins. Then, 200 μl of
methyl t-butyl ether (containing 10 μgml− 1 of internal standard triacyl-
glycerol 45:0) was added, and the samples were mixed via vortex at room
temperature for 1 h. After the addition of 50 μl of high purity water, a final
sample mixing was performed before centrifugation at 3000 g for 10 min.
The upper, lipid-containing, methyl t-butyl ether phase was then injected
onto the LC-MS system directly from the vial by adjustment of the
instrument needle height (17.5 mm from bottom).
The LC-MS-MS method employed has previously been published2,16 and

has shown to measure amounts of 44500 metabolite species, particularly
lipids. Instrumentation included a Waters ACQUITY UPLC and XEVO QTOF
system (Waters, Milford, MA, USA).
Chromatographic separation was achieved using an Agilent (Palo Alto,

CA, USA) Poroshell 120 EC-C8 column (150mm×2.1 mm, 2.7 μm),
maintained at 60 °C. A gradient was used consisting of 10mM ammonium
formate in water (A) and 10mM ammonium formate in methanol (B). The
solvent was delivered at a flow rate of 0.5 ml min− 1. The gradient consisted
of 0 min (75% B), 23 min (96% B), 36 min (96% B), 36.5 min (100% B),
41.5 min (100% B), 42 min (75% B), 51 min (75% B).
The XEVO QTOF was operated in the positive ion mode with a capillary

voltage of 2.5 kV and a cone voltage of 60 V. The desolvation gas flow was
500 l h− 1 and the source temperature was 120 °C. All analyses were
acquired using the lock spray setting; leucine enkephalin was used as lock

mass (m/z 556.2771 and 278.1141). Data were collected in the centroid
mode over the mass range m/z 100–1000 with an acquisition time of 1 s
per scan.
Samples were analysed in a randomized order, in four batches,

with pooled plasma sampled (quality control (QC) samples) at regular
intervals throughout the run (n= 20). LC-MS raw data were aligned
and normalized to total mean area, using Waters MarkerLynx software
(Waters). Further validation of metabolite concentrations, which were
associated with disease status took place using Waters QuanLynx software
(Waters) and calculating peak ratios for metabolites that were over the
LOQ (limit of quantification) and the area under the peak of the internal
standard.

Statistical analysis
Data pre-treatment. Metabolites detected in o80% of each of the
diagnostic groups and the four batches were excluded from analyses.
Metabolite distributions were inspected using histograms and the
Shapiro–Wilks test was used to test for normality of the metabolite
distributions. The distribution of a large number of metabolites was
skewed and the data were further log2 transformed. The Empirical Bayes
method ComBat28 was used to correct for batch effects in each metabolite.
Principal components analysis was then used for the detection of outliers
and to check whether the 20 QC samples clustered together. Missing data
points were imputed using KNN (k-nearest neighbours, k= 10), separately
for each disease phenotype (‘impute’). Metabolite correlations were
visualized using a heatmap (‘ggplot2’). Analysis of variance was used to
test for differences in the levels of continuous variables between the three
diagnostic groups, followed by Tukey’s honest significant differences post
hoc test between pairs of groups when the results of analysis of variance
were significant at the Po0.05 level. Pearson’s χ2 was used to test for
differences in frequency of the categorical variables between the
diagnostic groups. All the analyses took place in R.3.01.

Single analyte analysis. Analytes were centred around their mean. Logistic
regression (‘glm’) was used to investigate the association of each
metabolite individually with disease status (AD versus controls). Logistic
regression models were adjusted for the number of APOE ε4 alleles, age,
gender and batch. False discovery rate (FDR) correction (0.05) was applied
to correct for multiple testing. Secondary models were run to test whether
the association of metabolites with disease status was modified by the
presence of the APOE ε4 allele by testing for interactions.

Multivariate analysis. A Random Forest approach (using ‘rf’ and ‘rfe’ in the
package ‘CARET’) was used to develop an AD versus control classifier. Due
to the large number of variables and their highly correlated structure, the
following approach was used to achieve high performance with a minimal
variable set. AD cases and controls were divided into a training (2/3) and
an independent test data set (1/3) such that the training set comprised
equal numbers of each diagnostic group. The training set was further
divided into 100 bootstrap sample sets comprising a bootstrap training set
(75%) used to build the Random Forest model and a bootstrap test set
(25%) used to test the model. In each model, the default setting for
ntree= 500 was used and the optimum mtry number after 100 bootstraps
was chosen and fitted to the whole training data set. The ‘AUC’ was used to
test for the performance of each classifier.
In each of the 100 bootstrap iterations, each variable was assigned a

variable importance score. The ranks were summed for each metabolite
over the 100 bootstraps providing an indication of the predictive power of
each variable. We then selected the top 10% analytes on the basis of their
summed variable importance rankings and ran the Random Forest with
recursive feature elimination (rfe), that is, backward elimination on these
selected variables using a second round of 100 bootstraps. The
boostrapping was repeated keeping the top 50 to 10 analytes in steps
of five, and down to two analytes in steps of one. For each subset of
predictors, the mean bootstrap testing performance was calculated, and,
on the basis of this, the optimal number of variables was identified using
the ‘sizeTolerance’ function. This takes into account the whole profile
during ‘rfe’ and picks a subset size that is small without sacrificing too
much performance. The optimal number of variables was then used to
build a final model in the complete training data, which was tested with
the independent test set (Model 1).
The final model was also tested on the MCI sample to determine

whether it would classify MCI as cases or controls.
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We then repeated the steps above including APOE ε4 genotype (0,1 or 2
alleles) during the initial Random Forest bootstrapping step to assess its
variable importance and the predictive ability of the metabolites in the
presence of APOE.

RESULTS
The sample demographics are displayed in Table 1 and
Supplementary Figure 1 gives a detailed account of the QC steps.
In brief, 1878 molecular features were extracted from the 124
samples. Following QC, metabolites detected in o80% of the
three diagnostic groups and the four batches were removed and
573 features were left for analysis. The distribution of490% of the
573 features deviated from the normal, reflecting in some cases
different batch distributions. The features therefore underwent
log2 transformation and batch effect correction, resulting in
495% metabolites following a normal distribution. Principal
components analysis showed that all 20 QC samples clustered
together (Supplementary Figure 2), verifying reproducible results
across the batches and highlighting the presence of one outlier
(AD case), which was removed. KNN imputation was performed on
the 123 samples with the 573 features.

Single analyte analyses results
Logistic regression analyses for AD versus controls, adjusting for
the number of APOE ε4 alleles, age, gender and batch, indicated
that 95 analytes were associated with AD at P-value o0.05 and 41
analytes at q-value o0.05. Results for all 573 analytes and all pair-
wise comparisons are provided in Supplementary Table 1.
Secondary models investigating for APOE ε4 specific associations
by testing for interactions between analytes and the APOE ε4
allele indicated that the association of 29 analytes with AD
seemed to be modified for the APOE ε4 at P-value o0.05;
However, none of these associations were significant at q-value
o0.05 (results not presented).

Multivariate analysis results
Random Forest was performed on the training data set using the
573 features (100 bootstraps). Supplementary Figure 3 displays
the variable importance after 100 bootstraps, with the dotted line
showing a slight leveling off in the importance measure and which
corresponds to the top 10% features (n= 57). Random Forest with
‘rfe’ on the training data set showed that the highest mean
training performance was for a model with 25 features. However,

to choose a model with high accuracy while reducing the number
of features as low as possible, a model with 10 molecules was
chosen (AUC= 0.867) (Supplementary Figure 4). We fitted the
Random Forest model with the 10 selected variables on the whole
training data set, which predicted the training data set with
82.35% accuracy (sensitivity = 87.5%, specificity = 77.8%, AUC=
0.826) and could classify our test data set with 79.2% accuracy,
81.8% sensitivity, 76.9% specificity, a positive predictive value of
75.0%, a negative predictive value of 83.3% and an AUC of 0.792.
When we repeated the analysis including APOE, APOE had very

low variable importance (222 out of 573) and was not selected
forward. In addition, APOE was not selected in the final model
after forcing it during ‘rfe’ together with the top 10% of the
selected analytes from the 100 Random Forest bootstraps.
Results for the Random Forest model are displayed in Figure 1.

Nine of the 10 metabolites of the classifier were associated with
AD in single analyte regression analysis at qo0.05 (Supple-
mentary Table 1 and Table 2) and none of them was shown to
interact with the APOE ε4 genotype at Po0.05.

Table 1. Sample demographics

Comprehensive plasma LC-MS lipidomics (n= 124)

Control MCI AD ANOVA F(df1,df2) or x2(df) tests

N 40 48 36
Age (mean, s.d.) 78.46 (6.7) 78.96 (5.6) 78.14 (7.7) F= 0.180 (2,121), P= 0.836
MMSE (mean, s.d.) 29.00 (1.1) 26.94 (1.9) 21.49 (4.8) F= 65.46(2,121), Po2.0E− 16a

Female/male (N) 17/18 26/22 21/19 χ2= 0.259 (2), P= 0.879
APOE ε4 alleles (0/1/2) (N) 33/7/0 28/12/3 15/15/6 χ2= 12.812 (2), Po16.5E− 03b

Batch (1/2/3/4) (N) 9/10/9/12 14/11/10/13 9/8/10/9 χ2= 1.256 (2), P= 0.974
Diabetesc 1 3 3 χ2= 0.749 (2), P= 0.688
Smokingd 6 0 9 χ2= 2.729 (2), P= 0.255
Statins 10 20 14 χ2= 3.552 (2), P= 0.169
Samples (LON) 40 28 36 NA
Samples (EUR) 0 20 0 NA

Abbreviations: AD, Alzheimer’s disease; ANOVA, analysis of variance; EUR, samples obtained from the non-London AddNeuroMed European centres; LC-MS,
liquid chromatography-mass spectrometry; LDN, samples obtained from London AddNeuroMed- and DCR-based patients; MCI, mild cognitive impairment;
MMSE, Mini-Mental State Examination score; NA, not available. aTukey’s honest significant differences post hoc tests: AD versus Control Po1.0E− 17; AD versus
MCI P= 4.02E− 13; MCI versus Control P= 3.36E− 03. bAD versus Control P= 7.5E− 04; AD versus MCI P= 0.1364; MCI versus Control P= 0.099. cDiabetes
information was available for 34 AD patients, 29 controls and 43 MCI. dInformation on smoking was available for 34 AD patients, 29 controls and 6 MCI.

ROC plot: Random Forest for the independent test dataset
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Figure 1. Receiver operator curve (ROC) for the independent test
data set for the selected 10 metabolites after recursive feature
elimination for AD versus controls and for the seven identified
metabolites, and summaries of the classifier models for the training
and test data sets. AD, Alzheimer’s disease; AUC, area under curve.
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Identification and measurement of putative biomarkers
Six molecules were identified using MS/MS fragmentation
patterns (Figure 2a) and found to be cholesteryl esters (ChEs)
with very long chain fatty acids,29,30 synthesized from cholesterol
(Figure 2b). These werem/z 866 (ChE 32:0), m/z 894 (ChE 34:0),m/z
882 (ChE 34:6), m/z 856 (ChE 32:4), m/z 868 (ChE 33:6) and m/z 970
(ChE 40:4). In addition, one molecule was proposed as an oxidized
form of desmosterol following the expected fragmentation
pattern (m/z 367). The six identified ChE molecules and the
desmosterol-related molecule predicted the training data set with
82.35% accuracy (sensitivity = 82.61%, specificity = 82.14%, AUC=

0.824) and could classify the test data set with 67% accuracy,
69.23% sensitivity, 62.64% specificity, a positive predictive value of
69.23%, a negative predictive value of 63.64% and an AUC
of 0.670.
Relative quantification was produced for eight of the molecules,

which were consistently over the limit of quantification (LOQ).
Univariate association analysis of the eight peak ratios revealed
that the associations of all of them were strengthened. We,
additionally, measured cholesterol, the precursor of ChE, finding
no association with AD (Table 2).
Figure 3 plots the levels of the metabolites and cholesterol in

the three diagnostic groups, which highlights the overall decrease
pattern in metabolite levels from healthy controls to MCI to AD. To
further investigate the association of the metabolites with
cognition, we investigated their correlation with MMSE, which
showed a weak association (Supplementary Figure 5).
When we tested our classifier on individuals with MCI, 22 were

classified as AD and 18 as controls.
Finally, logistic regression analyses including statin use and

smoking status as covariates produced identical results (not
presented).

DISCUSSION
We performed lipidomics on plasma samples from 36 late-onset
AD patients, 40 healthy controls and 48 individuals with MCI to
identify metabolites that differentiate between AD patients and
healthy controls. Univariate analysis identified 41 analytes
associated with AD (qo0.05). We then applied Random Forest
and a backwards elimination approach to identify a reproducible
metabolic signature to classify AD patients and we found a
combination of 10 metabolite molecules that classified AD
patients in the independent test data set with 79% accuracy. This
is one of the largest non-targeted plasma studies to date to use
such a systematic analysis pipeline, which included assessment of
the model in an independent data set (1/3 of sample), to identify
new targets linked to AD and provide improvement to current
diagnostic classifiers.11–16 Although APOE was associated with AD
in single analyte analyses, its variable importance in the presence
of the metabolites during classification was low and was not
included in the classifier probably due to the metabolites already
capturing the information that APOE provides. It should be noted
that the single metabolite logistic regression results indicated that
the metabolites provided information over and above APOE.

Table 2. List of metabolite molecules selected by the Random Forest classifier (AD versus elderly health controls)

Metabolite molecule Peak height data normalized to whole mean only Peak ratios normalized to internal standard

OR 95% CI P-value OR L95 95% CI P-value

Mass/z 367 0.124 0.03–0.39 1.31E− 03 0.115 0.03–0.36 8.09E− 04
ChE 32:0 0.251 0.10–0.52 7.51E− 04 0.237 0.10–0.48 4.19E− 04
ChE 34:0 0.151 0.05–0.38 3.14E− 04 0.152 0.05–0.37 2.90E− 04
ChE 34:6 0.231 0.08–0.53 1.56E− 03 0.126 0.03–0.35 5.40E− 04
ChE 32:4 0.141 0.04–0.43 1.75E− 03 0.056 0.01–0.24 6.56E− 04
ChE 33:6 0.218 0.07–0.55 3.15E− 03 0.205 0.06–0.50 2.21E− 03
Mass/z 628 3.669 1.20–13.93 3.49E− 02 NA NA NA
Mass/z 906 0.210 0.07–0.50 1.40E− 03 0.226 0.09–0.48 3.73E− 04
Mass/z 315 5.084 1.78–16.88 4.12E− 03 NA NA NA
ChE 40:4 0.362 0.18–0.67 2.56E− 03 0.279 0.12–0.55 6.43E− 04
Cholesterol NA NA NA 0.316 0.02–5.01 4.21E− 01

Abbreviations: AD, Alzheimer’s disease; ChE, cholesteryl ester; CI, confidence interval; NA, not available; OR, odds ratio. Results are presented for peak height
and peak ratio (measurement normalized to internal standard) after covariate adjustment. The metabolites are ordered according to their importance during
recursive feature elimination. All metabolites except for mass 628 were associated with AD in single analyte regression analysis (qo0.05). Results for
semiquantified mass 628 and mass 315 are not presented as they were not consistently above the limit of quantification. Results are also presented for the
APOE ε4 allele and for cholesterol peak ratio. The association of APOE ε4 was OR= 5.620, 95% CI= 2.27–16.29, P= 5.48E− 04 per ε4 allele.
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Most of the metabolites in the classifier were reduced in AD
patients. We observed that their levels in MCI subjects were more
variable but overall followed the control4MCI4AD trend with
some of them being different at Po0.05 between AD and MCI or
MCI and controls. To investigate this further, we plotted the
correlation of metabolites with MMSE, which is a more informative
continuous surrogate marker for disease status and observed
weak association between the metabolic signature and cognition.
We subsequently extracted single metabolite measures and

observed that their associations with AD were strengthened
(Table 2). Six molecules were identified as ChEs, molecules which
have not been previously associated with AD and one as a
potentially oxidized form of desmosterol, which could predict the
test data set with 67% accuracy highlighting both their good
predictive value and also the importance of the unidentified
molecules in AD. We, additionally, measured cholesterol, as it is
the precursor of ChE, and wanted to explore the chemical path
differences with AD, finding no association. This suggested that
the association with AD is specific to metabolites synthesized from
cholesterol rather than to cholesterol itself.
A heatmap of the measured molecules together with choles-

terol is shown in Figure 4. We have previously reported three PCs
to be decreased in AD versus controls16 using overlapping
samples. Although these PCs were not included in our classifier,
their raw values were decreased in our data set (Po0.05) with one

of them (mass 780 which is PC16:0/20:5) being associated with AD
at qo0.05. These molecules were also recently identified as
markers of phenoconversion to either amnestic MCI or AD.14 We
have therefore included these three PCs in the heatmap to
compare their biological variation with the newly discovered and
biochemically related ChEs, which highlights the positive correla-
tion between the metabolites identified here, cholesterol and the
three PCs; therefore, it is likely that the information the PCs
provide is captured by the analytes selected in the rfe step.

Role of cholesterol and its derivatives
Cholesterol esters are largely synthesized in plasma by the transfer
of fatty acids to cholesterol from PC, a reaction catalysed by the
enzyme LCAT (lecithin: cholesterol acyl transferase). Free choles-
terol can be taken up by APOE-containing lipoproteins, such as
HDL, but is confined to the outer surface of the particle. The
esterification of cholesterol to ChE ensures that more cholesterol is
packaged into the interior of lipoproteins and this increases their
capacity, allowing more efficient cholesterol transport through the
bloodstream. LCAT has a preference for plasma 16:0–18:2 or 18:0–
18:2 PCs, therefore, connecting the PCs identified by Whiley
et al.16 and the ChEs identified here through a one-step enzymatic
reaction (Figure 2b). Interestingly, LCAT is also expressed in the
brain by astrocytes, and, together with APOE and ABCA1, has a key
role in the maturation of glial-derived nascent lipoproteins.

CONTROL MCI AD

-1

0

1

2

3

Mass/z 367
 (ANCOVA p=9.20E-04)

Diagnosis

P
la

sm
a 

(lo
g2

) M
as

s/
z 

36
7

CONTROL MCI AD

-2

-1

0

1

2

-2

-1

0

1

2

ChE 32:0 
(ANCOVA p=4.80E-04)

Diagnosis

P
la

sm
a 

(lo
g2

) C
hE

 3
2:

0

CONTROL MCI AD

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ChE 32:4
 (ANCOVA p=9.66E-04)

Diagnosis

P
la

sm
a 

(lo
g2

) C
hE

 3
2:

4

CONTROL MCI AD

ChE 34:0
 (ANCOVA p=7.56E-05)

Diagnosis

P
la

sm
a 

(lo
g2

) C
hE

 3
4:

0

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

CONTROL MCI AD

 ChE 34:6
 (ANCOVA p=8.75E-04)

Diagnosis

CONTROL MCI AD

Diagnosis

CONTROL MCI AD

Diagnosis

P
la

sm
a 

(lo
g2

)  
C

hE
 3

4:
6

ChE 33:6 
(ANCOVA p=1.37E-03)

P
la

sm
a 

(lo
g2

) C
hE

 3
3:

6

ChE 40:4 
(ANCOVA p=4.53-04)

P
la

sm
a 

(lo
g2

) C
hE

 4
0:

4

CONTROL MCI AD

Mass/z 906
 (ANCOVA p=9.92-04)

Diagnosis

P
la

sm
a 

(lo
g2

) M
as

s/
z 

90
6

CONTROL MCI AD

-0.4

-0.2

0.0

0.2

0.4

Diagnosis

P
la

sm
a 

(lo
g2

) c
ho

le
st

er
ol

Cholesterol 
(ANCOVA p=5.86E-01)

Figure 3. Boxplots depicting change in the level of the Random Forest measured molecules which were consistently above the level of
quantification (LOQ) and that of cholesterol in the three diagnostic groups. All molecules were decreased in AD compared with controls after
putative biomarker measurement. A decrease is also observed in MCI compared with controls. The ANCOVA P-value for the difference in
metabolite levels in the three groups is displayed above each graph. AD, Alzheimer’s disease; ANCOVA, analysis of covariance; MCI, mild
cognitive impairment.
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In other tissues, cholesterol is esterified by acyl-coenzyme A:
cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2). ACAT uses
acyl-CoA as a source for the acyl chains. Recent evidence suggests
a strong link of ACAT1 with amyloid deposition. Pharmacological
inhibition of ACAT in AD mice resulted in diminished amyloid
plaque burden in their brains and improved cognitive
function25,31 and genetic ablation of Acat1 in AD mice diminished
the levels of Aβ42, decreased the amyloid plaque burden and full-
length human APP (human amyloid precursor protein), and
improved the cognitive function of the mice.32 Finally, a recent
gene therapy study showed that adeno-associated virus targeting
Acat1 for gene knockdown delivered to the brains of AD mice
decreased the levels of total brain amyloid-β, oligomeric amyloid-
β and full-length human APP to levels similar to complete genetic
knockdown of Acat1.33

Approximately one-third of the ChE is transferred from HDL to
APOB-containing lipoproteins, such as VLDLs, in exchange for
triglycerides by ChE transfer protein. Thus most of the cholesterol
in circulating lipoproteins is ChE produced from HDL lipoproteins
by the LCAT-catalysed reaction. This process results in lower HDL
cholesterol and indirectly decreases HDL size as frequently
observed in type 2 diabetes34 and a deficiency of ChE transfer
protein is associated with increased HDL and decreased LDL
levels, a profile typically antiatherogenic.35,36 Interestingly, an
elevation of cholesterol esters (chains 14:20) was observed in the
brains of AD patients and of three transgenic familial AD mouse
models.24

Lower desmosterol levels have been previously found in the
plasma and brains of AD patients compared with healthy
controls.13,26 Desmosterol is a precursor of cholesterol and seladin
(DHCR24), which governs the metabolism of desmosterol to
cholesterol in specific brain areas has been shown to counter-
act the β-secretase cleavage of APP and the formation of
amyloid-β.37,38 An unknown molecule with similar structure and
the same mass as desmosterol shows the highest correlation with
cholesterol here.

Strengths and limitations
To our knowledge, ours is the first study to implicate ChEs in AD.
We should highlight, however, that these molecules are
biochemically related to metabolites previously associated with
AD initiation and progression and are, therefore, biologically
relevant. Although lipid molecules have been previously impli-
cated in AD, results are not always consistent. It is worth noting
that even if previously published studies go under the umbrella of
plasma lipidomics and/or metabolomics, differences are consider-
able in terms of patient cohort selection (such as differences in
patient groups selection, in age and in dementia severity), in terms
of technical treatment (such as sampling/storage conditions and
fasting state before sample collection) and in clinical data
availability. As an example, sample groups can differ from a
simple case versus control design11 to including MCI12–16 and in
one case including time points with pre- and post-conversion
patients.14 Sample groups will influence the selectivity of results,
as well as patient numbers, which ranged from o50 in early
studies11 to the low hundreds in more recent studies.13–16 In
addition, LC-MS fingerprinting methods can be qualitative or/and
quantitative, hence the information can be relative amounts11,12,15

or a combination of relative and absolute amounts for chosen
metabolites.13,14,16 Another factor for differences observed
between studies would be the different data processing tools
applied for data mining and statistical methods used to produce
AD biomarker predictive models. Some studies showed predictive
models of AD based on one to three molecules13,16 or a battery
ranging from three to 10 markers and have used a wide range of
statistical analysis methods ranging from simple single metabolite
approaches11 to methods using multivariate regression
approaches and resampling techniques,15 and validation of the
panels in independent data sets.14 Here, we have used a well-
characterized AD cohort matched for age and gender and
performed a careful and systematic analysis pipeline to extract
metabolites associated with AD, by performing bootstrapping to
avoid over-fitting and validating our results in an unseen data set.
After the molecules associated with AD were identified, an
additional method of metabolite quantification in all the samples
was performed, which was possible due to internal standards and
a run separating lipids, which acquired data for 2 h for each
sample.
Our study also suffers from potential limitations. Although ours

is one of the largest AD metabolomics studies to date, the sample
size is still modest and replication is required in larger cohorts. In
addition, this study suffers from limitations inherent to AD case–
control studies, such as the possibility that some of the healthy
elderly controls may already carry pathology, and that some of the
clinically diagnosed AD may be pathologically non-AD dementias.
Through follow-up data on the individuals used in this study,
however, we know that all AD patients used for our analysis
maintained the diagnosis of AD as did all controls for at least 3
years from their baseline visit. We also believe that achieving such
high performance in both training and test data sets for an AD
case–control data set highlights the efficacy of the classifier, as AD
diagnostic classifiers rarely achieve such high performance; we,
therefore, believe that having additional pathology information
would only increase its performance. Furthermore, we need to
acknowledge that individuals with MCI are more heterogeneous in
pathology; however, the MCI subjects used in this study were
recruited primarily from local memory clinics and were, therefore,
expected to be composed largely of subjects with likely an AD
end point.
Finally, due to the large number of comorbidities in old age, we

have to acknowledge that our metabolite signal may not be AD
specific but it could it be associated with overall ill health and
other comorbid conditions, making it potentially a not good
biomarker for recruitment in clinical trials. Investigating and
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comparing the metabolic profiles of other disorders would
increase the specificity of our panel.

CONCLUSIONS
In this study, we used a Random Forest approach and identified a
combination of 10 metabolites, which predicted AD with near 80%
accuracy. We subsequently identified six of the metabolites to be
ChEs, molecules not previously implicated in AD, which are
connected to PCs through a one-step enzymatic reaction. The
newly identified molecules were reduced in AD patients
compared with controls. All these, combined with the lack of
association between cholesterol and AD, suggest that it is the
dysregulation of specific steps in cholesterol metabolism, rather
than cholesterol itself, that is responsible for these observations
and suggest novel targets for future work. These findings need to
be replicated in larger well-phenotyped cohorts, which will be
possible in the near future through the large biomarker consortia
being set up. In addition, information on pathology status, such as
amyloid marker cerebrospinal fluid, PET or brain atrophy
measurements, through magnetic resonance imaging (MRI),
would provide more precise phenotypes for biomarker discovery
and would capture different stages of disease pathology, and, the
comparison of metabolite levels between MCI patients who
converted to AD and those who remained stable would provide us
with metabolites, which are associated with disease initiation.
Finally, integrating additional types of biological modalities, such
as protein, gene expression and genotype information, will help
investigate the origin of ChE dysregulation in AD.
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