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Abstract
Background: Computational comparison of two protein structures is the starting point of many methods that build 
on existing knowledge, such as structure modeling (including modeling of protein complexes and conformational 
changes), molecular replacement, or annotation by structural similarity. In a commonly used strategy, significant effort 
is invested in matching two sets of atoms. In a complementary approach, a global descriptor is assigned to the overall 
structure, thus losing track of the substructures within.

Results: Using a small set of geometric features, we define a reduced representation of protein structure, together with 
an optimizing function for matching two representations, to provide a pre-filtering stage in a database search. We 
show that, in a straightforward implementation, the representation performs well in terms of resolution in the space of 
protein structures, and its ability to make new predictions.

Conclusions: Perhaps unexpectedly, a substantial discriminating power already exists at the level of main features of 
protein structure, such as directions of secondary structural elements, possibly constrained by their sequential order. 
This can be used toward efficient comparison of protein (sub)structures, allowing for various degrees of conformational 
flexibility within the compared pair, which in turn can be used for modeling by homology of protein structure and 
dynamics.

Background
The comparison of two protein structures is most effi-
ciently handled as a hierarchical problem, more or less
closely following the protocol laid out over a decade ago
by Singh and Brutlag [1].

Its first step, fold recognition on the level of secondary
structural element (SSE) correspondence, has been tack-
led repeatedly in the literature [2-14], building on the
founding body of work related to aligning protein struc-
tures at the atomic-resolution level [15-19]. Most of the
latter adopted an iterative resolution approach by starting
from variously defined fragments of protein structure
[20-23]. However, prominent methods capable of doing
fast and conformationally tolerant search [4], such as
SSM [12] and Fatcat [22] still take several tens of minutes
of CPU time to perform a database search, doing a thor-

ough but perhaps unnecessary job in order to eliminate
bad candidates for a match. The development of comple-
mentary, ultra-fast methods for rigid structural compari-
son of proteins seems to have migrated to the realm of
computer science, and typically relies on index or hash
based database retrieval [24-29]. The algorithm from this
family possibly the closest in spirit, if not in the scope, to
the one we will propose below is TableauSearch[30].
With its high level of abstraction of protein structure, it
indeed proves capable of searching databases approach-
ing 105 entries as a matter of minutes. The method
records and then discretizes the relative angle between
any two pairs of SSEs in a structure, and stores it as a tab-
leau [31] to be used in the database search. The entries,
however, in TableauSearch database are rigid
domains, and the algorithm thus dispenses with confor-
mationally flexible searches right at the outset. Looking
for a substructural match in this approach is not a com-
pletely straightforward affair either [30].
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From mathematical biology side, several global descrip-
tors of protein structure have been proposed [24] (for sta-
tistical takes on the problem see [32,33]) with an eye on
organizing our knowledge of protein (or fold) universe
[34]. An example is provided by SGM [24,35], a method
that relies on a set of measures from differential geometry
to describe overall structure of a protein domain, and
which we will use below as a representative of its class of
methods.

Even though the idea of a pre-filter based on gross fea-
tures of the protein structure is implicit in several meth-
ods that have undergone a steady development [2,12], it
has seldom been discussed and documented as a compu-
tational problem on its own. We propose, therefore, to
take a look specifically at the question of the smallest pos-
sible set of features needed to describe protein structure,
and propose its intuitively motivated reduced representa-
tion, equipped with a scoring function capable of detect-
ing both rigid matches at domain level, and
conformational changes involving relative motion of
structural domains.

Methods
In the current literature there exists a broad selection of
methods for pairwise structural comparison of proteins
[36-38]. Typically centered on backbone atom matching
[18,21,39,40], they take several seconds or even several
minutes to compare two structures and decide that the
match is not possible. Why is it, then, that a human
observer can establish, after a single glance that two pro-
tein structures in cartoon representation are (dis)similar?
Certainly we are not mentally matching the backbone
atoms, nor the angles through which the secondary struc-
tural elements (SSEs) are joined. Rather, the human
observer will try to orient the two structures so that the
SSEs point roughly in the same direction, and then per-
haps check if the two diagrams are showing the same
sequential ordering of the SSEs.

In search for an algorithm which will emulate this effi-
cient process, we propose reducing the protein structure
to the bare bones of structural information: SSE direction
and type (Fig. 1) and sequential order. Furthermore, we
define a function to score the match between two pro-
teins in this representation; the best match between the
two structures can then be found by looking for the rota-
tion in the representation space which optimizes this
function. The resulting algorithm enables searching
through a database of protein structures in a way which is
fast, independent of the size of SSEs and enables detec-
tion of structures which are related, but correspond to
two different conformations.

Structure representation and match scoring function
To reduce the size of the representation of the protein
structure, we replace SSEs by direction vectors in space,

while keeping the information about the SSE type (α-
helix or β-strand), as indicated by the two different colors
in the illustration in Fig. 1A. Furthermore, we drop the
information about the elements' relative placement in
space, resulting in the representation shown schemati-
cally in Fig. 1B. This representation can then be written as
an ordered set of three-dimensional unit vectors,

for a protein structure of Nx SSEs. The order of the ele-
ments is determined by the order in which SSEs appear
on the peptide sequence. Each vector represents one of
the two types of structural elements that appear in pro-
tein structures: α-helix or β-strand. The information
about the type is stored as a corresponding set of indica-
tors

When this object is rotated, the rotation applies to each

vector  equally: that is, the relative angles between the

vectors stay the same. In this representation, the close-

ness of vector  from the representation of one protein
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Figure 1 Reducing the protein representation. (A) Replacing the 
secondary structure elements (SSEs) by vectors retaining the informa-
tion about the SSEs direction type (α-helix or β-sheet; indicated by red 
and blue colors). (B) Dispensing with the information about the SSE 
length and layout in space, leaves the representation consisting of unit 
vectors of two types, or, equivalently, points of two possible types on 
a unit sphere. The additional information missing from the illustration 
is the vectors' sequential order, carried over from the ordering of the 
SSEs on the protein sequence. All illustrations in this work were pro-
duced using PyMOL [DeLano, W.L. (2002) http://pymol.org] and POV-
Ray [Persistence of vision raytracer (version 3.6, 2004) http://pov-
ray.org].

http://pymol.org
http://povray.org
http://povray.org
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structure, X, and vector , from the representation of

the other structure, Y,

can be measured using the following matrix element,
which falls off steeply as the angle between the two vec-
tors increases:

Here, δ is an adjustable parameter, and R is the rotation
operator. The overall quality of the match is given by

The negative sign here is arbitrary, indicating that F(R;
X, Y) will be optimized through minimization with
respect to rotation R. Choosing a small δ enables per-
forming the double sum, while effectively summing only
over the nearest matching pairs. In an ideal case of two
exactly matching substructures, and δ tending to zero, the
minimal value of F would be equal to the negative num-
ber of SSEs in the smaller structure. The distribution of
values of F(R) in the rotation space will depend on the
instance of the two sets, X and Y, under consideration.
Depending on the orientation of vectors in X and Y, there
may be a clear and isolated minimum in F(R), or there
may be a region in R space densely populated with local
minima of approximately equal depth. In particular, when
comparing two structures with many nearly-parallel ele-
ments, covering a small solid angle in our reduced repre-
sentation, a whole range of rotations R may conceivably
result in false 'matches.' As an estimate of how easy it is to
achieve a certain value of F, by a chance choice of rotation
R, we evaluate the z-score:

that is, the distance of the value F from the average over
all rotations R, measured in units of standard deviation
(the denominator in Eq. 4). The rotations resulting in
near-zero (or even positive) zF can then be dismissed as
insignificant given the geometry of the problem. The esti-
mate of the z-score requires evaluation of the first two
moments of F(R; X, Y) over the set of all possible rotations
R, which can be done explicitly in the case of the average,
and numerically in the case of the average square [Addi-
tional File 1].

To make possible a search through a database of realis-

tic protein structures, we need a relaxed expectation of

what is the best attainable match in the direction of SSEs

[41], and therefore we need a finite sized d. This would

lead to a number of false matches, were it not for the last

requirement that we impose, which is that the sequential

ordering of SSEs from the query is preserved in the set of

their closest matching counterparts in the target. That is,

we want the outcome of the algorithm to be a map MR : i

?M(i), where i is the index over  belonging to X, M(i) is

the index over  belonging to Y, and for any two pairs

(i1, M(i1)), (i2, M(i2)) it is true that

where � indicates the precedence on the primary
sequence of the protein.

To find a map which preserves the order, we reinterpret
X and Y as two alignable sequences of elements ("letters")
labeled i and j. The letters here are SSEs, and their the
similarity is given by Dij(Ropt). D(Ropt), Eq. 2, evaluated at
Ropt that optimizes F(R; X, Y) thus becomes a similarity
matrix, playing the role that BLOSUM matrices, for
example, play in the more familiar context of the align-
ment of two primary protein sequences. With the similar-
ity matrix at hand, we can use a pairwise sequence
alignment algorithm [42], such as Needleman-Wunsch or
Smith-Waterman. The alignment procedure optimizes
the sum of Dij(R) elements over the pairs (i, M(i))
matched in the pairwise matching algorithm

Depending on the algorithm and parametrization, the
alignment procedure may assign various gap penalties for
the SSEs that do not map onto the other structure. T (D)
ignores such SSEs. By retaining only the matched pairs
which optimize T (D), we obtain a good orientation
match between the pairs of SSEs, that at the same time
complies with the sequential ordering in both structures.

A conformationally flexible match in this picture con-
sists of two local minima in F(R; X, Y) for two different
R's, thus incorporating a model in which structural
domains maintain their internal structural organization
during conformational changes in a protein. In practice, it
has to be verified that the two minima in R are different in
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a way that is statistically significant; the details may
depend on the implementation.

Eq. 6 is the place to extend the formalism, if so desired,
to include other quantities that can be ascribed to a pair
of SSE, such as the length (mis)match between the two. In
the numerical experiments we performed [Additional File
1], enforcing the length mismatch penalty of the form

(with ΔLiM(i) the absolute value of the length difference,
and tolΔL an adjustable parameter) may improve the per-
formance. The size of the improvement depends on the
value used for δ and on the nature of the test the method
is subjected to (i.e. do we count as a hit the cases of over-
all structural similarity allowing wide range of length mis-
match in SSE, or not; how many levels of CATH
classification we are trying to reproduce, etc.) [Additional
File 1].

Implementation
To determine whether the reduced representation of the
protein structure contains enough information for a reli-
able database search, we have implemented the above
ideas in a preliminary way. In this implementation we
choose to optimize F(R; X, Y) starting from a set of initial
guesses. This set consists of rotations constructed by
choosing all possible combinations of two vectors from X,
and two vectors of the corresponding type and same
sequential order in Y ; the initial rotation, then, is the one
which puts the first two vectors from each pair in the
same direction, and overlaps the planes spanned by each
pair (see also Additional File 1). This is followed by the
steepest descent search for a minimum in the space of
quaternions representing R [43]. This loop is the central
time consumer of the search. The number of pairs that
need to be checked out is

where si is the SSE type indicator, as in the previous sec-

tion, and  here is the Kronecker δ, not to be con-

fused with the Gaussian width parameter used in the rest

of the paper. This leads to the worse case scenario (when

all SSEs in both structure are of the same type) of com-

plexity of , where Nx and Ny are the number of

the SSEs in the two structures. This number may be sub-

stantially smaller (down to 0) in the case of mixed α/β

structures. It can also be alleviated by grouping the direc-

tions nearly parallel in space, in which case the complex-

ity becomes  where nx and ny are the numbers of

distinct SSE directions in structures X and Y. (This com-

pactification is later "unfolded" to do the pairwise align-

ment of SSEs.) In practice, the second and the fourth sum

can be truncated at j = i + m and k = l + m, respectively,

where m is a small number (2 or 3), without significant

loss in performance. This makes the complexity O(NxNy),

or O(nxny) in the case of grouped directions.
In a pairwise comparison of two structures, the minima

occurring at different R's are stored if the z score is
deemed statistically significant; later they are sorted in
the order of the ascending z-score, and the best one is
reported. A certain top number of suboptimal minima
from this sorted list is checked for the complementarity
of the match, and the complementary pair assigning the
highest total score is reported as a flexible match. This
part can be generalized to n, rather than only two com-
plementary matches.

When doing a database scan, pairwise matches
between the query and different target structures are
scored and sorted using T(D) for a rigid search, Eq. 6,
while the hits for a flexible search are sorted according to
a heuristic score given by

where z1 and z2 are the z-scores, Eq. 4, for F(R; X, Y)

evaluated at two rotations, R1 and R2 which match two

different structural domains, and T (Dmax), given in Eq. 6,

is the quantity optimized in the pairwise alignment. The

two maps corresponding to the two rotations result in

two different matrices Dij(R1) and Dij(R2); T is evaluated

based on the larger of the two values of matrix elements

 = max [Dij(R1), Dij(R2)].

Results
It is quite a strong claim that the three features we have
selected (direction, type and sequential ordering of SSEs)
provide enough information to distinguish two protein
structures (and, conversely, to detect them as similar).
While proving it may not be feasible, we may demon-
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strate that, statistically, it works quite reliably. Below we
investigate the distinguishing and classifying power of the
representation, and point out its two possible applica-
tions: annotation of novel structures and modeling of
protein dynamics by homology. Parametrization, data
sets, and related statistics can be found in Additional File
1.

Self-scoring in a large database of structures
As a necessary condition for the representation to be of
practical value, it has to be unique, enabling the function
F to find the query itself in a database of structures. To
test this property, we ran an all against all search on 1000
structures from PDB25 [44] with more than three SSEs,
using δ = 0.1 and δ = 0.3. For both choices of δ, the total
aligned score, Eq. 6, is invariably highest for the self
match. It is instructive to notice, though, that for the
smaller value of δ, the geometric criterion, quantified by
zF, Eq. 4, is in itself sufficient to distinguish uniquely the
protein structure (full line in Fig. 2). However, as we allow
for more fuzziness in the geometric match, by setting δ =
0.3, this criterion becomes insufficient (dashed line in Fig.
2), and we have to resort to the preservation of sequential
ordering to describe the structure uniquely. This has
direct implication on the following experiment, in which

detecting structures which belong to the same fold but
are not identical forces us to relax the demands on the
exactness of the geometric match.

Classification of structural domains
General performance characterization
To be of use, a method of the type we are presenting is
expected to be able not only to find and rank highly all
structures which are identical to the query, but also the
structures which are, in some sense, similar to it. Using
the test (and the test set, reduced by the number of struc-
tures with less than four SSEs) proposed by Kolodny et al.
[38] we performed an all-against-all comparison of over
2000 structures from CATH v.2.4 [45], and measured the
ability of the method to rank highly the pairs with the
same class, architecture, and topology. The outcome is
shown in Fig. 3, in the form of receiver operating charac-
teristic (ROC) curve. The best methods climb steeply in
the fraction of true positives for small values of false posi-
tives. To place the performance of our approach in the
context of the existing methods, we show the results for
several high-resolution methods (data in gray originally
collected and discussed by Kolodny et al., [38]; green:
data additionally collected in this work [8,9,13,14]), and
one low resolution (SGM, [24]; green) method on the
same graph. In all computational experiments in this
paper the methods were considered in their pairwise
mode - additional capabilities of the accompanying serv-
ers (such as hierarchical clustering in the target database,
hash-based target retrieval etc) were not the subject of
investigation. The method suggested here lies within the
bounds of performance characteristics of methods with
finer granularity (that is, methods that perform the actual
alignment between two structures), indicating that direc-
tion, type, and order of SSEs represent a sizeable portion
of the signal that the detailed methods are picking.

Consistent with the qualitative description underlying
the CATH classification, in this experiment we obtained
better sensitivity/specificity tradeoff by relaxing the crite-
rion for the directional match by setting δ = 0.5. Together
with the results for the exact match problem above, this
suggests a possibility of simulated annealing approach
with stepwise decreasing δ, to obtain a distribution of hits
with varying strictness in structural similarity to the
query. (For a remote structural similarity, no significant
value of F may be obtainable for very small δ. Conversely,
large F for small δ indicates a very small variation in
direction of SSEs, typically related to strong overall simi-
larity.)

The time taken for this computational experiment, of
approximately 170 CPU minutes for δ = 0.5 (and 90 min-
utes for δ = 0.3) on a 3 GHZ processor, compares favor-
ably with some 40 to 1000 CPU hours needed for the high
resolution methods to complete the same task (see Fig. 3

Figure 2 Using the geometric criterion (Eq. 4) exclusively to de-
tect the query in PDB25. The histogram shows the cumulative per-
centage of cases for which the self-match score is found within the top 
percentage shown on the x-axis. Full line: using δ = 0.1, and dashed 
line: using δ = 0.3. For both choices of δ self match is always the highest 
on the list if the sequential ordering (Eq. 6) is used as an additional re-
quirement (i.e. the graph looks the same as δ = 0.1 case shown in red 
here). Thus in a general comparison strategy one cannot rely on 
matching directions alone - additional constraints are needed to re-
duce the number of false positives.
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and experiments in [14,19,46]). It should be kept in mind,
of course, that the approach we have laid out functions
only as a pre-filter and classifier, and does not produce
the actual structural alignment on the atomic level.
Rather, we argue, a small subset of the structural features
is responsible for the classification we are trying to repro-
duce, and this can be used to economize with computa-
tional resources.

Comparison with pre-filters used in other methods
Among the existing tools for structure comparison, the
most proficient ones do include some way of pre-filtering
(e.g. the difference in sum of rows and columns in the
contact matrix used by DALI, [40]), discussed to a larger
or smaller extent. Since most of such methods have been
designed to pass the test like the domain classification
discussed here, this is a reasonable place to point out the
novel aspects of our reasoning, and their performance
implications. Hence we conclude this section with a brief
comparison with VAST and SSM, both well established
methods with their own servers [2,12,47], and both using
SSEs as the basic elements of protein structure.
SSM
In the course of development of SSM, the authors have
devoted a whole publication [48] to the discussion of its
preliminary step. In its pre-filtering stage, SSM con-
structs a graph for each structure. The vertices of the
graph carry the information about each SSE (length,
type), while the edges are associated with the attribute of
each pair of vertices/SSEs they are connecting (distance,
angles). The algorithm then looks for a common sub-
graph using a set of heuristic rules, divided into 5 levels,
to decide on the "sameness" between vertices and edges
from the two graphs. The necessity to introduce the cut-
offs (in order to deduce the existence of common sub-
graph elements) enforces discretization of the scoring
function, in contrast to the approach proposed in this
work. An attempt to run the CATH experiment using the
five discrete levels of similarity in SSM is shown in Fig. 3,
dotted line in the inset.

Despite the comparatively small area under the ROC
curve obtained this way, the information manipulated by
SSM is actually quite seizable. In an attempt to extract
more resolution from the SSM pre-filtering, we took the
outcome from all five levels simultaneously, and treated
the optimization of the ROC area as a machine learning
problem [Additional File 1]. The outcome is shown in Fig.
3, inset, blue line. It approaches the ROC achieved by the
method we are proposing, but at the cost of introducing
fifty parameters difficult to grasp intuitively.
VAST
VAST also relies on a graph matching tactics in its pre-fil-
tering stage, but in a substantially different way ([2,47];
also see [49]). In contrast to SSM, where one graph repre-
sents each structure, in VAST graph is constructed for a
map between two structures, as follows.

In VAST, SSE elements are represented by direction
vectors that, aside from the information about the type,
explicitly retain the information about the SSE length (i.e.
while our representation consists of unit vectors, VAST
uses vectors of the length proportional to the length of
the SSE). A discrete set of rotations acting on one of the

Figure 3 Detecting structures from the same class, architecture 
and topology according to CATH classification. To obtain an idea 
about the scope and resolution of the prefiltering we are proposing 
(red), the results are shown on the same graph with representative full 
resolutions methods. It should be understood here that the prefiltering 
step we are proposing is some 40 to 1000 times faster than the full res-
olution methods. (The purpose of full resolution methods, of course, is 
achieving the high quality of the alignment, rather than the speed da-
tabase scanning. The quality of pairwise alignment is not tested in this 
type of experiment.) The results are presented in terms of a ROC curve: 
for a sliding threshold in the quality score, the number of true positives 
(TP) above the threshold (y-axis) is shown as function of the fraction of 
false positives (FP) falling above the threshold (x-axis). Red line: the 
ROC curve using the total aligned score (Eq. 6) to rank the quality of the 
match, with δ = 0.5 (full red line) and with δ = 0.3 (dashed red line) and 
gap opening penalty of -1 in the alignment step. Gray: various high res-
olution methods (CE, [21]; STRUCTAL, [16]; LSQMAN, [58]; DALI, [17]; 
SSM, [12]; SSAP, [15]) scored using using SAS score [16]. For the original 
context, timings, and discussion see Kolodny et al. [38]. Green line: 
"generation 2000" high resolution methods, in the order of decreasing 
area under the ROC curve (and, roughly, the time taken for the task): 
3Dhit [9](80 CPU hrs), TMalign [13](80 CPU hrs), SABERTOOTH [14](60 
CPU hrs), MAMMOTH [8](40 CPU hrs). Green, dash-dotted: SGM [24] 
(several CPU minutes). Inset: comparison of the method discussed in 
the text with the pre-filters used in VAST and SSM, on a smaller data set, 
acceptable to all three methods [Additional File 1]. Red line (full): the 
ROC curve using the total aligned score (Eq. 6); blue line (full) pre-filter 
used in VAST; orange line (full): SSM pre-filter optimized for perfor-
mance on this type of a test; orange line (dashed): native SSM pre-filter.
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structures/representations is attempted, each rotation
satisfying the following: (i) the rotation maps one of the
vectors from the rotated structure exactly onto one of the
vectors from the fixed structure (defined to be the z
direction), and (ii) it brings another vector from the
rotated structure into the plane defined by z and some
vector from the fixed structure. This contrasts with the
continuous space of rotations our algorithm is exploring.
In both (i) and (ii) the vectors mapped between the two
structures have to be of the same type.

For each of the rotations from this set, a structure
termed "digraph" is constructed: the vertices correspond
to pairs of vectors, one from each structure, that fall
within certain cutoffs regarding the angle between the
two and the allowed distance between their endpoints.
Digraph's edges exist if the two pairings involved respect
the sequential ordering on the input structures, and if
they carry the weight inversely proportional to the differ-
ence in the angles between two vectors corresponding to
the same structure. The cutoffs and the weight are
parametrized and the parameters optimized for a typical
search. In our comparison runs we used the default set of
parameters. The digraph can be traversed quickly to find
the best alignment for a given rotation, and consequently
the best scoring alignment over all rotations chosen.

This algorithm is similar to certain extent to the one
proposed in this work, in the limit of small Gaussian
width δ (which does not allow for much exploration of
rotational space away from the initial guess), and with the
length penalty (Eq. 7) included. The digraph traversal is
an alternative to the dynamic programming approach we
are taking.

The crucial difference here, however, is that VAST
operates on the level of pairs of SSEs, somewhat analo-
gous to the possibility of using F2 as a scoring function in
our approach. The requirements this imposes are stricter,
explaining the somewhat higher sensitivity of VAST in
the low false positive region (Fig. 3; it might be worth re-
iterating here that in considering Fig. 3 one should keep
in mind that the method in question is not VAST proper,
but, rather, its pre-filtering stage only.) The rotations, fur-
thermore, that are tested are not optimized to match the
rest of the structure (only the pair of pairs defining the
rotation) and thus are not readily applicable to further
refinement of the matching transformation, an extension
that our approach is in principle amenable to. Also,
insisting on the length match (something that we do not
do necessarily), in order to get rid of false positive
matches, is a strategy which might backfire in the
attempts to extend the search to a more distant structural
similarity.

As is, however, this method of pre-filtering is very fast
(the initial guess for a rotation is not further optimized, a
major time consuming step in our approach), and slightly

better in the small FP region than our best take on the
CATH test, (Fig. 3; inset; full blue line). Nevertheless, our
ROC does show signs of greater robustness and higher
resolution capability, as indicated by the larger area under
the curve.

Detecting a substructure in a set of larger structures
What is the resolution with which this approach can
detect a smaller query structure within a larger target
structure? To obtain an estimate we took the test set from
the previous experiment (see "Classification of structural
domains" subsection) and required for each domain to be
matched to the target domain with the same CAT num-
ber from CATH classification, but this time with the tar-
get domain embedded in the original full-protein
structure. The results are shown in Fig. 4. Again, we try to
place the performance of this rough comparison method
in the context of what is achievable by methods perform-
ing the full structural alignment. In this we choose to
stick with the methods that are fast enough to perform
the test in a reasonably short time. For their performance
in comparison with slower full-alignment methods see
Fig. 3.

To indicate an impossibility first, methods which assign
a set of global descriptors to the structure (such as SGM,

Figure 4 ROC for finding a domain in the full protein structure. 
Full red line: the method discussed in the text, with δ = 0.5 (15 CPU 
min). Dotted orange line: SSM [12](several tens of CPU), dash-dot, 
green: SGM ([24], Full green line: "generation 2000" high resolution 
methods, in the same order of appearance as in Fig. 3 (by descending 
size of the area under the ROC curve): 3dhit [9](6 CPU hrs), TMalign 
[13](8 CPU hrs), SABERTOOTH [14](5.5 CPU hrs), MAMMOTH [8](3.5 CPU 
hrs). These methods, as well as SSM, do the high resolution alignment, 
which both makes them more reliable in the high specificity (small FP) 
region of the graph, and slows them down.
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dash-dotted line in Fig. 4) cannot tackle this problem.
SGM is used as an example here: this is equally true for all
methods relying on assigning a hash function to a pre-
defined structural domain.

In the following, we choose not to reinterpret the meth-
ods used, and refer the reader to the original publications.
Instead, we would like to highlight the specific algorith-
mic choices, which, we believe, give these methods
advantage over other approaches, in particular the one
proposed in this work. Notably here, MAMMOTH [8]
and SABERTOOTH [14] were never designed with large
database scanning primarily in mind (even though they
perform well in that respect), but rather with the goal of
comparing a model structure to a template (MAM-
MOTH) or obtaining a precise structural alignment
between two structures (SABERTOOTH).

The basic unit of structure being compared in MAM-
MOTH [8] is a heptapeptide. Compared to our current
implementation, which enforces an SSE as an elementary
unit, irrespective of its length (see "Discussion"), the hep-
tapeptide approach enables better resolution in the high
specificity region.

Sabertooth [14] uses the idea that the correct alignment
may be, among other things, recognized by the similar
environment ("connectivity pattern") seen by the aligned
structural motifs. This approach also results in strong
performance in the small FP regime, and something that
our approach hardly generalizes to.

TMalign [13] uses SSE alignment, before trying SSE
mapping which would be a nonsense from the sequence
point of view. This is an opportunity our implementation
misses (see the the first paragraph in "Implementation"
section). Otherwise, TMalign manipulates very similar
input information to the approach proposed here, and is
therefore encouraging to see it trace out a practically
identical ROC curve, both in this test (Fig. 4), and in the
test shown in Fig. 3.

3Dhit [9] shows the most robust ROC curve in this test.
It dissects the peptide into 13-residue fragments, which
first conveys the same advantage over our approach as
discussed for MAMMOTH above. The algorithm then
chops up the fragment into clusters. In mapping clusters
the identity of amino acid (types, presumably) is enforced
[50], an algorithmic move that speeds up the search sub-
stantially, but we would like to stay away from as long as
possible in development of our algorithm. Further on,
however, the fact is exploited that for similar structures a
transformation that matches two subsets will match
larger regions of protein structure, the fact that our
approach also builds on, and that can be used to increase
resolution of the match toward a full backbone match.

SSM [12], a veteran high resolution method, does the
best in the small FP region, but at the cost of CPU time
two orders of magnitude longer than required to do the

rough comparison we are proposing here. The high reso-
lution is achieved by imposing a series of geometric
requirements on matched pairs of SSE from the two
structures (see the sections "Comparison with pre-filters
used in other methods," and "Discussion," as well as the
original publication, of course).

The overall message seems to be that judging by the
speed of our prefiltering and quite competitive sensitiv-
ity/specificity tradeoff it achieves it provides a good base
for protein comparison engine.

Finding conformationally related structures
Next, we need to establish that the representation allows
detection of conformationally related structures. As an
easier sub-problem, we first consider the task of finding
the same protein in two different conformations, thus
taking the noise brought in by the evolutionary diver-
gence out of the equation. This is analogous to the first
test ("Self-scoring in a large database of structures") in
that the primary sequences of the query and the target
are the same, but this time their structures correspond to
two different conformations. The test set consists of 677
structures selected from the database created by the users
of Dyndom [51,52] server. A similar set of of pairs of con-
formations of the same chain could have, of course, been
created from other sources, for example MolMovDB [53].
The results are shown in Fig. 5, together with the perfor-
mance on the same test for one slow, high resolution
(SSM, [12]) and one fast, low resolution method (SGM,
[24]). The reduced representation shows reasonably high
resolution, even though for this particular problem there
are better suited approaches. SSM and SGM, for instance,
both perform exceptionally well. In particular, the total
time requirement for SGM is several minutes to produce
the results shown. (SSM, being a high resolution method,
takes several CPU days.) The harder problem in the same
category is finding conformationally related pairs of pro-
tein structures, distantly related (or unrelated) in the pri-
mary sequence. This problem is compounded by the

Figure 5 Ranking of the conformationally related partner, with 
the same primary sequence, for 361 queries in "Dyndom" experi-
ment. Dotted orange line: SSM [12], dash-dot, green: SGM [24], full, red: 
the method discussed in the text, with δ = 0.3 and length mismatch 
penalty.
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problem of finding the test set itself (finding such pairs
actually being one of the original motivations for the
algorithm development). To illustrate an application for a
computational tool which can successfully handle such
cases, we briefly comment on an example marked as a
flexible match in an all-against-all experiment on PDB25.
Fig. 6 shows a structural match between enolase and sig-
nal recognition 54 kDa protein. Signal recognition pro-
tein bears in its C-terminal apparently so far undescribed
similarity to Pfam [54] N-terminal enolase domain. The
smaller domain in this protein also bears some similarity
to the C-terminal enolase domain, at least in its α-helical
part. The four domains, however, have been classified in
CATH as 3.30.390.10 and 3.20.20.120 (enolase N- and C-
terminal domains respectively) and 1.20.120.140 and
3.40.50.300 (signal recognition particle, N- and C-termi-
nal domains). Taking into account no more than 8% in
sequence identity in the aligned regions in both domains,
it means that this example would be difficult to construct
either by a search though homologous sequence space or
by inspection of CATH database. The aligned core
domain in C-terminal domains, however, shows striking
structural similarity (see the related movie in Additional
Documentation [Additional File 2]).

The larger and the smaller domain appear rearranged
with respect to each other in the two structures, as can be
seen by using a linear coordinate transformation that
overlaps the larger domain (Fig. 6). One structure, this
suggests, could then be used as a scaffolding to model
conformational change of the other. Could this confor-
mational change appear as part of physiological function-
ing of either of the two proteins? Is it at all physically

possible to get from one conformation to another at room
temperature? Finding examples with structural similarity
in two structural domains, rearranged in space, may indi-
cate a possibility of conformational change in one or both
proteins. The reasonableness of such conjecture is, of
course, subject to further testing through targeted molec-
ular dynamics, or some related approach. The type of
structural comparison we are advocating, however,
should produce more examples for this type of study.

Discussion
We have suggested in the Methods section that after dis-
pensing with translation and the length of the SSEs, the
structure is effectively represented by a set of points on a
unit sphere. With these points we associated information
about underlying SSE type and sequential order. By set-
tling on the minimal representation of the protein struc-
ture, we set out to analyze its sufficiency for structure
description and retrieval.

As noted in subsection "Self-scoring in a large database
of structures", Fig. 2 and the related discussion, the direc-
tions themselves, except when taken very narrowly (δ =
0.1 in our formulation), may be matched by quite diverse
protein structures. To get rid of false positive matches
that arise that way, we have suggested imposing the
requirement that the matched SSEs follow the same
sequential order in the two structures. This, however is
not the only possible way around the problem: as dis-
cussed in Mizuguchi and Go [5], and later elaborated by
Krissinel and Henrick [12] in development of SSM (dis-
cussed above), the directions of SSEs can be supple-
mented by various other pieces of information: the length
of SSEs, the distance and torsion angle between all possi-
ble pairs of SSEs in a structure and/or the angles between
their directions and the direction of the line passing
through their geometric centers. The advantage of using
this type of information, rather than requiring the com-
mon sequential order of the SSEs, then is in the ability to
look for pairs of proteins with different connectivity
between SSEs, that still result in the overall comparable
structures. On the flip-side, the set of requirements might
end up being too restrictive in the search of similar (but
non-identical) structures, as we have illustrated in the
inset of Fig. 4.

Contrary to the model of similarity adopted here,
where similar structures are assumed to share to certain
extent the underlying SSE arrangement, it is conceivable
that two proteins might share a common function as long
as they offer a common geometry of the surface to their
common (or similar) interacting partners [55]. In that
case one might be interested in a method for detection
and retrieval of proteins sharing the same shape, irre-
spective of the underlying secondary structure. It is a pos-
sibility not explored here. Methods for retrieval by global

Figure 6 A conformational transformation candidate, as mod-
eled by structural matching. Enolase (PDB [59] identifier 1pdy; white) 
and signal recognition 54 kda protein (1j8yF; N-terminal red, C-termi-
nal blue). Hypothetical use of enolase as the scaffolding to model con-
formational change in the signal recognition particle. (A) Applying the 
linear coordinate transformation which overlaps the larger (C-terminal) 
domain of the two proteins to both domains in the signal recognition 
particle. (B) Transforming both the larger and the smaller domain sep-
arately to obtain the maximal overlap with enolase structure. (C) The 
model for conformational change in the signal recognition particle, 
based on (A) and (B). Note that the structural match in itself does not 
in itself imply functional relatedness nor common evolutionary de-
scent.
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shape similarity have been discussed in literature (see
[29] and references therein) and extremely short retrieval
times (~10-4s on a 3 GHz CPU) reported [29]). Some
questions remain outside the scope of these methods,
such as detection of a common substructure or structural
motif.

Sticking to a more conservative model of shared pro-
tein structure, the problem which ultimately needs to be
resolved is the correspondence: which SSEs (and later, on
a finer detail level, which backbone atoms) on two struc-
tures correspond to one another. Function F(R; X, Y)
enables us to initially sidestep this problem, in principle
at least, because the fast fall-off of the closeness measure
Dij(R) (Eq. 2) makes possible the double sum over all ele-
ments without the danger of obtaining as the optimal a
solution where no actual match exists, but the sum over
many distant neighbors artificially increases the score. By
starting the protein structure comparison by minimiza-
tion of F(R; X, Y), we are effectively adopting, on the SSE
level, the match-first-align-later approach, popularized
by Gerstein and Levitt [18] (see also [56] for a further
development of the idea).

Ideally, the scoring function F would quantify, in a sin-
gle expression, the geometric match under the constraint
of sequential ordering of the pairs, a problem which we
leave open. On the high-resolution end of the spectrum
of related ideas lies the URMS-RMS hybrid algorithm
[8,23,57]. There, a set of directions in space is also consid-
ered, however not along the SSEs, but along the lines con-
necting neighboring Cα atoms within a heptapeptide.
Being a high-resolution method, it comes with the com-
putational burden comparable to the other backbone-
matching approaches (and, of course, with the final
reward of the actual detailed matching of two backbone
traces). The match scoring function used in that work is
different from the one suggested here, but it runs into a
similar difficulty of estimating the statistical significance
for a match of different structures. A solution offered
there is comparison with an empirically derived back-
ground distribution of match probabilities using existing,
unrelated protein structures.

Instead, we opted for a solution which separates the
geometric match from the alignment. The fuzziest point
in the algorithm we have outlined, therefore, is that the
averages in Eq. 4 should properly be evaluated not over
the set of all rotations R, but only over those rotations
which allow, through the matrix Dij(R), the alignment of
subsequences of the two proteins of substantial length.
Numerical evaluation of these proper averages would
effectively grind the search to a halt, so in our prototype
evaluation we keep the averages over all R as an approxi-
mation. The approximation works well for the rigid
search, where it is used to dispense with bad solutions,

rather than score good ones. In the case of the flexible
search we resort to the total assigned score as a scoring
function, coupled with the requirement that both maps
have a high rotational z-score on their own.

In terms of the implementation, the room for improve-

ment is certainly ample. The relatively large number of

false positives is attributable, at least in part, to parallel

beta sheets and helix bundles, which can be amended by

more careful grouping of the representation vectors.

Also, in the implementation used here, each β strand is

represented by a single vector  - a rather crude approx-

imation for most β strands, which are often bent.
Perhaps stating the obvious, the ultimate degree of suc-

cess of an approach will depend on the choices made in
the implementation, as much so as on the underlying
idea. In this work, the available implementations (steep-
est descent and Needleman-Wunsch) decided the way in
which the three features we selected to describe a protein
were used. Even though a faster, or more robust, imple-
mentation could perhaps be achieved by a different
choice of optimization or alignment algorithm, these are
replaceable components, and the main points of improve-
ment are in the representation itself, in the distance (or
match scoring) function, and in its statistical evaluation.

Conclusions
In an attempt to build a pre-filtering tool for a search
through a database of protein structures, we proposed (i)
reducing the representation of protein structure to an
ordered set of unit vectors carrying the information
about the direction and the type of the secondary struc-
ture element they represent, Eq. 1, (ii) measuring the dis-
tance between two elements of the same type in terms of
a quantity falling off exponentially with the increasing
angle between the two, Eq. 2, (iii) measuring the distance
between the two representations as sum over pairwise
distances between their elements, Eq. 3, and (iv) ordering
the near matches by their total aligned score, Eq. 6.

The representation is easily extendable to other
descriptors of protein geometry by generalization of the
type, currently restricted to α-helix or β-strand, and
interesting statistics may result from allowing the Gauss-
ian width δ to be type dependent.

We have shown that an implementation which mini-
mizes the distance defined in Eq. 3 through a steepest
descent calculation, and subsequently enforces the
sequential order between the matched SSEs using stan-
dard sequence alignment approach, performs well in
terms of the resolution in the structure space. Notable,
also, is the speed that can be achieved in structure com-
parison without tying up the information in the form of a

�
xi
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single index - it is precisely this feature which enables us
to generalize the search to flexible and multidomain
cases, and makes this idea uniquely versatile among
structural comparison algorithms. The main concern
addressed in this work has been whether this minimalist
description of protein structure contains enough infor-
mation to uniquely describe protein (sub)structures, and
structural classes. The conclusion is that the information
is certainly sufficient for a unique self match of each pro-
tein structure studied (Fig. 2), and represents the large
chunk of the signal detected by the high resolution meth-
ods.

(Fig. 3). When extended to detection of distant struc-
tural similarity, the approach starts to suffer from "false
positive" matches (note that the information about the
translational degrees of freedom is absent), but it stays
within the acceptable limits of accuracy set by high reso-
lution methods, and its speed certainly allows for an
improvement by extending the number of elements and
types in the description.

The straightforward motivation for this description of
protein structure makes clear what the pitfalls and direc-
tions of improvement are, but even the existing imple-
mentation indicates that the approach may prove
valuable in making novel predictions, in terms of both
rigid and flexible structural comparison. The server to
accompany this paper, as well as the code used in the
analysis presented in the text is available a http://
epsf.bmad.bii.a-star.edu.sg.

Additional material
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