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Abstract 

Introduction: The High mortality rates associated with heart failure (HF) have propelled the 
strategy of drug repurposing, which seeks new therapeutic uses for existing, approved drugs 
to enhance the management of HF symptoms effectively. An emerging trend focuses on 
utilizing real-world data, like EHR, to mimic randomized controlled trials (RCTs) for evaluating 
treatment outcomes through what are known as emulated trials (ET). Nonetheless, the 
intricacies inherent in EHR data—comprising detailed patient histories in databases, the 
omission of certain biomarkers or specific diagnostic tests, and partial records of symptoms—
introduce notable discrepancies between EHR data and the stringent standards of RCTs. This 
gap poses a substantial challenge in conducting an ET to accurately predict treatment efficacy. 

Objective: The objective of this research is to predict the efficacy of drugs repurposed for HF 
in randomized trials by leveraging EHR in ET. 

Methods: We proposed an ET framework to predict drug efficacy, integrating target prediction 
based on biomedical databases with statistical analysis using EHR data. Specifically, we 
developed a novel target prediction model that learns low-dimensional representations of drug 
molecules, protein sequences, and diverse biomedical associations from a knowledge graph. 
Additionally, we crafted strategies to improve the prediction by considering the interactions 
between HF drugs and biological factors in the context of HF prognostic markers. 

Results: Our validation of the drug-target prediction model against the BETA benchmark 
demonstrated superior performance, with an average AUCROC of 97.7%, PRAUC of 97.4%, 
F1 score of 93.1%, and a General Score of 96.1%, surpassing existing baseline algorithms. 
Further analysis of our ET framework on identifying 17 repurposed drugs—derived from 266 
phase 3 HF RCTs—using data from 59,000 patients at the Mayo Clinic highlighted the 
framework's remarkable predictive accuracy. This analysis took into account various factors 
such as biological variables (e.g., gender, age, ethnicity), HF medications (e.g., ACE inhibitors, 
Beta-blockers, ARBs, Loop Diuretics), types of HF (HFpEF and HFrEF), confounders, and 
prognostic markers (e.g., NT-proBNP, BUN, creatinine, and hemoglobin). The ET framework 
significantly improved the accuracy compared to the baseline efficacy analysis that utilized 
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EHR data. Notably, the best results were improved in AUC-ROC from 75.71% to 93.57% and 
in PRAUC from 78.66% to 90.34%, compared to the baseline models. 

Conclusion: Our study presents an ET framework that significantly enhances drug efficacy 
emulation by integrating EHR-based analysis with target prediction. We demonstrated 
substantial success in predicting the efficacy of 17 HF drugs repurposed for phase 3 RCTs, 
showcasing the framework's potential in advancing HF treatment strategies.  

Keywords: Drug-target prediction, Emulated Trial, EHR, Drug repurposing, Heart Failure 

 

1. Introduction 

Heart failure (HF) is a critical medical condition with high rates of hospitalization and mortality1, 
where the heart fails to adequately pump blood to meet the body's needs2. There is an urgent 
need for improved therapeutic approaches to effectively manage HF symptoms, enhance the 
quality of life, and increase survival rates. Drug repurposing is an innovative approach to drug 
discovery that involves finding new therapeutic uses for existing drugs3. Since the safety 
profiles of the drugs (e.g., pharmacokinetics/pharmacodynamics) for repurposing are already 
established through rigorous tests in the early phases4, 5, evaluating the potential efficacy of 
the repurposed drug candidate is critical to streamline the process and efficiently allocate 
resources for the large-scale trials like phase 3 clinical trials, which can be challenging (e.g., 
20% failure rate for HF6) and costly due to multiple factors 7. 

A growing trend involves leveraging real-world data, such as Electronic Health Records (EHR), 
to simulate randomized trials (RCTs) for assessing treatment outcomes, referred to as 
emulated trials (ET) 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. Contrary to the controlled settings of RCTs, ETs 
utilize observational data from everyday clinical practices. This data encompasses the 
complexities of patient histories stored in databases, the absence of certain biomarkers or 
specific diagnostic images, and incomplete records of symptoms15. Although ETs are 
theoretically expected to adhere to the same eligibility criteria as RCTs, within the 'target trial 
framework,'10 to select appropriate patient groups and extract relevant data from EHR for 
efficacy evaluation, the discrepancies14, 15 between RCT standards and EHR data present a 
significant challenge in executing an ET effectively for predicting treatment effectiveness18, 19, 

20, 21, 22, 23, 24. Although the existing cutting-edge ET methods25, 26 have introduced AI to balance 
confounders and simplify criteria for patient selection, their primary focus has not been on 
improving the accuracy of ET predictions, and their performance in efficacy prediction is not 
been tested. 

This study introduces a novel framework designed to predict the efficacy of repurposed drugs 
based on EHR. Specifically, the framework improves ET by integrating a proposed target 
prediction algorithm that utilizes drug chemical compositions, protein sequences, and 
heterogeneous biomedical knowledge bases. We evaluated the target prediction algorithm 
using a significant drug-target prediction benchmark known as BETA27. For evaluating the 
proposed ET framework, we manually identified 17 repurposed drugs for HF from 266 phase 
3 RCTs, which included 7 with a positive effect and 10 without. Our in-depth analysis covered 
multiple HF-related clinical indicators (e.g., N-terminal pro-b-type natriuretic peptide, blood 
urea nitrogen, Creatinine, and hemoglobin), patient cohorts (e.g., Heart failure with preserved 
ejection fraction and Heart failure with reduced ejection fraction), HF medications (e.g., 
angiotensin-converting-enzyme inhibitors, beta-blockers, angiotensin II receptor blockers, and 
loop diuretics), and biological factors (e.g., sex). The ET framework significantly improved the 
predictive accuracy over the baseline efficacy analysis using EHR data, as evidenced in 
AUCROC (P-value = 2.2e-16) and PRAUC (P-value = 2.2e-16). Notably, the best results were 
increased from 75.71% to 93.57% for AUC-ROC and from 78.66% to 90.34% for PRAUC. 
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Figure 1, An overview of the proposed framework. (a) shows the general pipeline of the framework, which starts 
with a search for the relevant clinical trial drugs on ClinicTrials.gov and the identification of genes using the 
DisGeNET28 database. Using a list of repurposed trial drugs and the genes, the proposed target prediction model 
is used to predict the probabilities of drug-gene associations. The efficacy of the repurposed drug is then analyzed 
based on EHR data, where the exposed group and unexposed groups are compared against a list of clinical tests 
related to HF. The overall prediction results are obtained by combining the results from target prediction and EHR-
based analysis. (b) provides more details about the developed target prediction model, which employs drug 
chemical structure, protein sequence, and knowledge graph to obtain embedding layers for each biomedical entity. 
The cost function is calculated by minimizing the weights of the re-constructed sub-knowledge graphs and original 
graphs. The predicted results are extracted from the re-constructed drug-target graph. 

 

2. Results 

2.1. Proposed framework-integration EHR-based efficacy analysis with target 
prediction 

Our proposed an ET framework that integrates target prediction with EHR-based drug-efficacy 
analysis. The process comprises four key steps (refer to Figure 1 (a) for the study design): 1) 
identifying genes associated with the disease (i.e., HF), 2) predicting drug targets based on 
HF-related genes, 3) extracting the study cohort from EHR, and 4) efficacy analysis. 
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Table 1. Statistics of the HF patients from the Mayo Clinic EHR 

Variables # patient Variables # patient 

Age ± SD 53.0 ± 30.9 Gender   

Ethnicity  Female  17,931 
Non-Hispanic White 37,406 Male 24,005 

Others  4,531 Prognostic Markers   
Unknown 17,165  NT-proBNP 25,567 

Baseline HF drugs   Creatinine 36,731 
ACEI 26,306 BUN 41,598 
BB 45,404 Hemoglobin 41,626 

ARB 17,240 Repurposed drugs   
LD 52,889 Albuterol 32,697 

HF subtypes   Amiodarone 16,519 
HFpEF 33,259 Aspirin 45,911 
HFrEF 28,123 Cholecalciferol 12,675 

Confounders   Dexamethasone 30,825 
Arrhythmias (including baseline variations, 
Atrial fibrillation, Flutter) 

29,268 Macitentan 203  

Cardiac Arrest (including history of) 1,870 Metformin 5,182 
Myocardial infarction (past, prior) 12,935 Methotrexate 698 
Hypertension (including long-standing) 33,602 Mirabegron 405 
Pulmonary hypertension 2,619 Prednisone 16,401 
Ischemic heart disease 27,814 Ranolazine 811 
Hypertensive heart and Renal disease 3,671 Rosuvastatin 7,384 
Medications affecting heart health 777 Sertraline 6,306 
Congestive heart failure, unspecified 30,819 Sildenafil 800 
Renal Failure (including end-stage, acute, 
and chronic) 

22,137 Simvastatin 9,819 

Diabetes Mellitus (type 1 and type 2) 17,572  Thiamine 5,860 

# HF in total 59,102 Warfarin 21,291 

 

In the initial phases, we developed an innovative algorithm for predicting drug targets. This 
algorithm is designed to assimilate information regarding the chemical structure of drugs, the 
sequence of proteins, and biomedical relationships, with the aim of reconstructing the original 
knowledge graph. This reconstruction facilitates the prediction of new potential associations 
between drugs and their targets. In the subsequent stages, our research made use of the 
Mayo Clinic database, which comprises a wide range of variables. These include three 
biological factors—age, sex, and ethnicity—as well as various HF medications such as 
angiotensin-converting-enzyme inhibitors (ACEI), beta-blockers (BB), angiotensin II receptor 
blockers (ARB), and loop diuretics (LD). We also explored HF subtypes, such as HF with 
reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF), and 
included BASELINE cohorts, which are specific cohorts (e.g., HFrEF) identified by the 
inclusion criteria in RCTs. The Mayo Clinic patient database encompasses a total of 59,102 
HF patients. For statistical details, please refer to Table 1. The EHR data will be employed to 
improve the prediction of efficacy using the target prediction algorithm. For a comprehensive 
explanation of these methods, please see Section 4. 
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2.2. Target prediction model and the evaluation with BETA benchmark 

 

 

Figure 2. Performance of the proposed drug-target prediction method compared to other baseline methods in 
the evaluation based on the BETA benchmark. (a) the identification of the best-performing method among all 
comparison methods for each test in the BETA evaluation tasks, (b) a 1-to-1 comparison between the proposed 
method (represented by the red line) and the baseline method (represented by the colored area) in all the tests 
on the spider chart, and (c) a breakdown of the detailed results of the overall test in BETA evaluation tasks (i.e., 
Test 0). Overall, the proposed method outperforms all other methods across all evaluation measurements. 

 

Our proposed target prediction model was put to the test using the BETA benchmark, which 
comprises seven tests and 344 tasks designed to evaluate drug-target prediction models. 
These tests evaluate the models from various perspectives, including general screening, 
target and drug screening based on categories, searching for specific drugs and targets, and 
drug repurposing for specific diseases. To compare our model's performance, we used six 
state-of-the-art predictive models (DTINet29, bioLNE30, NeoDTI31, DeepPurpose32, DeepDTA33, 
GraphDTA34) as baseline methods (See Figure 2). The proposed method performed 
exceptionally well with an average AUCROC of 97.7%, PRAUC of 97.4%, F1 score of 93.1%, 
and General Score of 96.1%, outperforming the best-performing baseline methods, 
DeepPurpose (average AUCROC: 88.0%, PRAUC: 84.4%, F1: 79.5%, General Score: 84.0%), 
and NeoDTI (average AUCROC: 86.5%, PRAUC: 83.3%, F1: 74.2%, General Score: 81.3%). 
Our proposed method was outstanding, with 266 out of 404 tasks (65.8%) outperforming other 
methods across all seven tests. It's important to note that for test 4, we counted the average 
precision for the top 10, 20, 50, and 100, which made 80 tasks counted rather than 20 tasks 
counted in the BETA. For each test, our proposed method achieved excellent results with 
10/10 (100.0%), 61/90 (67.8%), 66/72(91.7%), 62/72(86.1%), 42/80 (52.5%), 17/40 (42.5%), 
8/40 (20.0%). Please refer to the Supplementary Figures 1-11 for more detailed results. 
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2.3. EHR-based efficacy analysis 

 

 

Figure 3. Evaluation of treatment efficacy from EHR Data. (a) presents all analyses conducted for (i) four 
distinct groups (i.e., Baseline group, all HF patients, HFpEF, and HFrEF) using NT-proBNP, and (ii) four prognostic 
markers (specifically, NT-proBNP, BUN, Creatinine, Hemoglobin) for the BASELINE patient group. (b) Analysis 
outcomes in terms of AUC-ROC and PRAUC metrics for the evaluations in (i) and (ii). (c) The detected positive 
association between the prognostic marker levels and the use of the repurposed drugs under study, as determined 
through the Chi-square test. The '+' and '-' symbols indicate that the number of observed patients is greater than 
or less than expected, respectively. The areas shaded in red demonstrate a positive correlation between the 
administration of the drug and an elevated-normal level of a specific prognostic marker. 

 

To assess the efficacy of 17 drugs repurposed for phase 3 HF clinical trials, where 7 
demonstrated positive outcomes and 10 showed no effect, we performed chi-square tests 
across various combinations of cohorts (namely BASELINE, ALL, HFpEF, and HFrEF) and 
prognostic markers (NT-proBNP, BUN, Creatinine, Hemoglobin). As illustrated in Figure 3, 
the combination of BASELINE cohorts and NT-proBNP marker emerged as the most 
predictive of drug efficacy (with AUC-ROC=75.71% and PRAUC=78.66%) according to the 
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chi-square tests. Although most drugs that showed no effect were accurately predicted as 
such, a large number of drugs that had positive effects were incorrectly predicted, indicating 
a high rate of false positives for the efficacy prediction only using EHR. For the whole 
combinations for cohorts and prognostic markers, please refer to Supplementary Figures13. 

2.4. Improving efficacy prediction with integration of target prediction 

 

 

Figure 4. Efficacy predictions based on the integration of target predictions and EHR-based analysis. (a) 
shows the target prediction for 17 drugs based on the proposed algorithm. (b) presents a chi-square analysis for 
(i) four distinct groups using NT-proBNP, and (ii) four prognostic markers for the BASELINE patient group. (c) 
presents the outcomes in terms of AUC-ROC and PRAUC metrics for the evaluations in (i) and (ii). 

 

The predictions of 17 drugs tested against 25 HF-related genes related to HF are displayed in 
Figure 4 (a). Dexamethasone, thiamine B1, ranolazine and are the top drugs predicted to 
have the most HF-related genes, with 24/25, 20/25, and 15/25 genes, respectively. On the 
other hand, Simvastatin, Warfarin, and Rosuvastatin have the least number of HF-related 
genes, with only 2/25, 2/25, 2/25, and 1/25 genes, respectively. It is worth noting that all these 
drugs are used for treating or managing medical conditions related to the cardiovascular 
system. Specifically, Rosuvastatin and Simvastatin work by reducing cholesterol production 
and increasing clearance of LDL-cholesterol from the bloodstream by inhibiting HMG-CoA 
reductase, an enzyme involved in cholesterol synthesis. Regarding genes, NOS3, ADRB1, 
and VEGFA have the most HF-repurposed drugs, with 14/24, 12/24, and 11/24 drugs, 
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respectively. Meanwhile, PTH, RAC 1, and GRK2 are the genes with the least number of 
repurposed drugs, with only 1/24 drugs for each. We show the performance of efficacy 
prediction based on target prediction in Supplementary Figures12. We also combined target 
prediction outcomes with chi-square tests for better efficacy forecasts. Figures 4(b) and (c) 
highlight the benefits of incorporating target prediction into efficacy forecasts, notably a 
decrease in false positives, as drugs showing positive effects are often associated with a 
higher count of positive targets. In particular, for NT-proBNP within the BASELINE cohort, 
there's an improvement from an AUC-ROC of 75.71% and a PRAUC of 78.66% to an AUC-
ROC of 85.71% and a PRAUC of 87.28%. The integration of target prediction significantly 
improves EHR-based analysis, as demonstrated in Section 2.3. This improvement is evident 
in a single-tailed T-test for AUCROC (P-value = 4.205e-12) and PRAUC (P-value = 2.743e-
06). For the whole combinations for cohorts and prognostic markers, please refer to 
Supplementary Figures14. 
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2.5. Improvement by considering Interaction with HF drugs and Sex  

 

 

Figure 5. Improvement of including the interactions of HF Drugs and Gender in EHR-based analysis. (a) 
displays improved predictions through various interaction combinations for our prognostic markers, (i) NT-proBNP 
(ii) Creatinine and (iii) Hemoglobin, and (iv) BUN. Red nodes symbolize improvement, while blue nodes depict a 
decrease in AUCROC performance. The triangle marks the highest AUCROC improvement. (b) details the 
prediction for 17 drugs in the most effectively performing combinations (as indicated by triangles in (a)) along with 
the respective AUCROC and PRAUC metrics. 
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To refine our predictive model by accounting for variable interactions, we incorporated the 
coefficients derived from the binomial regression model into our target prediction. This 
approach was employed particularly when a significant correlation (i.e., P-value<0.5) was 
observed between the variation in biomarkers and the intake of drugs, thereby enabling us to 
more accurately generate efficacy predictions. For each prognostic marker, we factored in the 
interactions between HF medications and gender, which showed all the increases and 
decreases in outcomes in Figure 5 (a). Among the four markers, aside from NT-proBNP, the 
other three indicators (BUN, Creatinine, and Hemoglobin) demonstrated enhanced predictive 
accuracy when accounting for interactions. No significant advantages were noted for NT-
proBNP upon including interactions. Notably, BUN and Hemoglobin showed considerable 
improvements, with BUN and Hemoglobin accounting for 6 and 11 of the top 23 results, 
respectively. Further detailed analysis presented in Figure 5 (b) highlights that the best 
interaction combinations elevated the AUCROC to 93.57% and PRAUC to 90.34%, up from 
85.71% and 87.28%. This improvement of including interactions in efficacy prediction is 
evident in a single-tailed T-test for AUCROC (P-value = 8.338e-08) and PRAUC (P-value = 
2.004e-15). For the improvement evaluated by PRAUC, please refer to Supplementary 
Figure 15. 

3. Conclusion and Discussion 

To bridge the gap between the outcomes of RCTs and those inferred from EHRs in the context 
of ET, this study introduces a new strategy for predicting the efficacy of repurposed drugs 
through the integration of biological and clinical insights. Our research addresses the 
previously unexplored accuracy of using EHRs for drug discovery in the adaptation of ETs25, 

26. By evaluating 17 drugs repurposed for phase 3 HF RCTs, we highlighted the inherent 
limitations of trial simulations based solely on EHR data. We advocate for a more sophisticated 
approach that improves these simulations of RCTs with target prediction for repurposing HF 
drugs. 

In the following sections, we will discuss several aspects and issues related to this study. 

AI-based RCT emulation: The gap between real-world evidence generation in clinical settings 
(e.g., EHR) and the controlled environment of RCTs means that EHR-based simulations 
cannot replicate RCT outcomes exactly16, 17, 35. Unlike existing studies25, 26, 36 that aimed to 
improve data generation through AI methods like the propensity score, our study sought to 
refine emulation through two primary strategies: 1) incorporating biological insights via target 
prediction, and 2) stratification based on variable interactions (e.g., HF medications and sex). 
Our approach demonstrated encouraging outcomes in predicting efficacy, surpassing baseline 
ET methodologies. While our experiment reported optimal results in Section 2.4, selecting the 
ideal combination of interactions is not straightforward. Therefore, we believe that the 
integration of KG in high-throughput drug screening could present a more viable solution. 
Furthermore, utilizing a more precisely tailored stratified cohort could be particularly 
advantageous for specific tasks in which the confounders and interacting variables within 
RCTs are well-defined. Developing a more sophisticated method to comprehend these 
variables is crucial for the process of data generation from EHR. 

Eligibility criteria for emulated trials: HF is a prominent health concern affected by a range of 
factors, including genetics, environmental influences, and various chronic and acute 
conditions37, 38, 39, 40. The drugs we evaluated from phase 3 trials were specifically chosen for 
their potential to address the underlying causes of HF and to alleviate symptoms, targeting 
different HF categories such as HFpEF, HFrEF, or HF in general. These trials often employed 
a variety of selection criteria, taking into account the study's goals, potential risks, and 
confounding factors. In our research, we utilized demographic information, HF medications, 
HF subtypes, confounding variables, and prognostic markers to analyze drug efficacy through 
simulation. We recognize that this does not encompass all variables considered in the trials 
we reviewed. While including more variables in the simulations could reduce bias and improve 
accuracy, it might also diminish the generalizability, which is crucial for broadly screening 
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drugs for clinical trials. Therefore, further research is necessary to determine the optimal way 
to select variables for simulated trials in the context of high-throughput drug screening. 

HF-related genes: The target prediction process is essential for evaluating the potential of 
repurposing drugs for new therapeutic uses. In prioritizing genes that might be targeted by 
drugs, our proposed method utilizes GDA scores28—derived from various scientific sources 
including the volume of supporting literature—as criteria for gene selection, treating all genes 
as equally significant in the prediction of drug-target relationships. Yet, the relevance of 
specific genes should be assessed based on their role in biological processes, such as those 
involved in pharmacokinetics and pharmacodynamics, to tailor treatments more closely to 
individual needs. For instance, previous research has indicated that genes like AGT and 
HIF1A are notably linked to an increased risk of HFpEF in individuals with chronic kidney 
disease41 and those suffering from obesity and metabolic syndrome42, respectively. Although 
the significance is based on the prediction of the potential novel drug-target associations, it 
may be beneficial to evaluate these genes more comprehensively as they are discovered to 
play a more critical role in drug development (e.g., AGT plays a central role in the regulation 
of blood pressure43, and HIF1A has been implicated in the development of cardiac hypertrophy 
and fibrosis at a low oxygen level44) 

EHR: Our study was conducted solely based on Mayo Clinic data, but there are more 
sophisticated approaches that can be explored by leveraging multiple EHR sources. There 
are two potential directions to consider. Firstly, utilizing integrated EHR databases, such as 
All of Us45, could offer a feasible solution to analyze a large patient cohort. However, this 
approach may introduce potential bias as the factors used to pull the cohort may vary across 
different participating hospitals. Secondly, sharing models, like federated learning46, 47, could 
be employed, where separate models are built with a selected set of hospitals within an 
existing research network, such as PCORnet48. However, this approach may require additional 
effort in data processing and could face common challenges, such as the competitive nature 
of maintaining advantages among participating sites49, 50. Furthermore, although a more 
advanced ad-hoc linear model could be utilized to select the combination of the cohort and 
potentially achieve better prediction performance, we did not include it in the results section 
due to concerns about overfitting and lack of generalizability. The focus of our study was to 
employ 17 drugs as a case study to evaluate the proposed method's ability to predict the 
efficacy of the drugs for HF. While the initial results demonstrate promising predictive 
performance, drawing conclusions about the method's effectiveness at this stage would be 
premature. Consequently, it is crucial to evaluate whether the proposed method can achieve 
similarly promising outcomes across a diverse array of diseases. This assessment will aid in 
refining the method's effectiveness and promote its use in drug repurposing for precision 
medicine within clinical settings. 
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4. Methods 

4.1. Repurposing drugs for HF in phase 3 RCTs  

 

 

Figure 6. The flow of the data generation for the study.  

 

We conducted a search on ClinicalTrials.gov using the keywords "heart failure" and filtered by 
"completed" status and "phase 3" phase in order to acquire drugs undergone the phase 3 
RCTs. Out of the total 266 clinical trials gathered, two experts, Drs. Chen and Dai, conducted 
reviews of each trial to assess whether it was specifically designed for HF and evaluated the 
repurposed efficacy. Their evaluations were based on the trial's results or related articles 
associated with the clinical trial number. The reviews provided by both experts were 
subsequently merged for comparative analysis, and only those trials exhibiting consistent 
determinations were ultimately included. After this review, we narrowed down the list to 80 
clinical trials for 53 drugs. Subsequently, an additional filtering process was conducted to 
exclude drugs that were not present in the BETA benchmark. This led to the identification of 
a list comprising 17 drugs. Out of the drugs we examined, 7 were determined to have beneficial 
impacts on HF, while the other 10 showed no discernible effects. For a comprehensive list of 
repurposed drugs, please refer to Supplementary Table 1. 

4.2. Retrieve of the potentially druggable genes 

Using the publicly available knowledgebase, DisGeNET28, we conducted a search for genes 
associated with HF. DisGeNET is a comprehensive database that contains genes and variants 
linked to human diseases, sourced from GWAS catalogs, scientific literature, and animal 
models. By entering the search term "heart failure" (UMLS CUI: C0018801) into the DisGeNET 
platform, we obtained a list of 1,499 results. We filtered them based on the GDA28 score, which 
is a confidence score calculated by the number and type of sources (level of curation, 
organisms). We identified 25 genes related to HF that were also present in the BETA 
benchmark. For more information on these genes, please refer to Supplementary Table 2. 

4.3. Target prediction 

Given a heterogeneous network 𝐺(𝑉, 𝐸), a set of vertices 𝑉 (i.e. biomedical entities), and a 

set of edges 𝐸 (i.e. known associations), where 𝑉 are multiple types of vertices (e.g., drugs or 
targets) and 𝐸  are multiple types of edges that connect the vertices (e.g., drug-target 

associations), our objective is to predict the potential new associations among 𝑉. Specifically, 
we have four types of vertices, which are drugs 𝐷, targets 𝑇, diseases 𝐷𝑠, and side effects 𝑆, 

where 𝐷 ∈ 𝑉, 𝑇 ∈ 𝑉, 𝐷𝑠 ∈ 𝑉, 𝑆 ∈ 𝑉. For each drug 𝑑, a chemical structure of such a drug is 
given as 𝑠𝑡𝑟𝑑. For each target 𝑡, a protein sequence of such a target is given as 𝑠𝑒𝑞𝑡. When 
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there is a linking edge existing in the 𝐺, the pair of vertices is defined as {(𝑢, 𝑣)|𝑢 ∈ 𝑉 ∧ 𝑣 ∈
𝑉 ∧ (𝑑, 𝑡) ∈ 𝐸}, while there is an unknown linking edge, the pair of vertices is defined as 
{(𝑢, 𝑣)|𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ∧ (𝑑, 𝑡) ∉ 𝐸}. Therefore, the problem of drug-target prediction can be 
defined as, given a pair of a drug 𝑑  and a target 𝑡 , predicting whether the pair 
{(𝑑, 𝑡)|𝑑 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉}  is an existent association (referred to as positive) or nonexistent 
association (referred to as negative).  

We have developed a novel hybrid model for drug-target prediction with the incorporation of 
two encoding networks (as depicted in Figure 1(b)), the D-network that learns the biological 
features from drug chemical structure and protein sequence, the N-network that learns the 
topological features from a set of bipartite knowledge graphs. Specifically, for the D-network, 
we get the latent vectors (i.e., embeddings) generated from the encoder ℛ𝑑𝑟𝑢𝑔(𝑠𝑡𝑟𝑑) for the 

drug's chemical structure. Similarly, the latent vectors for protein sequences are obtained from 
the encoder ℛ𝑡𝑎𝑟𝑔𝑒𝑡(𝑠𝑒𝑞𝑡). In practice, we adopted the encoder layers from DeepPurpose32. 

For the N-network, we get the embedding of a node 𝑣  from the t-th layer as 𝑓𝑡(𝑣) =
∑ 𝑓t−1(𝑣′) 

𝑒(𝑣,𝑣′)∈𝐸
, 𝑓𝑡−1(𝑣′)  embeddings of  the neighborhood 𝑣′ . In practice, 𝑓𝑡(𝑣)  is 

implemented based on NeoDTI31. We further updated the embedding as 𝑓t(𝜈)  ←
𝐶𝑜𝑛𝑐𝑎𝑡(𝑓t−1(𝜈), ℛ) , where ℛ  is an embedding learned from D-network. Specifically, 
ℛ = ℛ𝑑𝑟𝑢𝑔 when 𝜈 is a drug and   ℛ = ℛ𝑡𝑎𝑟𝑔𝑒𝑡 when 𝜈 is a target. The output of the designed 

network is ℂ which corresponds to the set of bipartite graphs. The loss function is ℂ = 𝜆1ℂ1 +
𝜆2ℂ𝑞 … + 𝜆kℂ𝑘 , where 𝜆1 + 𝜆2 + ⋯ + 𝜆k = 1 . ℂ𝑘  the objective function for the subgraph 𝑘 , 

which is calculated: ℂ𝑘 = ∑ ‖𝑠(𝑒) − f(𝑢)ℚℕ𝑇f(𝑣)‖2
𝑒(𝑢,𝑣) ∈𝐸 , where 𝑠(𝑒) is the weight of an edge 

𝑒 and 𝑠(𝑒) = 1 if there is a link between the nodes 𝑢 and 𝑣. f(𝑢) is the embedding of node 𝑢, 

ℚ and ℕ are the edge projection function. For a detailed description of the proposed model, 
please refer to Supplementary File 1. For the evaluation of target prediction, please refer to 
Section 2.2. 

4.4. Efficacy analysis based on EHR  

We conducted a comparative analysis, utilizing methods such as the Chi-square test, to 
assess whether the cohort exposed to the repurposed drug under investigation would achieve 
more favorable outcomes compared to the unexposed cohort, which consists of patients not 
receiving the repurposed drug. The EHR data of Mayo Clinic HF patients utilized in this study 
were obtained with the appropriate approval from the Mayo Clinic's Institutional Review Board 
(IRB). We used four specific tests that are considered as the HF prognostic markers in 
clinical37, 40, 51: N-terminal pro-b-type natriuretic peptide (NT-proBNP), blood urea nitrogen 
(BUN), creatinine, and hemoglobin. The values of the clinical results were categorized as 
normal or abnormal based on normal ranges defined in clinical practice. The HF patients are 
defined by ICD9 and 10 codes (see Supplementary Table 3 for the details), and the following 
four medications recommended by the AHA/ACC/HFSA guideline40 were considered as the 
baseline HF drugs (see Supplementary Table 4 for the details) for the unexposed cohorts: 
ACEI, BB, ARB, and LD. Our exposed group consisted of HF patients who also take 
repurposed drugs before completing their medication regimen from any of the above 
categories. We stratified the patients based on the clinical subtypes of HF, which are HFrEF 
and HFpEF. Instead of using a static subtype for all drugs across the evaluations, we also 
incorporated a dynamically stratified patient group called the BASELINE group, which was 
defined based on the eligibility criteria specified in RCTs. (see Supplementary Table 1 for 
the BASSELINE cohort for each drug). In addition to the three biological variables, which are 
age, sex, and ethnicity, we also include 12 confounding factors that are defined by our domain 
experts (Drs. Li, Dai, Chen, and Bielinski) in this study. Please refer to Table 1 for the cohort 
details. 

Given that the advanced method to compute the propensity score did not yield improved 
results in balancing variables26, we adopted the traditional logistic regression-based 
propensity score model to balance the confounders before the analysis. Specifically, 
propensity score is generated based on the logistic regression in prediction of the drugs, which 
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is further used to generate the pair-wised case/control groups for analysis52. Subsequently, 
we analyzed the exposed and unexposed groups to learn the difference in the distribution of 
normal versus abnormal values for prognostic markers (such as NT-proBNP) through chi-
square testing, where a value of 1 indicates a significant positive correlation, -1 denotes a 
significant negative correlation, and 0 signifies a lack of significant correlation (refer to 
Sections 2.2 and 3.3 for results). To expand our analysis and incorporate the effects of 
interactions between HF medications (namely ACEI, BB, ARB, and LD) and biological factors 
(such as sex), we employed a binomial regression model to detect the positive or negative 
impacts of the drugs under investigation. The final prediction value will be an integration of the 
coefficients derived from the binomial regression model into the target prediction based on 

𝑠𝑐𝑜𝑟𝑒 = 𝑁𝑜𝑟𝑚(
1

1+𝑒−𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ #𝑡𝑎𝑟𝑔𝑒𝑡), where 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 is the coefficient from the binomial 

regression model and #𝑡𝑎𝑟𝑔𝑒𝑡 is the number of positive targets predicted and 𝑁𝑜𝑟𝑚(∗) is a 
normalized score. 

To calculate AUCROC and PRAUC, we compared the normalized prediction scores from the 
proposed model and the chi-square test with the labeled drugs against the labeled drugs (i.e., 
a positive effect and no effect). 

Contributors 

NZ conceptualized the study. NZ designed the target predictive model, SZ and SC developed 
and optimized the model. SC prepared EHR data and NZ conducted the experiments. NZ, SC, 
and YY conducted the statistical analysis and data visualization. The initial draft of the report 
was composed by NZ and SC, and the other authors evaluated and provided feedback on it. 
All of the authors collectively assumed the ultimate responsibility of deciding to submit the 
report for publication and committed to being answerable for all aspects of the work, ensuring 
that any concerns regarding the precision or honesty of any part of the work are adequately 
addressed and resolved. NZ supervised and administered the study. 

Declaration of interests 

None 

Acknowledgment  

This work is supported by a grant from the National Institute of Health (NIH) NIGMS 
(R00GM135488).  

Data and Code Availability 

Data used in the preparation of this article were obtained from the BETA, which can be 
accessed in https://github.com/bioIKEA/IKEA_BETA_Benchmark. The used code is publicly 
available at https://github.com/bioIKEA/BETA_Trial_Prediction 

 

Reference 

1. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. 
European journal of heart failure 2020; 22(8): 1342-56. 

2. Shah KS, Xu H, Matsouaka RA, et al. Heart Failure With Preserved, Borderline, and 
Reduced Ejection Fraction. Journal of the American College of Cardiology 2017; 70(20): 2476-
86. 

3. Park K. A review of computational drug repurposing. Translational and clinical 
pharmacology 2019; 27(2): 59-63. 

4. Wang X, Guan Y. COVID‐19 drug repurposing: a review of computational screening 
methods, clinical trials, and protein interaction assays. Medicinal research reviews 2021; 41(1): 
5-28. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2023.05.25.23290531doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290531
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding 
strategies to find alternative uses of therapeutics. Expert Opinion on Drug Discovery 2020; 
15(4): 397-401. 

6. Bayes‐Genis A, Aimo A, Jhund P, et al. Biomarkers in heart failure clinical trials. A 
review from the Biomarkers Working Group of the Heart Failure Association of the European 
Society of Cardiology. European Journal of Heart Failure 2022; 24(10): 1767-77. 

7. bookS Metaphor S, StatiSticS A. Time for one-person trials. Nature 2015; 520: 30. 

8. Lambrinidis G, Tsantili-Kakoulidou A. Multi-objective optimization methods in novel 
drug design. Expert Opinion on Drug Discovery 2021; 16(6): 647-58. 

9. Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. 
Machine learning approaches and databases for prediction of drug–target interaction: a survey 
paper. Briefings in bioinformatics 2021; 22(1): 247-69. 

10. Ezzat A, Wu M, Li X-L, Kwoh C-K. Computational prediction of drug–target interactions 
using chemogenomic approaches: an empirical survey. Briefings in bioinformatics 2019; 20(4): 
1337-57. 

11. Chen R, Liu X, Jin S, Lin J, Liu J. Machine learning for drug-target interaction prediction. 
Molecules 2018; 23(9): 2208. 

12. Wan F, Hong L, Xiao A, Jiang T, Zeng J. NeoDTI: neural integration of neighbor 
information from a heterogeneous network for discovering new drug–target interactions. 
Bioinformatics 2019; 35(1): 104-11. 

13. Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction 
prediction and computational drug repositioning from heterogeneous information. Nature 
communications 2017; 8(1): 573. 

14. Li J, Lu Z. Pathway-based drug repositioning using causal inference. BMC 
bioinformatics 2013; 14(16): 1-10. 

15. Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction 
with patients’ electronic health records-based clinical corroboration toward drug discovery. 
Bioinformatics 2020; 36(Supplement_1): i436-i44. 

16. Hodos RA, Kidd BA, Khader S, Readhead BP, Dudley JT. Computational approaches 
to drug repurposing and pharmacology. Wiley interdisciplinary reviews Systems biology and 
medicine 2016; 8(3): 186. 

17. Zhou M, Wang Q, Zheng C, Rush AJ, Volkow ND, Xu R. Drug repurposing for opioid 
use disorders: integration of computational prediction, clinical corroboration, and mechanism 
of action analyses. Molecular psychiatry 2021: 1-11. 

18. Zong N, Li N, Wen A, et al. BETA: a comprehensive benchmark for computational 
drug-target prediction. Briefings in Bioinformatics 2022; bbac199. 

19. Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform 
integrating information on human disease-associated genes and variants. Nucleic acids 
research 2016: gkw943. 

20. Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J. DeepPurpose: a deep learning 
library for drug–target interaction prediction. Bioinformatics 2020. 

21. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the 
management of heart failure: a report of the American College of Cardiology/American Heart 
Association Joint Committee on Clinical Practice Guidelines. Journal of the American College 
of Cardiology 2022; 79(17): e263-e421. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2023.05.25.23290531doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290531
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Zong N, Wong RSN, Yu Y, Wen A, Huang M, Li N. Drug–target prediction utilizing 
heterogeneous bio-linked network embeddings. Briefings in bioinformatics 2021; 22(1): 568-
80. 

23. Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction. 
Bioinformatics 2018; 34(17): i821-i9. 

24. Nguyen T, Le H, Venkatesh S. GraphDTA: prediction of drug–target binding affinity 
using graph convolutional networks. BioRxiv 2019: 684662. 

25. Shah SJ. Precision medicine for heart failure with preserved ejection fraction: an 
overview. Journal of cardiovascular translational research 2017; 10(3): 233-44. 

26. Investigators AoURP. The “All of Us” research program. New England Journal of 
Medicine 2019; 381(7): 668-76. 

27. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated learning for 
healthcare informatics. Journal of Healthcare Informatics Research 2021; 5(1): 1-19. 

28. Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated learning. Synthesis 
Lectures on Artificial Intelligence and Machine Learning 2019; 13(3): 1-207. 

29. Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, 
a national patient-centered clinical research network. Journal of the American Medical 
Informatics Association 2014; 21(4): 578-82. 

30. Cifuentes M, Davis M, Fernald D, Gunn R, Dickinson P, Cohen DJ. Electronic health 
record challenges, workarounds, and solutions observed in practices integrating behavioral 
health and primary care. The Journal of the American Board of Family Medicine 2015; 
28(Supplement 1): S63-S72. 

31. Reisman M. EHRs: the challenge of making electronic data usable and interoperable. 
Pharmacy and Therapeutics 2017; 42(9): 572. 

32. Xu Y, Rong J, Zhang Z. The emerging role of angiotensinogen in cardiovascular 
diseases. Journal of Cellular Physiology 2021; 236(1): 68-78. 

33. Warbrick I, Rabkin SW. Hypoxia‐inducible factor 1‐alpha (HIF‐1α) as a factor mediating 
the relationship between obesity and heart failure with preserved ejection fraction. Obesity 
Reviews 2019; 20(5): 701-12. 

34. McMurray JJ, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus 
enalapril in heart failure. n engl j med 2014; 371: 993-1004. 

35. Krishnan J, Suter M, Windak R, et al. Activation of a HIF1α-PPARγ axis underlies the 
integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell 
metabolism 2009; 9(6): 512-24. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2023.05.25.23290531doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290531
http://creativecommons.org/licenses/by-nc-nd/4.0/

