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stem cells
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Abstract

Introduction: Transplantation of genetically modified human bone marrow-derived mesenchymal stem cells
(hMSCs) with an accurate potential for chondrogenic differentiation may be a powerful means to enhance the
healing of articular cartilage lesions in patients. Here, we evaluated the benefits of delivering SOX9 (a key regulator
of chondrocyte differentiation and cartilage formation) via safe, maintained, replication-defective recombinant
adeno-associated virus (rAAV) vector on the capability of hMSCs to commit to an adequate chondrocyte
phenotype compared with other mesenchymal lineages.

Methods: The rAAV-FLAG-hSOX9 vector was provided to both undifferentiated and lineage-induced MSCs freshly
isolated from patients to determine the effects of the candidate construct on the viability, biosynthetic activities,
and ability of the cells to enter chondrogenic, osteogenic, and adipogenic differentiation programs compared with
control treatments (rAAV-lacZ or absence of vector administration).

Results: Marked, prolonged expression of the transcription factor was noted in undifferentiated and
chondrogenically differentiated cells transduced with rAAV-FLAG-hSOX9, leading to increased synthesis of major
extracellular matrix components compared with control treatments, but without effect on proliferative activities.
Chondrogenic differentiation (SOX9, type II collagen, proteoglycan expression) was successfully achieved in all types
of cells but strongly enhanced when the SOX9 vector was provided. Remarkably, rAAV-FLAG-hSOX9 delivery
reduced the levels of markers of hypertrophy, terminal and osteogenic/adipogenic differentiation in hMSCs (type I
and type X collagen, alkaline phosphatise (ALP), matrix metalloproteinase 13 (MMP13), and osteopontin (OP) with
diminished expression of the osteoblast-related transcription factor runt-related transcription factor 2 (RUNX2);
lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma 2 (PPARG2)), as well as their ability to
undergo proper osteo-/adipogenic differentiation. These effects were accompanied with decreased levels of b-
catenin (a mediator of the Wnt signaling pathway for osteoblast lineage differentiation) and enhanced parathyroid
hormone-related protein (PTHrP) expression (an inhibitor of hypertrophic maturation, calcification, and bone
formation) via SOX9 treatment.
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Conclusions: This study shows the potential benefits of rAAV-mediated SOX9 gene transfer to propagate hMSCs
with an advantageous chondrocyte differentiation potential for future, indirect therapeutic approaches that aim at
restoring articular cartilage defects in the human population.

Introduction
Adult hyaline articular cartilage that allows smooth gliding
and weight-bearing on articulating surfaces is an aneural
and avascular tissue, lacking a lymphatic drainage. As a
consequence, articular cartilage does not have access to
reparative cells brought in other tissues in response to
injury, and articular cartilage defects become persistent
and progress over time after trauma or degeneration. The
chondrocytes are the only cells present in the articular car-
tilage, producing and surrounding themselves with an
intricate network of extracellular matrix composed mostly
of proteoglycans and type II collagen that is largely dete-
riorated in cartilage lesions. Despite several currently avail-
able surgical options, restoration of a native structure and
phenotype in injured articular cartilage is difficult to
achieve, as only a poorly organized repair tissue made of
type I collagen is produced, which does not totally inte-
grate with the surrounding cartilage and does not with-
stand mechanical stress over time.
The principle of transplanting progenitor cells like

mesenchymal stem cells (MSCs) to improve the regen-
erative properties of the articular cartilage is an attractive
approach to enhance the natural healing response of
damaged tissue [1]. MSCs have a strong potential for
self-renewal and differentiation into various cell lineages,
among which are the chondrocytes. They can be easily
isolated and propagated, may recapitulate lineage transi-
tions originally involved in tissue formation, and might
be better suited than differentiated cells, such as chon-
drocytes, that tend to lose their phenotype on expansion.
Although MSCs have been safely applied in patients to
treat articular cartilage defects and osteoarthritis [2,3]
without signs of tumorigenicity or immunologic reac-
tions, their use is still impeded by the low percentage of
cells that undergo functional differentiation programs to
produce adequate reparative tissues. Specifically, for
articular cartilage repair, the important challenge when
implanting MSCs will be to maintain the MSC-derived
cells in a non-hypertrophic state that avoids premature
terminal differentiation, hypertrophy, and ossification
[4,5].
In this regard, gene-transfer methods might provide

powerful tools to overcome such limitations by precisely
and durably improving the intrinsic chondrogenic poten-
tial of MSCs for strategies that aim at enhancing articular
cartilage repair. Different factors have been reported for
their ability to direct MSCs toward the chondrocyte phe-
notype. They include the transforming growth factor beta

(TGF-b) [6-11], bone morphogenic proteins (BMPs)
[9,10,12,13], the insulin-like growth factor I (IGF-I)
[14,15], basic fibroblast growth factor (FGF-2) [16,17],
zinc-finger protein 145 (ZNF145) [18], human telomerase
(hTERT) [19,20], and the antiapoptotic factor Bcl-xL [21].
Yet, the use of these agents remains disputable, as most of
them do not promote the synthesis of specific cartilage
matrix components per se (FGF-2, hTERT, Bcl-xL)
[16,19-21] or an adequate chondrogenic differentiation
(IGF-I) [15], or even lead to undesirable MSC hypertrophy
(TGF-b, BMPs) [7,10,13,15]. In this regard, members of
the sex-determining region Y-type high-mobility group
box (SOX) family of transcription factors might be better
candidates to refine chondrogenesis in MSCs. Especially
SOX9 plays central roles in chondrocyte differentiation
and cartilage formation [22] and has been reported for its
inhibitory or delaying effects on terminal differentiation
and hypertrophy [23-27], although recent evidence
demonstrated that the impact of SOX9 might be different
for postdifferentiation chondrocytes [28,29]. Interestingly,
systems used to deliver SOX sequences to MSCs so far
have been based on the use of nonviral [26,30] and classic
virus-derived constructs, including adenoviral [24,31,32]
and retro-/lentiviral vectors [33]. They display low (non-
viral and retroviral vectors) and transient (nonviral and
adenoviral vectors) gene-transfer efficiencies, tend to
induce host immune responses (adenoviral vectors), or
promote insertional mutagenesis (retroviral vectors). Vec-
tors such as those generated from the nonpathogenic,
replication-defective adenoassociated virus (AAV), instead,
have considerable advantages for gene-transfer protocols
in MSCs. Recombinant AAV (rAAV) has been shown to
transduce these cells at very high efficiencies and over suf-
ficient periods without impairing their differentiation
potential [8,16,34]. They can be safely used because of the
removal of potentially immunogenic viral sequences in the
recombinant genome and may avoid the risk for inser-
tional mutagenesis by being kept in stable episomal forms
in the host, making rAAV an adapted system for experi-
mental settings in vivo [8,35] and for clinical protocols
[36].
In the present study, we examined the efficacy of rAAV

to deliver an SOX9 gene sequence, a key regulator of
chondrogenesis, to primary adult human MSCs isolated
from patients, the ultimate targets for clinical applica-
tions. We also determined the effects of the candidate
treatment on the proliferative, metabolic, and differentia-
tive (chondrogenic versus osteo-/adipogenic) activities of
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these cells as a prelude for future evaluations in vivo to
enhance articular cartilage repair by implanting such
genetically modified progenitor cells in cartilage defects.

Materials and methods
Reagents
Reagents were from Sigma (Munich, Germany) unless
otherwise indicated. Recombinant FGF-2 (rFGF-2) and
TGF-b were purchased at R&D Systems (Wiesbaden-
Nordenstadt, Germany). The dimethylmethylene blue
dye was from Serva (Heidelberg, Germany). The anti-
type I (AF-5610) and anti-type II collagen (AF-5710)
antibodies were from Acris (Hiddenhausen, Germany),
the anti-FLAG (BioM2) and anti-type X collagen (COL-
10) antibodies from Sigma, and the anti-SOX9 (C-20),
anti-CD34 (C-18), anti-CD71 (C-20), and anti-CD105
(T-20) antibodies from Santa Cruz Biotechnology (Hei-
delberg, Germany). Biotinylated secondary antibodies
and ABC reagent were from Vector Laboratories (Alexis
Deutschland GmbH, Grünberg, Germany). The Cell
Proliferation reagent WST-1 was from Roche Applied
Science (Mannheim, Germany). The type II and type I
collagen enzyme-linked immunosorbent assays (ELISAs;
Arthrogen-CIA Capture ELISA kit) were from Chondrex
(Redmond, WA, USA), and the type X collagen ELISA
(COL-10) from Antibodies-online GmbH (Aachen, Ger-
many). The alkaline phosphatase (ALP) activity detec-
tion assay (QuantiChrom ALP Kit) was from BioAssay
Systems (Biotrend Chemikalien GmbH, Cologne,
Germany).

Cell culture
Bone marrow aspirates (~15 ml) were obtained from the
distal femurs of patients undergoing total knee arthro-
plasty (n = 28). The study was approved by the Ethics
Committee of the Saarland Physicians Council. All
patients provided informed consent before inclusion in
the study. All procedures were in accordance with the
Helsinki Declaration. Mesenchymal stem cells (MSCs)
were isolated and expanded in culture by using standard
protocols [16,37,38]. Aspirates were washed in DMEM,
and the cell-containing fractions layered onto Histopa-
que-1077 density gradient and centrifuged at 800 g for
30 minutes at room temperature. The nucleated cell frac-
tion at the interface was collected, washed, and resus-
pended in Mesencult Basal Medium containing MSC
Stimulatory Supplements (StemCell Technologies,
Cologne, Germany) with 100 U/ml penicillin and 100 μl/
ml streptomycin (pen-strep) (basal medium) and rFGF-2
(10 ng/ml). MSCs were plated at 2 × 105 cells/cm2 in
T-75 flasks and maintained at 37°C in a humidified atmo-
sphere with 5% CO2. The medium was exchanged after
48 hours and every 2 to 3 days thereafter. Cells were

detached and replated for further experiments at appro-
priate densities. MSCs were analyzed with flow cytometry
for expression of stem-cell surface markers (CD71+,
CD105+, CD34-). All experiments were performed with
cells at not more than passage two.

Plasmids and rAAV vectors
The constructs were all derived from the same parental
AAV-2 genomic clone, pSSV9 [39,40]. rAAV-lacZ is an
AAV-2-based vector plasmid carrying the lacZ gene
encoding b-galactosidase (b-Gal) under the control of
the cytomegalovirus immediate-early (CMV-IE) promo-
ter [16,35,41-44]. rAAV-FLAG-hSOX9 is the same
AAV-2-based vector plasmid used to prepare rAAV-
lacZ but carrying a FLAG-tagged SOX9 sequence (1.7
kb) [45] instead of lacZ [42,43]. All rAAVs were pack-
aged as conventional (not self-complementary) vectors
in the 293 cell line, an adenovirus-transformed human
embryonic kidney cell line, by using Adenovirus 5 to
provide helper functions in combination with the trans-
acting AAV-2 factors for replication and encapsidation
functions supplied by the pAd8 helper plasmid [40].
Potential contamination from Adenovirus was prevented
by heating and purification, as previously described
[16,35,41-44]. The preparations were dialyzed and
titered with real-time PCR [16,35,41-44], averaging 1011

functional units/ml (that is, 1012 viral genomes/ml).

rAAV-mediated gene transfer
Monolayer cultures of undifferentiated hMSCs (4 × 104

cells) were transduced with rAAV (40 μl vector) or left
untreated [16,35,41-44] and kept in basal medium for up
to 21 days. hMSC aggregate cultures (2 × 105 cells) were
prepared [16,37,38] and kept in DMEM high glucose (4.5
g/L), pen-strep, ITS+ Premix (insulin, 6.25 μg/ml; trans-
ferring, 6.25 μg/ml; selenous acid, 6.25 μg/ml; linoleic
acid, 5.35 μg/ml; bovine serum albumin, 1.25 μg/ml), pyr-
uvate (1 mM), ascorbate 2-phosphate (37.5 μg/ml), dexa-
methasone (10-7 M), and TGF-b (10 ng/ml) (defined
medium) at 37°C in a humidified atmosphere with 5%
CO2. The cells formed a free-floating mass within 24
hours that was transduced with rAAV (100 μl vector) 1
day after aggregate formation (or left untreated) and kept
in defined medium for up to 21 days [16]. For osteogenic
and adipogenic differentiation, hMSCs in monolayer cul-
tures (105 cells) were transduced with rAAV (100 μl vec-
tor) or left untreated, and induced toward osteogenic
differentiation by using the StemPro Osteogenesis Differ-
entiation kit (Life Technologies GmbH, Darmstadt, Ger-
many) or adipogenic differentiation by using the StemPro
Adipogenesis Differentiation kit (Life Technologies
GmbH) for up to 21 days at 37°C in a humidified atmo-
sphere with 5% CO2 [38,46,47].
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Histology, immunocyto-, and immunohistochemistry
Monolayer and aggregate cultures were harvested and
fixed in 10% buffered formalin. Aggregates were dehy-
drated in graded alcohols, embedded in paraffin, and
sectioned (5 μm). Samples were processed for transgene
expression by immunocytochemical and immunohisto-
chemical analyses using specific antibodies. Sections
were also stained with H&E (cellularity), toluidine blue
(matrix proteoglycans), and alizarin red (matrix minera-
lization) according to routine protocols. Expression of
type I, type II, and type X collagen was detected by
immunohistochemistry by using specific antibodies, bio-
tinylated secondary antibodies, and the ABC method
with diaminobenzidine (DAB) as the chromogen
[16,37,38]. To control for secondary immunoglobulins,
samples were processed with omission of the primary
antibody. Osteogenically differentiated cultures were
stained for ALP (Alkaline Phosphatase staining kit,
Sigma), and adipogenically differentiated cultures for
intracellular lipid droplets with Oil Red O (Sigma)
[38,46,47]. Samples were examined with light micro-
scopy (Olympus BX 45, Hamburg, Germany).

Histomorphometry
The intensities of SOX9 immunostaining and the per-
centages of areas stained for ALP or Oil Red O were
calculated as being the ratios of positively stained sur-
face to the total surface evaluated. The cell numbers
and viability were monitored with trypan blue exclu-
sion and by counting cells on H&E-stained sections
from aggregates [16,35,41-44]. The intensities of SOX9
immunostaining, transduction efficiencies (X-Gal stain-
ing), aggregate diameters, cell densities, intensities of
toluidine blue and of alizarin red staining, and those of
type I, type II, and type X collagen immunostaining
were measured at three standardized sites or by using
10 serial histologic and immunohistochemical sections
for each parameter, test, and replicate condition by
using SIS AnalySIS (Olympus), Adobe Photoshop
(Adobe Systems, Unterschleissheim, Germany), and
Scion Image (Scion Corporation, Frederick, MD, USA)
[16,35,41-44]. The toluidine blue staining intensities
were in pixels per area, and those for alizarin red stain-
ing, type I, type II, and type X collagen immunostain-
ing in percentages, representing the ratios of positively
stained tissue surface to the total surface of the site
evaluated.

Biochemical assays
Cultures were harvested with selective papain digestion
for aggregates. Cell proliferation was assessed with the
Cell Proliferation reagent WST-1 [16,44]. The DNA
contents were determined with a fluorimetric assay by

using Hoechst 33258 [16,35,41-44]. The proteoglycan
contents were measured by binding to dimethylmethy-
lene blue dye [16,35,41-44], and those for type I, type
II, and type X collagen with ELISA [16,41-44]. The
ALP activities were analyzed with a colorimetric assay
to measure the hydrolysis of p-nitrophenol by using a
standard curve made of this reagent [16]. All measure-
ments were performed by using a GENios spectrophot-
ometer/fluorometer (Tecan, Crailsheim, Germany).

Total RNA extraction and real-time RT-PCR analyses
Total cellular RNA was extracted from the cultures by
using the RNeasy Protect Mini Kit with an on-column
RNase-free DNase treatment (Qiagen, Hilden, Germany)
[16,37,46]. RNA was eluted in 30 μl RNase-free water.
Reverse transcription was carried out with 8 μl of eluate
by using the 1st Strand cDNA Synthesis kit for RT-PCR
(AMV) (Roche Applied Science). An aliquot of the cDNA
product (2 μl) was amplified with real-time PCR by using
the Brilliant SYBR Green QPCR Master Mix (Stratagene,
Agilent Technologies, Waldbronn, Germany) [16] on an
Mx3000P QPCR operator system (Stratagene) as follows:
(95°C, 10 minutes), amplification by 40 cycles (denatura-
tion at 95°C, 30 seconds; annealing at 55°C, 1 minute;
extension at 72°C, 30 seconds), denaturation (95°C, 1 min-
ute), and final incubation (55°C, 30 seconds). The primers
(Invitrogen GmbH) used were SOX9 (chondrogenic mar-
ker) (forward 5’-ACACACAGCTCACTCGACCTTG-3’;
reverse 5’-GGGAATTCTGGTTGGTCCTCT-3’), type II
collagen (COL2A1) (chondrogenic marker) (forward 5’-
GGACTTTTCTCCCCTCTCT-3’; reverse 5’-GACCC-
GAAGGTCTTACAGGA-3’), type I collagen (COL1A1)
(osteogenic marker) (forward 5’-ACGTCCTGGTGAAG
TTGGTC-3’; reverse 5’-ACCAGGGAAGCCTCTCTCTC-
3’), type X collagen (COL10A1) (marker of hypertrophy)
(forward 5’-CCCTCTTGTTAGTGCCAACC-3’; reverse
5’-AGATTCCAGTCCTTGGGTCA-3’), alkaline phospha-
tase (ALP) (osteogenic marker) (forward 5’-TGGAGCTT-
CAGAAGCTCAACACCA-3’; reverse 5’-ATCTCGTTGT
CTGAGTACCAGTCC-3’), matrix metalloproteinase 13
(MMP13) (marker of terminal differentiation) (forward 5’-
AATTTTCACTTTTGGCAATGA-3’; reverse 5’-CAAA-
TAATTTATGAAAAAGGGATGC-3’), osteopontin (OP)
(osteogenic marker) (forward 5’-ACGCCGACCAAG-
GAAAACTC-3’; reverse 5’-GTCCATAAACCACACTAT-
CACCTCG-3’), runt-related transcription factor 2
(RUNX2) (osteogenic marker) (forward 5’-GCAGTTCC-
CAAGCATTTCAT-3’; reverse 5’-CACTCTGGCTTTGG-
GAAGAG-3’), b-catenin (mediator of the Wnt signaling
pathway for osteoblast lineage differentiation) (forward 5’-
CAAGTGGGTGGTATAGAGG-3’; reverse 5’-GCGGGA-
CAAAGGGCAAGA-3’), parathyroid hormone-related
protein (PTHrP) (hypertrophy-associated gene) (forward
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5’-CGACGACACACGCACTTGAAAC-3’; reverse 5’-
CGACGCTCCACTGCTGAACC-3’), lipoprotein lipase
(LPL) (adipogenic marker) (forward 5’-GAGATTTC
TCTGTATGGCACC-3’; reverse 5’-CTGCAAATGAGA-
CACTTTCTC-3’), peroxisome proliferator-activated
receptor gamma 2 (PPARG2) (adipogenic marker) (for-
ward 5’-GCTGTTATGGGTGAAACTCTG-3’; reverse 5’-
ATAAGGTGGAGATGCAGGCTC-3’), and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) (housekeep-
ing gene and internal control) (forward 5’-GAAGGTGAA
GGTCGGAGTC-3’; reverse 5’-GAAGATGGTGATGG-
GATTTC-3’) (all 150 nM final concentration) [13,15,
16,46-49]. Control conditions included reactions using
water and non-reverse-transcribed mRNA. Specificity of
the products was confirmed by melting curve analysis and
agarose gel electrophoresis. The threshold cycle (Ct) value
for each gene of interest was measured for each amplified
sample by using the MxPro QPCR software (Stratagene),
and values were normalized to GAPDH expression by
using the 2-ΔΔCt method, as previously described [16].

Statistical analysis
Data are expressed as mean ± standard deviation (SD)
of separate experiments. Each treatment condition was
performed in triplicate in three independent experi-
ments for each patient. Data were obtained by
two individuals that were blinded with respect to the
treatment groups. The t test and the Mann-Whitney
Rank Sum Test were used where appropriate. Any
P value of less than 0.05 was considered statistically
significant.

Results
Efficient and sustained SOX9 overexpression in monolayer
cultures of undifferentiated human mesenchymal stem
cells via rAAV-mediated gene transfer
Human adult mesenchymal stem cells (hMSCs) were
first transduced with the candidate rAAV-FLAG-hSOX9
vector in undifferentiated monolayer cultures compared
with control treatments (reporter rAAV-lacZ gene vec-
tor application or a condition lacking vector administra-
tion) to examine the ability of rAAV to mediate
overexpression of the transcription factor over time in
these cells in vitro at an undifferentiated stage. Sus-
tained, intense immunoreactivity to the FLAG tag and
SOX9 was detected only in cells transduced with
rAAV-FLAG-hSOX9 compared with control applications
[24] after 5 days (not shown) and for up to 21 days
(Figure 1a). Transduction efficiencies ranged between
70% and 82% (X-Gal staining, not shown), in good
agreement with previous observations using this class of
vectors [16].

Effects of rAAV-FLAG-hSOX9 treatment on the
proliferation and viability of undifferentiated hMSCs
The candidate rAAV-FLAG-hSOX9 vector was next
applied over time to undifferentiated monolayer cultures
of hMSCs to investigate potential undesirable effects of
the gene-transfer method and of the candidate factor on
cell proliferation and viability compared with control
conditions (rAAV-lacZ transduction and absence of vec-
tor treatment). Application of rAAV-FLAG-hSOX9 did
not significantly modify the cell numbers, viability, pro-
liferation rates (WST-1 assay), or DNA contents of the
cultures compared with control treatments (P ≥ 0.106)
(Table 1). Over time, these parameters decreased in all
the conditions tested (P ≤ 0.029), as previously observed
by using similar controls in experimental settings [16].

Efficient and sustained SOX9 overexpression in
chondrogenically differentiated cultures of hMSCs via
rAAV
hMSCs were next transduced in chondrogenically differ-
entiated (aggregate) cultures over time with rAAV-
FLAG-hSOX9 compared with control treatments (rAAV-
lacZ or absence of vector application) to determine the
ability of rAAV to mediate SOX9 overexpression in a
three-dimensional environment adequate for chondro-
genic differentiation. In good agreement with the findings
in monolayer culture, prolonged FLAG tag expression
was seen only in aggregates treated with rAAV-FLAG-
hSOX9 after 5 days and for up to 21 days, again reaching
high transduction efficiencies (80% to 85%) [16], whereas
SOX9 immunoreactivity was noted in all types of aggre-
gates as a result of the chondrogenic induction [50],
although specific staining was more intense (about nine-
fold) when the SOX9 vector was provided (Figure 1b). No
apparent difference in SOX9 immunostaining was noted
between control conditions, suggesting that gene transfer
via rAAV did not alter the potency of hMSCs, consistent
with previous observations with this class of vector
[8,16,34].

Effects of rAAV-FLAG-hSOX9 treatment on the
proliferative, metabolic, and chondrogenic properties of
induced hMSCs
rAAV-FLAG-hSOX9 was then used to evaluate the
effects of the transcription factor via rAAV administra-
tion on the proliferative, biosynthetic, and differentiative
activities of hMSCs in conditions of chondrogenic
induction (aggregate cultures) over time compared with
control conditions (rAAV-lacZ transduction and
absence of vector treatment).
Application of rAAV-FLAG-hSOX9 significantly

increased the diameters of the aggregates over time and
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Figure 1 Detection of rAAV-mediated transgene expression in undifferentiated monolayer and chondrogenically differentiated
aggregate cultures of human mesenchymal stem cells (hMSCs). Cells were transduced with rAAV-lacZ or rAAV-FLAG-hSOX9 (a) in monolayer
culture (40 μl each vector) or (b) in aggregate cultures (100 μl each vector), as described in Materials and methods, or left untreated, and
processed to monitor transgene expression 21 days after vector application by analyzing the immunoreactivity to the FLAG tag or to SOX9. (a)
Anti-FLAG at magnification ×20 and anti-SOX9 at magnification ×4; (b) magnification ×4.

Table 1 Analyses in undifferentiated monolayer cultures of human mesenchymal stem cells (hMSCs)

Assay No vector rAAV-lacZ rAAV-FLAG-hSOX9

Day 7 Day 21 Day 7 Day 21 Day 7 Day 21

Viable cells 1,225 (50) 855 (25)a 1,250 (45) 835 (20)a 1,220 (40) 840(25)a

Viability (%) 92 (2) 53 (2)a 91 (3) 51 (2)a 93 (3) 53 (2)a

WST -1 (OD450 nm) 0.34 (0.02) 0.27 (0.02)a 0.32 (0.03) 0.24 (0.01)a 0.35 (0.03) 0.26 (0.02)a

DNA (ng/mg total proteins) 0.19 (0.02) 0.11 (0.01)a 0.21 (0.02) 0.12 (0.01)a 0.18 (0.01) 0.14 (0.01)a

Values are given as mean (SD) by using a vector dose of 40 μl. aStatistically significant compared with earlier time point.
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compared with control conditions (up to 1.6-fold; always
P ≤ 0.001) (Figure 2 and Table 2), in which instead sig-
nificant decreases were noted during the course of the
evaluation (up to 1.03-fold; always P ≤ 0.001) without
difference at similar time points (P ≥ 0.125), as pre-
viously reported [16]. Interestingly, this effect of SOX9
treatment was not accompanied by increases in the cell
densities (H&E staining), proliferation rates (WST-1
assay), or DNA contents in the aggregates (Figure 2 and
Table 2), as no difference was found between SOX9-,
rAAV-lacZ-treated, and untreated aggregates at similar
time points for these parameters (P ≥ 0.389) that
decreased over time in all types of aggregates (up to 2.2-

fold; P ≤ 0.002), consistent with the findings in mono-
layer culture and with previous observations [16].
Remarkably, when the aggregates were processed to

monitor the differentiative and metabolic activities of
hMSCs, successful chondrogenic differentiation was
noted in all types of aggregates, as evidenced by tolui-
dine blue staining and type II collagen deposition (Fig-
ures 2 and 3a), yet significant increases were noted in
the presence of the SOX9 vector for the intensities of
toluidine blue staining, the proteoglycan contents
(before and after normalization to the DNA contents),
and the intensities of type II collagen immunostaining
and contents (before and after normalization) compared

Figure 2 Histologic analyses in chondrogenically differentiated aggregate cultures of human mesenchymal stem cells (hMSCs).
Aggregate cultures were prepared and transduced with rAAV-lacZ or rAAV-FLAG-hSOX9, as described in Figure 1, or left untreated, and
processed on day 21 for histologic staining with H&E, toluidine blue, and alizarin red, as described in Materials and methods. All at magnification
×4.
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with control conditions (Figures 2 and 3a and Table 2)
(up to 6.2-fold increase; always P ≤ 0.001). Notably, the
proteoglycan and type II collagen contents significantly
increased over time in all types of aggregates (up to 1.6-
fold; always P ≤ 0.001). Also interestingly, no difference
was seen between the rAAV-lacZ-treated and untreated
aggregates for these parameters at similar time points
(P ≥ 0.439) [16]. In marked contrast, application of the
SOX9 vector compared with control conditions caused a
significant reduction in the intensities of immunostain-
ing for type I and type X collagen, in those of alizarin
red staining (up to 9.5-fold; always P ≤ 0.001), and in
the ALP activities (before and after normalization) (up
to 2.4-fold; always P ≤ 0.001) (Figures 2 and 3a and
Table 2). Also interestingly, no difference occurred
between rAAV-lacZ-treated and untreated aggregates
for any of these parameters when comparing similar
time points (P ≥ 0.570) [16]. In contrast with the find-
ings for type II collagen, the type I and type X collagen
contents could not be estimated with ELISA, as the
values were always below the levels of detection of the
assays.
The findings related to the biochemical, histologic,

and immunohistochemical analyses were corroborated
by data from a real-time RT-PCR analysis (Figure 3b).
Chondrogenic differentiation of hMSCs was observed in
all types of aggregates after 21 days, as seen by detection
of SOX9 and type II collagen expression, yet significant
differences were noted between SOX9 and control con-
ditions (rAAV-lacZ or no vector treatment) (up to 13-
fold higher SOX9 expression levels and up to 4.7-fold
higher COL2A1 expression levels in the presence of

rAAV-FLAG-hSOX9; always P ≤ 0.001). Real-time RT-
PCR analysis also confirmed the decreased profiles of
type I, type X collagen, and ALP when overexpressing
SOX9 compared with control treatments (up to 3.3-,
2.5-, and 1.3-fold, respectively; always P ≤ 0.001). Strik-
ingly, the analysis further revealed opposing effects of
SOX9 treatment on the expression of MMP13 (up to
2.2-fold), OP (up to 33.3-fold), RUNX2 (up to 4.8-fold),
b-catenin (up to 1.2-fold), LPL (up to 33.3-fold), and
PPARG2 (up to 14.3-fold) (always P ≤ 0.001), while
showing activating effects on PTHrP (up to 2.4-fold; P ≤
0.001) compared with control conditions. Again as pre-
viously reported, no difference was observed between
rAAV-lacZ-treated and untreated aggregates for any of
the markers analyzed here (P ≥ 0.417) [16].

Effects of rAAV-FLAG-hSOX9 treatment on the osteogenic
differentiation potential of hMSCs
The candidate SOX9 vector was next provided to osteo-
genically differentiated hMSCs over time to estimate
further the effects of the transcription factor via rAAV
application on the potential for osteogenic differentia-
tion of the cells compared with control conditions
(rAAV-lacZ transduction and absence of vector
treatment).
Successful differentiation was noted in all types of

induced cultures, as evidenced by ALP staining (Figure 4a).
Nevertheless, application of rAAV-FLAG-hSOX9 signifi-
cantly decreased the percentage of stained areas after 21
days compared with control conditions (42% ± 2% versus
83% ± 2% or 84% ± 3% with rAAV-lacZ or without vector,
respectively; that is, an up to twofold decrease; always

Table 2 Analyses in chondrogenically differentiated aggregate cultures of human mesenchymal stem cells (hMSCs)

Assay No vector rAAV-lacZ rAAV-FLAG-hSOX9

Day 7 Day 21 Day 7 Day 21 Day 7 Day 21

Diameter (μm) 632 (6) 618 (4)c 630 (2) 614 (3)c 729 (4)a, b 982 (5)a, b, c

Cell density (cells/mm2) 433 (7) 424 (2)c 438 (4) 426 (1)c 437 (4) 425 (5)c

WST-1 (OD450 nm) 1.33 (0.17) 0.62 (0.12)c 1.29 (0.21) 0.67 (0.12)c 1.31 (0.15) 0.65 (0.14)c

DNA (ng/mg total proteins) 0.92 (0.02) 0.87 (0.02)c 0.90 (0.01) 0.86 (0.01)c 0.92 (0.01) 0.88 (0.02)c

Toluidine blue intensity (pixels) ND 167 (4) ND 169 (5) ND 914 (7)a, b

Proteoglycans (ng/mg total proteins) 0.61 (0.02) 0.79 (0.04)c 0.59 (0.03) 0.80 (0.02)c 3.37 (0.06)a, b 4.68 (0.07)a, b, c

Proteoglycans/DNA (ng/ng) 0.67 (0.04) 0.91 (0.03)c 0.66 (0.03) 0.93 (0.02)c 3.67 (0.04)a, b 5.32 (0.08)a, b, c

Type II collagen intensity (%) ND 51 (3) ND 49 (2) ND 85 (3)a, b

Type II collagen (pg/mg total proteins) 13 (2) 18 (3)c 14 (2) 19 (3)c 75 (4)a, b 112 (3)a, b, c

Type II collagen/DNA (pg/ng) 14 (2) 21 (2)c 15 (1) 22 (3)c 81 (4)a, b 127 (8)a, b, c

Type I collagen intensity (%) ND 44 (2) ND 42 (4) ND 6 (2)a, b

Type X collagen intensity (%) ND 45 (3) ND 46 (2) ND 8 (2)a, b

Alizarin red intensity (pixels) ND 57 (3) ND 56 (2) ND 5 (2)a, b

ALP activity (pg/mg total proteins) ND 57 (2) ND 55 (1) ND 25 (1)a, b

ALP/DNA (pg/ng) ND 66 (2) ND 64 (3) ND 28 (1)a, b

Values are given as mean (SD) with a vector dose of 100 μl. ALP, alkaline phosphatase; ND, not done. Statistically significant compared with acondition without
vector treatment, brAAV-lacZ, and cearlier time point.
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Figure 3 Expression analyses in differentiated aggregate cultures of human mesenchymal stem cells (hMSCs). Aggregate cultures were
prepared and transduced with rAAV-lacZ or rAAV-FLAG-hSOX9, as described in Figure 1, or left untreated, and processed on day 21 for (a)
immunodetection of type II, type I, and type X collagen (all at magnification ×4), and (b) gene-expression analysis by real-time RT-PCR
amplification after total cellular RNA extraction and cDNA synthesis, as described in Materials and methods. The genes analyzed included the
transcription factor SOX9, and types II, I, and X collagen (COL2A1, COL1A1, COL10A1), alkaline phosphatase (ALP), matrix metalloproteinase 13
(MMP13), osteopontin (OP), the transcription factor RUNX2, b-catenin, parathyroid hormone-related protein (PTHrP), lipoprotein lipase (LPL), and
the peroxisome proliferator-activated receptor gamma 2 (PPARG2), with GAPDH serving as a housekeeping gene and internal control (primers
are listed in Materials and methods). Ct values were obtained for each target and GAPDH as a control for normalization, and fold inductions
(relative to untreated aggregates) were measured by using the 2-ΔΔCt method. Statistically significant compared with (a) condition without vector
treatment or (b) rAAV-lacZ.
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Figure 4 Analyses in osteogenically and adipogenically differentiated cultures of human mesenchymal stem cells (hMSCs). Cells in
monolayer cultures were transduced with rAAV-lacZ or rAAV-FLAG-hSOX9 (100 μl each vector) or left untreated and induced toward osteogenic
or adipogenic differentiation, as described in Materials and methods. Cultures were processed on day 21 for (a) ALP staining (osteogenesis;
magnification ×4) and Oil Red O staining (adipogenesis; magnification ×10) and (b) and (c) gene-expression analysis with real-time RT-PCR
amplification, as described in Figure 3. The genes analyzed included ALP, COL1A1, OP, and RUNX2 for osteogenically differentiated cultures (b)
and LPL and PPARG2 for adipogenically differentiated cultures (c), with GAPDH serving as a housekeeping gene and internal control in both
cases. Ct values were obtained for each target and GAPDH as a control for normalization, and fold inductions (relative to untreated cultures)
were measured by using the 2-ΔΔCt method. Statistically significant compared with (a) condition without vector treatment or (b) rAAV-lacZ.
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P ≤ 0.001). This observation was corroborated when esti-
mating the ALP activities of the cultures (5.8 ± 0.4 nmol/
mg total proteins with rAAV-FLAG-hSOX9 versus 42.4 ±
2.3 or 39.2 ± 1.6 nmol/mg total proteins with rAAV-lacZ
or without vector (that is, an up to 7.3-fold decrease;
always P ≤ 0.001) and with real-time RT-PCR analysis (up
to 25-fold decrease in ALP expression; P ≤ 0.001) (Figure
4b). Treatment with SOX9 also decreased the expression
levels of type I collagen, OP, and RUNX2 compared with
control transductions (up to 100-fold; P ≤ 0.001) (Figure
4b). Once again, no difference was noted between rAAV-
lacZ-treated and untreated cultures for any of the markers
analyzed here (P ≥ 0.570).

Effects of rAAV-FLAG-hSOX9 treatment on the adipogenic
differentiation potential of hMSCs
Finally, the candidate SOX9 vector was provided to adi-
pogenically differentiated hMSCs over time to validate
further the effects of the transcription factor through
rAAV application on the potential for adipogenic differ-
entiation of the cells compared with control conditions
(rAAV-lacZ transduction and absence of vector
treatment).
Successful differentiation was achieved in all types of

induced cultures, as seen by the accumulation of lipid
droplets after staining with Oil Red O (Figure 4a). How-
ever, SOX9 gene transfer significantly decreased the per-
centage of stained areas after 21 days compared with
control conditions (36% ± 2% versus 53% ± 2% or 51% ±
3%, that is, an up to 1.5-fold decrease; always P ≤ 0.001).
This finding was substantiated by real-time PCR expres-
sion analysis of LPL and PPARG2, showing significantly
decreased levels in the presence of rAAV-FLAG-hSOX9
compared with control treatments (up to 7.7-fold; P ≤
0.001) (Figure 4c). Again, no difference was noted
between rAAV-lacZ-treated and untreated cultures for
any of the markers tested (P ≥ 0.389).

Discussion
Transplantation of progenitor cells like mesenchymal
stem cells (MSCs) from the bone marrow, with an innate
potential for chondrogenic differentiation, is a promising
strategy to treat articular cartilage defects in patients [3].
Yet, the use of MSCs in such settings is still restrained by
the low percentage of cells that enter appropriate chon-
drocyte lineage-differentiation pathways to produce a
reparative tissue of proper quality. It is well known that
MSC-derived cells tend to undergo premature terminal
differentiation, hypertrophy, and ossification [4,5]. Such
limitations might be overcome by directing the cells
toward an adequate phenotype by application and stable
expression of candidate genes capable of controlling
chondrocyte differentiation. Among the potentially bene-
ficial agents, the transcription factor SOX9 is a strong

candidate to adjust chondrogenesis, as a key regulator of
chondrocyte differentiation and cartilage formation [22]
that can delay hypertrophic maturation at certain stages
of differentiation [23-27]. Instead of using classic nonviral
[26,30], adeno-, retro-, and lentiviral vectors [24,31-33],
we focused on rAAV systems that advantageously geneti-
cally modify hMSCs at very high efficiencies and for
extended periods without affecting their potential for dif-
ferentiation [8,16,34]. This finding was confirmed here
when applying the rAAV-FLAG-hSOX9 vector to undif-
ferentiated monolayer and chondrogenically differen-
tiated hMSC cultures (70% to 85% transduction
efficiencies for up to 21 days, with about a ninefold dif-
ference in SOX9 expression levels compared with control
treatments that showed a similar evolution for all para-
meters in the evaluation). Equally important, we further
demonstrate that the efficient and sustained SOX9
expression levels achieved here with rAAV were capable
of promoting and enhancing chondrogenic differentiation
of hMSCs in suitable aggregate cultures, with an
increased production of major extracellular matrix com-
ponents (proteoglycans, type II collagen) compared with
control conditions, as already seen in human osteoar-
thritic chondrocytes [43] and in agreement with the
properties of this factor [22,24,26,27,31,32]. Interestingly,
administration of rAAV SOX9 did not further modify the
levels of proliferation and viability of hMSCs in all the
systems tested compared with control treatments, as also
reported with chondrocytes [43], and instead, these para-
meters decreased over the course of the evaluation. It
remains to be seen whether too elevated levels of SOX9
expression will not cause toxicity on cells transduced
through rAAV [51]. This is, however, consistent with
previous observations when expanding similar controls of
hMSC transduction [16] and, more important, with find-
ings showing the lack or opposing effects of SOX9 on the
proliferation and cell-cycle progression of hMSCs in the
adult [23,31,32].
Strikingly, the present results also indicate that pro-

longed, elevated rAAV-mediated expression of SOX9
significantly reduced the expression and activities of sev-
eral markers of hypertrophy and terminal or osteogenic
differentiation (type I and type X collagen, ALP,
MMP13, OP, matrix mineralization), concordant with
previous reports showing contrasting effects of SOX9 on
osteogenesis, bone formation, terminal differentiation,
and calcification and on the expression of these markers
[23-27,31,52-58]. Remarkably, these effects of SOX9
treatment via rAAV were associated with significant
decreases in the levels of RUNX2, a transcription factor
essential for bone formation, terminal maturation, and
mineralization that stimulates the expression of osteo-
blast-related genes (COL1A1, COL10A1, ALP, MMP13,
OP) [53,55,56,58-62], again in good agreement with the
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effects of SOX9 on RUNX2 expression [31,63,64]. Inter-
estingly, Ikeda et al. [24] reported that SOX9 gene trans-
fer in hMSCs failed to suppress the expression of such
hypertrophic and osteogenic markers. However, it is
important to mention that, in this previous study, less
efficient adenoviral vectors were used and mediated
gene expression for about 5 days, whereas sustained and
very high levels of transgene SOX9 expression were
detected here for at least 21 days. Of further note, we
also observed that application of rAAV-FLAG-hSOX9
led to a decrease in b-catenin expression, a mediator of
the Wnt signaling pathway known to stimulate osteo-
blast lineage differentiation [65]. In addition, we noted
that the vector increased the levels of PTHrP, an inhibi-
tor of hypertrophic maturation and calcification that has
a significant impact on the regulation of gene expression
for COL1A1, COL10A1, ALP, and RUNX2, delays bone
formation [15,53,55,56,58,66-72], and activates SOX9
transcriptional activities [67]. The effects of SOX9 evi-
denced here on these signaling pathways are consistent
with reports showing enhanced b-catenin degradation
and PTHrP activation mediated by the cartilage-specific
transcription factor [23,52,73].
Altogether, the data demonstrate that concurrent acti-

vation and inhibition of different signaling pathways by
rAAV SOX9 gene transfer might permit a significant
reduction of osteogenic processes in hMSCs. Still, in the
present study, evaluations were not performed beyond
day 21, and it remains to be seen whether the SOX9-
transduced cells will not undergo hypertrophy and term-
inal or osteogenic differentiation over time if they lose
SOX9 expression [28,29], an issue that might have con-
sequences for an adequate treatment of cartilage lesions.
Also noteworthy, the candidate treatment here also sig-
nificantly decreased the expression of adipogenic mar-
kers (accumulation of lipid droplets, LPL, and PPARG2
levels), allowing containing the adipogenic differentia-
tion of hMSCs, again in good agreement with previous
findings [27,57]. To our best knowledge, this is the first
evidence showing that overexpression of SOX9 via
rAAV stimulates hMSC chondrogenic differentiation
with an important delay in terminal differentiation and
hypertrophy, while affecting osteogenic and adipogenic
differentiation over a continuous period. Apart from
SOX9, the use of other members of the SOX family
(SOX5, SOX6) [52,56,74] might be of further benefit to
favor chondrogenic versus osteo-/adipogenic differentia-
tion of hMSCs, as proposed by various groups who
delivered the SOX trio by more classic, less efficient
nonviral or adenoviral vectors [24,30]. Delivery of addi-
tional factors displaying proliferative activities might be
also valuable to generate high numbers of hMSCs for
transplantation in articular cartilage defects. Among var-
ious agents with such effects, IGF-I [14], FGF-2 [16,17],

hTERT [19,20], or Bcl-xL [21] may be potentially pro-
vided along with SOX sequences. Again, rAAV are
powerful vectors, as they conveniently permit separate
expression of multiple genes at the same time within
their targets [42].
In addition, it will be important to test further whether

transplantation of rAAV SOX9-modified MSCs in articu-
lar cartilage defects allows for an effective healing of the
lesions in vivo, in association with competent chondro-
genic differentiation that avoids premature terminal dif-
ferentiation as noted in vitro. Interesting findings have
been reported by Cao et al. [31], who showed that
implantation of MSCs modified to overexpress SOX9 in a
polyglycolic acid (PGA) scaffold led to better repair of
osteochondral defects in rabbits, although the gene-trans-
fer system used was a relatively low efficiency adenoviral
vector compared with rAAV that might prove even more
effective because of higher levels and duration of trans-
gene expression. Regarding the value of the present
approach for cartilage repair, this strategy with rAAV will
have to be translated in rabbit MSCs before transplanta-
tion of genetically modified cell platforms within cartilage
defects in vivo. Parameters to consider will include the
amounts of cells to provide, the potential use of control
elements to contain transgene expression (lineage-speci-
fic or regulatable promoters), and the selection of the
best-suited supportive matrix for cell containment in the
lesions. Also, long-term evaluations will be necessary to
test the mechanical quality of the repair tissue within the
defects, as other cells (periosteum-, perichondrium-, adi-
pose-, muscle-derived stem cells, bone marrow aspirates,
tissue grafts, or even chondrocytes) might be applied as
engineered platforms [75-78] compared with direct gene-
transfer strategies [35,79,80].

Conclusions
The results of the present study indicate that gene
transfer through therapeutic rAAV might be largely
beneficial to produce an MSC-derived cell population
with a strong potential for proper chondrogenic differ-
entiation, as a means to develop indirect gene- and cell-
based approaches to treat articular cartilage defects in
vivo.
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