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A major goal for process and cell engineering in the biopharmaceutical

industry is enhancing production through increasing volumetric and cell-

specific productivities (CSP). Here, we present 50-deoxy-50-(methylthio)ade-

nosine (MTA), the degradation product of S-(50-adenosyl)-L-methionine

(SAM), as a highly attractive native additive which can boost CSP by 79%

when added to exponentially growing cells at a concentration of 250–
300 lM. Notably, cell viability and cell size remain higher than in non-trea-

ted cultures. In addition, cell cycle arrests first in S-, then in G2-phase

before levelling out compared to non-treated cultivations. Intensive differ-

ential gene analysis reveals that expression of genes for cytoskeleton medi-

ated proteins and vesicle transport is amplified by treatment. Furthermore,

the interaction of MTA with cell proliferation additionally stimulated

recombinant protein formation. The results may serve as a promising start-

ing point for further developments in process and cell engineering to boost

productivity.

Biopharmaceutical markets are dominated by

therapeutic proteins, particularly monoclonal antibod-

ies (mAB) which are predominantly produced by CHO

cells [1]. In the last decades, significant increase of

maximum viable cell density (VCD) improved volu-

metric productivity and reached titers up to 5–8 g�L�1

in fed-batch processes [2–4]. Process intensifications

are performed to raise production performance. As a

prerequisite, increasing CSPs are needed for the next

step of process development [5,6].

50-Deoxy-50-(methylthio)adenosine (MTA) consists

of L-methionine (L-met) and adenosine triphosphate

(ATP) and is a naturally occurring molecule in mam-

malian tissues [7,8]. It is produced from S-(50-adeno-
syl)-L-methionine (SAM) in the polyamine synthesis

[7] in cells. Production of spermidine and spermine

needs the decarboxylation of SAM to MTA that is

rapidly metabolized by 5’-methylthioadenosine

phosphorylase to adenine and S-methyl-5-thio-D-ri-

bose 1-phosphate and finally to L-met. The adenine

can be used to replenish adenosine monophosphate

(AMP), adenosine diphosphate (ADP) and ATP pools.

Final recovery of SAM from ATP and L-met closes

the SAM cycle [7,9]. Rapid degradation of MTA is

crucial because it inhibits spermine synthase, sper-

midine synthase and ornithine decarboxylase [8,10].

MTA inhibited cell proliferation in hepatocytes, leu-

kemia cells, fibroblasts and lymphoma cells [11–14]
that is mainly the consequence of its polyamine syn-

thesis inhibition [15]. A reduction of polyamine inter-

mediates arrested CHO cells in their S-phase [16].

Furthermore, MTA addition inhibited DNA synthesis

in hepatic cells [10] but it remained unclear whether

MTA or a downstream metabolite is the effector [17].
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Beside its interaction with polyamine synthesis,

MTA demonstrated importance for expression control

of genes, cell proliferation inhibition, lymphocyte acti-

vation, tumor development and invasiveness, and the

regulation of apoptosis [7,9–12,18]. MTA addition

induced apoptosis in hepatocarcinoma cells, whereas

hepatocytes remained viable and were protected

against programmed cell death [11]. Additionally,

MTA demonstrated beneficial effects in immune

response [19].

Several groups [13,14] observed the inhibition of

growth factor-induced protein tyrosine phosphoryla-

tion and the increase of intracellular cyclic AMP

(cAMP) levels through the inhibition of cAMP-phos-

phodiesterase by MTA pointing out the interaction

with signaling pathways. Furthermore, increased

MTA levels inhibited arginine methylation of the

STAT1 transcription factor, finally impairing gene

transcription [20].

Due to the relation to the SAM cycle, MTA

revealed capabilities to inhibit protein methylation pin-

pointing to its role as post-translational modifier and

accordingly as a regulator of cellular signaling and

gene expression [12,18,20]. Evidences are given by its

direct interaction with methyltransferases and via the

indirect inactivation of S-(5’adenosyl)-L-homocysteine

hydrolase [7].

Single MTA addition to the medium increases CSP in

CHO cells. Furthermore, cells demonstrated cell cycle

arrest and increased cell size [21]. Growth arrest induc-

tion is a common strategy to increase CSP [22]. Protein

production was increased by effector-induced cell cycle

arrest in G1- and S-phase [23,24]. However, cell size

controls transitions between cell cycle phases which

underlines its importance for proper cell cycling and

proliferation [25–27] that correlated with protein pro-

duction in different cell lines [28]. The complex interac-

tions between cell size, cell growth, and protein

production are not fully elucidated, yet. Additionally,

genes involved in post-translational steps, secretion and

cytoskeleton were reported to enhance CSP [29–31].
Strategies to induce growth arrest for enhancing

protein production comprise (a) hypothermia and (b)

the addition of effector molecules, e.g. to increase

hyperosmolality. Regarding (a), the mechanism of

hypothermia is not understood but certainly linked to

G1-phase arrest [32] and accompanied by an increased

cell size [33,34]. With respect to (b) additives were

investigated to modulate cell growth, product stabiliza-

tion, and to reduce chemical modifications. Examples

are sodium butyrate [35], zinc [36], valeric acid [37],

glycine betaine [38], valproic acid [39] and sodium

chloride [40] among others.

Own studies have already revealed that MTA

addition diminished growth, increased CSP, altered cell

cycle phases and cell size [21]. Consequently, MTA

should be considered as a multi-layer regulator of cell

growth, cell cycle, and protein formation that is a

highly promising additive for boosting CSP. Accord-

ingly, we conducted experiments with anti-IL-8-pro-

ducing CHO cells analyzing different levels and

intervals of MTA addition and the effect of MTA on

transcriptomic level.

Materials and methods

Different MTA concentrations and addition time

points: Seed train, shake flask cultivation and

MTA addition

MTA was a product of Sigma-Aldrich (Steinheim, Ger-

many). The anti-IL-8-producing CHO DP-12 cell line

(ATCC� CRL 12445TM) adapted to suspension was grown

in chemically defined TC-42 medium (Xell AG, Bielefeld,

Germany) supplemented with 4 mM L-glutamine (Carl

Roth GmbH & Co. KG, Karlsruhe, Germany) and 200 nM

methotrexate (Sigma-Aldrich). Seed train and experiments

were performed in pre-sterilized disposable shake flasks

(Corning Inc., US) in a humidified and incubated rotary

shaker (Infors HT Minitron, Infors GmbH, Germany) at

37 °C, 150 rpm with 50 mm displacement and 5% CO2. In

the experiment with different concentrations, MTA was

introduced after 48 h of cultivation in different concentra-

tions (125, 250, 350 and 450 µM). In reference (REF) cell

cultures, sterilized water was used to mimic the additional

liquid volume in experimental cultures (volume correspond-

ing to the 450 µM addition). In the experiment with differ-

ent addition time points, MTA was introduced after 48, 84

and 108 h of cultivation in a concentration of

150 pmol�cell�1. At every addition time point, all other set-

tings received sterilized water to mimic the additional liquid

volume in experimental cultures. Cultivation was performed

with biological duplicates.

Extracellular and cell cycle analysis

Samples were taken at least once a day. Viable cell density

(VCD), viability and average cell size were determined

using trypan blue staining and a Cedex XS cell counter

(Innovatis AG, Bielefeld, Germany). The extracellular con-

centrations of D-glucose (D-Glc) and L-lactate (L-Lac)

were determined using a LaboTRACE automatic analyzer

(Trace Analytics GmbH, Braunschweig, Germany). The

concentration of secreted antibody was determined with an

enzyme-linked immunosorbent assay (ELISA) [41]. All

sampling and measurement procedures were performed

with three technical replicates. The determination of cell
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cycle distribution was performed as described before [21].

All sampling and measurement procedures were performed

with two technical replicates.

Transcriptome analysis

Experimental equipment and settings were used as

described above (MTA at 48 h: 250 µM) in biological tripli-

cates. The isolated RNA was processed by c.ATG. Analysis

of raw data was performed on the Galaxy-Server [42], and

data were analyzed using the free statistical computing

environment R.

Experiment and sampling for transcriptome analysis and

ribonucleic acid (RNA) sequence analysis

Experimental equipment and settings were described in the

manuscript. Sampling for transcriptome analysis occurred

on 48-h, 60-h, 72-h, 84-h, 96-h and 144-h cultivation time

and followed an adapted protocol [40]. A total number of

2 9 106 cells were harvested and centrifuged, and super-

natant was discarded. Cells were resuspended in RNApro-

tect Cell Reagent (Qiagen, Hilden, Germany), quickly

frozen in liquid nitrogen and stored at �70 °C. The RNA

was isolated with the RNeasy Kit (Qiagen) and QiaShred-

der (Qiagen). An extra procedure of clean-up to get rid of

DNA (Turbo DNaseTM and Turbo DNaseTM Buffer,

Ambion (Life Technologies, Carlsbad, CA, USA)) and

increase the RNA concentration (RNA Clean & Concen-

tratorTM, Zymo Research, Irvine, CA, USA) was added.

The kits were used as indicated by the manuals. Sequencing

of the transcriptome was performed by c.ATG (T€ubingen,

Germany). Preparation of high-quality mRNA-Seq data

was performed using the Illumina TruSeq RNA Sample

Preparation Kit. Quality was assessed by an Agilent Frag-

ment Analyzer. Samples with high RNA integrity number

(RIN > 8) were selected for library construction using the

NEBNext Ultra II Directional RNA Library Prep Kit.

Libraries were sequenced as paired-end (50 bp read length)

at a depth of 30–40 million reads each.

Read mapping and gene counting

Read mapping and gene counting was performed on the

Galaxy-Server. Sequencing statistics including the quality

per base and adapter content assessment of resulting tran-

scriptome sequencing data were checked by FastQC

reports. Genes were aligned to the CHO-K1 reference gen-

ome (RefSeq: GCF_000223135.1) (downloaded from http://

www.chogenome.org/, 07/08/2019) using the RNA sequenc-

ing aligner BOWTIE2 v. 2.3.2.2 [43]. On average, the mapping

of the reads covers 94.3%. Aligned reads were counted for

each gene based on the corresponding annotation available

from the CHOgenome wegpage for the chosen reference

sequence applying HTSEQ-COUNT v. 0.6.1 [44] in the union

mode. On average, 71.0% of the sequenced reads could be

assigned uniquely to annotated genes. Sequencing depth

was around 33 million reads per sample on average.

Transcriptome data analysis

Differential gene expression analysis was performed with

the R-package DESEQ2 v. 1.26.0 [45] available from Biocon-

ductor [46] (http://www.bioconductor.org). Prior to statisti-

cal analysis, a non-specific filter was applied to remove low

coverage genes with less than one count per million (33

reads on average) in two out of three replicates per condi-

tion. Samples were grouped by replicates, and an experi-

mental design was chosen that used sample time and

treatment (CPC, REF, MTA) as a combined environmental

factor. To normalize the read counts for comparison pur-

poses on sequencing depth and RNA composition, DESeq2

uses the median of ratios method to derive a scaling factor.

Dividing the original read counts by the scaling factor nor-

malized count values are generated. To model count-based

expression data, DESeq2 uses a negative binomial model as

a distribution assumption and fits the expression data for

each gene to a generalized linear model (GLM). No outliers

were observed in the three biological replicates using Pear-

son correlation. Resulting P-values were adjusted for multi-

ple testing according to [47] to control the false discovery

rate (FDR). Genes were identified as significantly differen-

tially expressed by applying FDR adjusted P-values < 0.05

and a log2-fold-change ≥ |1|. A principal component analy-

sis was used to display the sample to sample distances cal-

culated within the DESeq2 package using the function

plotPCA.san available on Github (https://gist.github.com/

sansense/3399064897f1252d31b23ea5178c033c). Raw counts

and processed data can be found in the supplementary

information. Data analysis was performed using the free

statistical computing environment R v. 3.6.2.

Results

The effect of MTA addition depends on its

concentration

MTA was added in different concentrations (c1:

150 µM, c2: 250 µM, c3: 350 µM, c4: 450 µM) to the cells

after 48-h cultivation time. All MTA treated cultures

showed reduced VCD and growth rate (regarding 48–
120 h) dependent on the concentration (Fig. 1). Higher

MTA amounts reduced VCD and growth rate stronger

than low additions. The lowest concentration c1 led to

30% reduction of growth rate whereas the two highest

concentrations c3 and c4 halved it. c2 reduced growth

rate by 44%. However, maximum inhibition trends

were observed for c3 and c4: The reduction of growth
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Fig. 1. (A) VCD [106 cells�mL�1] and viability [%] of MTA supplemented cells and reference (REF▲). MTA was added at 48 h in different

concentrations: c1 150 µM(○), c2 250 µM(●), c3 350 µM(□), c4 450 µM(◊). (B) Growth rate per day [d�1] regarding the time interval 48–

120 h. (C) Maximum antibody titer [mg�L�1]. (D) CSP [pg�cell�1�d�1] regarding the time interval 48–144 h. (E) CSP [pg�cell�1�d�1] between

48–144 h plotted against the MTA amount per cell [pmol] at 48 h. Error bars show standard deviations of biological duplicates. Significance

(to REF) was tested with a t-test; * < 0.05.
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rate plateaued. Addition of MTA with c1, c2 and c3

demonstrated a higher viability in the last cultivation

phase compared to REF. By trend, analysis of maxi-

mum product titers unraveled slightly elevated amounts

of antibodies for all MTA additions except c3 (Fig. 1).

Calculating cell-specific productivities revealed boosted

CSPs for all MTA additions between 48–144 h. Con-

centration c2 showed the best performance (+79.7%)

and c1 the lowest (+43.9%). Fitting the CSPs to a 2nd

order polynomial function reveals optimum MTA addi-

tion of 0.167 pmolMTA�cell�1 at 48 h (Fig. 1). The

equivalent medium concentration of 295.59 µM is close

to the tested level of c2 with the highest CSP in the

experimental series.

Cell cycle phase distribution revealed the concentra-

tion-dependent effect of MTA (Fig. 2). A common

preculture split right before MTA (48 h) served as a

starting point. Half a day after MTA addition, cells

accumulated in G1-phase. 12 h later, i.e. one day after

addition, the number of cells in S-phase increased for

the sake of those in G1-phase. At 84 h (36 h after

addition) cells in G2-phase dominated and the number

of cells in G1-phase kept dropping. Two days after

addition the ratios started to normalize. Cultures with

c3 and c4 approached REF conditions whereas c1 and

c2 kept an elevated fraction of cells in G1-phase. The

different MTA concentrations caused diverse effects

on cell size. In general, cell size was smallest in REF

and largest after c3 and c4 addition. By trend, all

MTA treated cells kept enlarged cell size on different

levels compared to REF.

The effect of MTA is time-dependent

In another experimental series, cells received

0.167 pmolMTA�cell�1 after 48, 84 and 108 h (Fig. 3).

The rise of VCD slowed down after each MTA addi-

tion. Growth reduction was more pronounced the

Fig. 2. Cell cycle phase distribution (A–C) [%] and average cell size (D) [µm] of MTA supplemented cells, reference (REF▲) and common

preculture (). MTA was added at 48 h in different concentrations: c1 150 µM(○) c2 250 µM(●), c3 350 µM(□), c4 450 µM(◊). Error bars

show standard deviations of biological duplicates.
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earlier MTA was added with the 48-h-shot showing

the slowest post-MTA growth rate. However, the via-

bility of the treated cells remained even higher than

the performance of REF. Regarding growth rate the

48-h-addition caused 44.7% reduction whereas the 84-

h-addition only reduced growth by 19.6%. Late

Fig. 3. (A) VCD [106 cells�mL�1] and viability [%] of MTA supplemented cells and reference (REF▲). MTA was added with

0.167 pmolMTAper cell at 48, 84 or 108 h: MTA t1 48 h (●), MTA t2 84 h (□), MTA t3 108 h (◊). (B) Growth rate per hour [d�1] regarding

the time interval 48–120 h. (C) Maximum antibody titer [mg L�1]. (D) CSP [pg�cell�1�d�1] regarding the time interval 48–120 h. (E) Average

cell size [µm]. Error bars show standard deviations of biological duplicates. Significance (to REF) was tested with at-test; ** < 0.01.
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addition (108 h) did not cause any growth difference

compared to REF. Maximum antibody titers [mg�L�1]

did not increase after MTA additions at 84 and 108 h

(Fig. 3) but rose after 48 h. The trend is even more

pronounced with respect to CSPs. The 48-h-supple-

mentation almost doubled CSP (+97.4%) compared to

REF whereas later MTA treatments showed no effects.

By analogy, cell size raises the most when MTA was

added at 48 h.

Cell cycle phase distributions and cell sizes are dis-

played in Fig. 4. Again, highest impact was found for

48-h-cultures whereas later MTA addition did not

reveal strong differences compared to REF. Early sup-

plementation caused increasing cell fractions in S-

phase and decreasing percentages in G1- and G2-phase

36 h after addition. 60 h after addition, the partition

of cells in G2-phase increased and there were still less

cells in G1-phase.

Monitoring transcriptional responses after MTA

addition

The impact of MTA on the transcriptome was evalu-

ated via differential gene expression (DEG) analysis

based on RNA sequencing. mRNAs of biological trip-

licates supplemented with MTA were compared at dif-

ferent time points (60, 72, 84, 96, 144 h) to REF.

Around 91% of total variance is covered by two prin-

cipal components (PC) clearly grouping biological trip-

licates of equal sampling points. Apparently,

cultivation time is represented by PC1 and MTA addi-

tion by PC2 (Fig. 5). In total, 122 DEGs were identi-

fied according to the constraints log2-fold-change ≥|1|
and adjusted P-value ≤ 0.05. Downregulation of genes

occurred mostly 12–36 h after addition (60 h: 1, 72 h:

8, 84 h: 12, 96 h: 3, 144 h: 1) (Fig. 6). Later, i.e. 84 h

process time, upregulation of genes dominated DEGs

Fig. 4. Cell cycle phase distribution (A–C) [%] of MTA supplemented cells, reference (REF▲) and common preculture (). MTA was added

with 0.167 pmolMTAper cell at 48, 84 or 108 h: MTA t1 48 h (●), MTA t2 84 h (□), MTA t3 108 h (◊). Error bars show standard deviations

of biological duplicates.
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by far (60 h: 0, 72 h: 4, 84 h: 30, 96 h: 85, 144 h: 40).

The Venn diagram comprising DEGS at 84 h–96 h–
144 h reveals 6 commonly upregulated genes compared

to REF. All DEGs that were significantly up- or

downregulated at more than one sampling time point

are listed in Table 1.

Four genes of the six DEGs observed at 84 h–96 h–
144 h are annotated: Aqp1, Lcp1, Plau and St14

whereas two are unknown loci. Aquaporin 1 (Aqp1) is

a commonly amplified water channel. Lcp1 codes for

plastin, an actin-binding cellular component. Plas-

minogen activator (Plau) and matriptase (St14) are

serine proteases.

A lot of genes are differentially expressed at two

time points after MTA addition. 12 and 24 h after

MTA addition (72 h–84 h) two annotated genes are

differentially expressed: Adenomatous polyposis coli

protein 2 (APC2), a gene transcription regulator is

downregulated whereas Il11 (interleukin-11) is upregu-

lated. 24 and 36 h after MTA addition (84 h–96 h) 13

additional upregulated DEGs were observed: (a) the

small G-protein (ras) associated domain-containing

protein 6 (Rassf6) which is associated with cellular

apoptosis, (b) the epidermal growth factor receptor

(Egfr) involved in proliferation, (c) interleukin-17F

(Il17f), a pro-inflammatory cytokine, (d) the lysine-

specific demethylase hairless (Hr), a histone demethy-

lase, (e) deoxyribonuclease gamma (Dnase1l3), an

enzyme with hydrolytic DNA activity. Nucleus associ-

ated upregulated transcripts are: (f) Arnt2 coding for

Aryl hydrocarbon receptor nuclear translocator 2, a

transcription factor and (g) the protein FAM110C

(Fam110c) known for interactions with microtubules

and nucleus. Other upregulations are (h) phosphatidate

phosphatase LPIN3 (Lpin3) involved in lipid synthesis,

(i) monoacylglycerol lipase ABHD6 (Abhd6) forming

Fig. 5. Principal component (PC) analysis

of the transcriptome samples taken in the

experiment. The two main principal

components are cultivation time (PC1) and

condition (MTA treatment, PC2). Samples

were taken in the common preculture

(CPC) at 48-h cultivation time and after

MTA addition (final concentration: 250 µM)

at the cultivation time points 60, 72, 84,

96 and 144 h. Reference (REF) cultures

received the equal volume of water to

avoid dilution effects.

Fig. 6. (A) Analysis of differential expressed genes (DEGs) (log2-fold-change ≥|1| andP-value ≤ 0.05) throughout the experiment. MTA

supplemented cells (MTA) were compared to REF. Grey bars indicate downregulated and black bars show upregulated genes at different

sampling time points. (B) Venn diagram shows overlap of DEGs at 84 h–96 h–144 h. Numbers display all DEGs with the number of

downregulated genes in brackets.
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intraluminal vesicles and (j) the glycosylating protein

alpha-2,8-sialyltransferase 8F (St8sia6). Genes linked

to immune functions are upregulated, including (k) the

signaling factor SH2 domain-containing protein 1B

(Sh2d1b), (l) the tetraspanin leukocyte surface antigen

CD53 (CD53), and (m) the viral response component

2’-5’-oligoadenylate synthase-like protein 2 (Oasl).

Discussion

Optimum MTA addition levels during growth are

250–300 lM and stimulate cell cycle arrest,

increase cell size and ensure high viability

We investigated concentration and time dependency of

MTA addition in CHO cell cultures to elucidate the

impact of these factors on the CSPs. Different effector

levels at 48-h cultivation time (Figs 1 and 2) revealed

clear concentration dependency. Effects on growth, cell

cycle and cell size were affected by different concentra-

tions plateauing > 350 lM. CSP maxed out at about

250–300 lM. Furthermore, the two highest concentra-

tions c3 and c4 even disclosed negative effects as

decreasing viability and CSP. Noteworthy, effector

levels < 350 lM ensured higher viabilities and higher

CSPs than REF.

Similar dependencies of effector levels on CHO

growth were observed for catechins trapping cells in S-

phase [48]. By analogy, treatment of cells with AMP is

concentration-dependent and resulted in S-phase accu-

mulation. As a consequence, CSP increased [49].

Further investigations on optimum MTA additions

showed that supplementation during exponential

growth is most beneficial (Fig. 3). Coinciding growth-

dependent cell size increase may further support the

effect. Apparently, the combination of cell cycle arrest,

high viability, and increasing cell size defines a key sce-

nario for boosting CSP.

Many studies outlined the boosting effect of tempo-

rary cell cycle arrest on CSP although independent of

a specific cell cycle phase [24,28,32,41,50,51]. In several

CHO cell lines, CSP and cell size correlated [28]. How-

ever, cell size increase is linked to cell cycle [25–27]
which makes the independent study of each impact

hardly possible. Consequently, the combinatorial bene-

fit of cell cycle arrest with increased cell size, still

ensuring high cell viability, should be concluded as

beneficial for high CSP. Moreover, impaired cell

growth yields less biomass formation and allows to use

redundant energy and metabolic precursors for protein

production [52]. Apparently, MTA initiates the benefi-

cial combination when an optimum effector level of

250–300 lM is installed during exponential growth in

the medium.

Fundamental cell engineering strategies

Cell engineering for improved CSPs focus on engineer-

ing apoptosis, metabolism, cell cycle and protein secre-

tion [53]. Transcript studies of low and high producers

revealed that high recombinant protein formation neg-

atively correlates with gene expression of cell cycle,

metabolic RNA and protein processes [54]. Enhanced

gene expression was observed in protein folding, cell

survival, cell growth, vesicular trafficking and

cytoskeleton organization [55]. As the map of func-

tional gene annotations is still fragmented for CHO,

identification of promising novel gene functions is nec-

essary.

Table 1. Selection of differential expressed genes. Downregulated

genes are highlighted in grey.

Cultivation

time

Gene

name Encoded protein

84 h–96 h–

144 h

Plau Urokinase-type plasminogen activator

Aqp1 Aquaporin-1

Lcp1 Plastin-2

St14 Suppressor of tumorigenicity 14

protein homolog

72 h–84 h Apc2 Adenomatous polyposis coli protein 2

Il11 Interleukin-11

84 h–96 h Rassf6 Ras association domain-containing

protein 6

Abhd6 monoacylglycerol lipase ABHD6

Hr Lysine-specific demethylase hairless

Dnase1l3 Deoxyribonuclease gamma

Il17f Interleukin-17F

Lpin3 Phosphatidate phosphatase LPIN3

Arnt2 Aryl hydrocarbon receptor nuclear

translocator 2

Sh2d1b SH2 domain-containing protein 1B

Fam110c Protein FAM110C

Cd53 Leukocyte surface antigen CD53

Oasl 2’-5’-oligoadenylate synthase-like

protein 2

Egfr Epidermal growth factor receptor

St8sia6 Alpha-2,8-sialyltransferase 8F

96 h–144 h Add2 beta-adducin

Loxl2 Lysyl oxidase homolog 2

Il7r Interleukin-7 receptor subunit alpha

Tmprss11f Transmembrane protease serine 11F

Adgrd1 Adhesion G-protein coupled receptor

D1

Sema4d Semaphorin-4D

Akr1d1 Aldo-keto reductase family 1 member

D1

Mpeg1 Macrophage-expressed gene 1 protein

Pglyrp2 N-acetylmuramoyl-L-alanine amidase
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The role of the cytoskeleton part actin for CSP

after MTA addition

The water importer aquaporin 1 (encoded by Aqp1) was

upregulated 84 h–96 h–144 h after MTA addition

(Table 1) coinciding with increased cell size (Figs 2 and

3). This observation was seen in stress situations [56,57]

(e.g. hyperosmolarity) that caused increased intracellular

protein content and CSP [58,59]. In this experiment, the

increased need of membrane molecules as glycerolipids

could be satisfied by the upregulated phosphatide phos-

phatase LPIN3 (Lpin3) at 84 h–96 h. Co-upregulation of

Lcp1 and St14 occurred (84 h–96 h–144 h) coding for the

actin-associated enzyme plastin and matriptase [60,61].

Noteworthy, actin microfilaments, microtubules and

intermediate filaments compose the cytoskeleton which

takes over crucial functions for cell shape, protein synthe-

sis [62], transport [63] and secretion [64,65]. Dinnis et al.,

[66] observed that actin, tubulin, or the actin-binding cofi-

lin demonstrated an important role in protein transport

and secretion of high producers. Selection procedures for

high producers revealed according to data with enhanced

gene expression of actin-related proteins [67]. Recently,

Berger et al., [55] identified DEGs involved in cytoskele-

ton organization and vesicular trafficking as Rassf9 that is

linked to endosome recycling and is a trafficking regulator

[68] in high producers. Our studies revealed upregulated

genes (84 h–96 h) associated with intraluminal vesicles

(monoacylglycerol lipase ABHD6 (Abhd6)) and protein

processing (glycosylation) (alpha-2,8-sialyltransferase 8F

(St8sia6)) in the Golgi (Table 1). Actin cooperates with

polymerases via pre-initiation complex influencing gene

expression [69,70] and is involved in cellular response to

DNA damaging agents and toxins in CHO cells [71]. Next

to the abovementioned actin-related genes, Add2 (beta-ad-

ducin) at 96 h–144 h [72] and Fscn1 (fascin) at 96 h [73]

were upregulated in our data. Right after MTA addition

(72 h–84 h) adenomatous polyposis coli protein 2 (APC

2), a transcription factor linked with actin [74] is downreg-

ulated. It is associated with microtubules and interphase

[75] as protein FAM110C (Fam110c, upregulated at 84 h–
96 h) that impairs cell cycle progression [76].

Several gene expressions related to cytoskeleton parts

either for transport and secretion or cell growth are dif-

ferentially regulated in our data highlighting their

importance in the CSP enhancing mechanism of MTA.

Genes encoding for cellular survival,

transcriptional regulation and immune system

Plasminogen activator (Plau) upregulated at 84 h–
96 h–144 h is a growth factor, mitogen and apoptotic

reducer [77,78]. Another upregulated gene (84 h–96 h)

associated with cell growth, survival and transcription

is the tumor-suppressor ras association domain-con-

taining protein 6 (Rassf6) an important regulator of

cell cycle arrest and apoptosis and whose upregulated

family members were observed in high producers

[55,79]. The transcription factor aryl hydrocarbon

receptor nuclear translocator 2 (Arnt2) correlated with

cell proliferation [80] was downregulated at 72 h–84 h.

At 84 h–96 h Dnase1l3 and Egfr were upregulated

encoding deoxyribonuclease gamma (Dnase1l3) and

epidermal growth factor receptor (EGFR), respec-

tively. Dnase1l3 is a apoptosis-related factor [81]

whereas EGFR is associated with DNA synthesis and

proliferation [82]. Atf5 (cyclic AMP-dependent tran-

scription factor ATF-5) was upregulated at 84 h which

agrees with studies searching for transcription and pro-

tein production regulators in CHO cells [83].

Next to growth and cellular survival factors, DEGs

for histone proteins influenced transcription and repli-

cation [79]. Upregulation occurred for lysine-specific

demethylase hairless (Hr), a histone demethylase

(84 h–96 h), that interacts with cell cycle regulation

[84]. Additionally at 96 h–144 h, lysyl oxidase homo-

log 2 (Loxl2) and chromodomain-helicase-DNA-bind-

ing protein 5 (Chd5), both histone modifying enzymes

are upregulated [85,86].

Genes involved in immune functions as SH2

domain-containing protein 1B (Sh2d1b), CD53

(CD53), viral response component 2’-5’-oligoadenylate

synthase-like protein 2 (Oasl), interleukin-17F (Il17f)

(84 h–96 h) and interleukin-11 (Il11) (72 h–84 h) were

upregulated after MTA addition demonstrating a con-

nection to the immune system and its connected sig-

naling pathways [19].

DEGs regarding growth, survival and transcription

including DNA modification point out the multi-level

effects of MTA that enhanced viability and CSP.

Concluding remarks

MTA, the degradation product of SAM, boosts CSPs in

an anti-IL-8-producing CHO-DP12, presumed that opti-

mum MTA levels of 250–300 lM are installed for expo-

nentially growing cells. Indeed, the rise of VCDs slowed

down but CSPs increased up to +97%, even ensuring cell

viabilities better than REF. Moreover, titers were compa-

rable to REF in the best MTA addition case. These

improvements coincided with cell cycle modulations, i.e.

accumulations in S-phase followed by elevated cell num-

bers in G2-phase which both levelled out during cultiva-

tion. DEGs clearly showed upregulations of

cytoskeleton, growth, survival and transcription-associ-

ated genes as predominant regulation patterns. Although
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those DEGs may be qualified as a particular response on

MTA next to its function as polyamine synthesis inhibi-

tor that correlate with findings of other independent

studies outlining that actin-interacting proteins, cell pro-

liferation and histone proteins are promising candidates

for further cell engineering.

With MTA, a native compound is identified that

clearly boosts CSPs after ‘simple’ medium addition. It

is the key degradation product of SAM whose price

will reduce with its microbial production [87]. MTA

initiates regulation programs that deserve further

investigations, not only because they may offer even

further improvements but also because major findings

may be translated to other production cell lines.

Apparently, MTA addition positively stimulates cell

cycle arrest, cytoskeleton and cell survival genes con-

comitantly, thereby addressing key topics of current

cell line engineering. These findings should be consid-

ered for process intensification studies, especially for

perfusion processes where improvements of CSPs are

an important goal of optimization.
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