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Abstract

Determining the correct structure of a protein given its sequence still remains
an arduous task with many researchers working towards this goal. Most
structure prediction methodologies result in the generation of a large number of
probable candidates with the final challenge being to select the best amongst
these. In this work, we have used Protein Structure Networks of native and
modeled proteins in combination with Support Vector Machines to estimate the
quality of a protein structure model and finally to provide ranks for these
models. Model ranking is performed using regression analysis and helps in
model selection from a group of many similar and good quality structures. Our
results show that structures with a rank greater than 16 exhibit native
protein-like properties while those below 10 are non-native like. The tool is also
made available as a web-server
(http://vishgraph.mbu.iisc.ernet.in/GraProStr/native_non_native_ranking.html),
where, 5 modelled structures can be evaluated at a given time.
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Introduction

Proteins are known to take up unique well defined structures that
allow them to function efficiently under a given condition'. This
becomes much more fascinating when one considers the time taken
by a protein to fold in vivo’. Studies over the past decades have
facilitated the preparation of a blueprint of the rules that govern
protein folding’*. The roles of hydrophobic residues in structural
packing, e.g. proline and glycine as helix breakers, are now very
well established’®. Details of the various pair-wise interactions
that hold the structure intact are also available in the literature’.
However, even with the wealth of resources available, determin-
ing the structure of a protein from its amino-acid sequence still
remains a challenging task.

To begin with, protein structure prediction requires understanding
of the differences that exist between a well-folded protein structure
and a modelled structure. Many large scale decoy structures that
mimic a native protein structure, but with minor variations (such
as the sidechain orientations, hydrogen bonds and so on), are now
freely available'*-'">. Such datasets are generated using various com-
putational approaches such as molecular dynamics'*~'* and discrete
state models'®. Decoy structures can be compared with a large
number of available native structures, hence, forming an important
resource to understand patterns that are unique to natively folded
proteins.

For many years now, proteins structures have been represented as
networks, with residues forming nodes with edges representing
various factors that are important for protein structures, such as
hydrogen bonds'’, and Co distances'®. Although these networks
help in understanding the structure of a protein at the level of
secondary structures and backbone atoms, determining the subtle
changes that occur at the level of sidechain interactions are not
captured. We have been working on Protein Sidechain Network
(PSN) for a number of years'>” and have done various rigorous
analyses at different levels to show its usefulness*'~*. Generating
networks at the level of a sidechain not only takes care of the geom-
etry but also the chemistry that is encoded in the sidechain atoms of
every amino acid in the polypeptide chain.

Support vector machine (SVM) is a machine learning algorithm
mainly used for the purpose of classification”’. The algorithm uses
a training dataset to learn patterns and finally use those patterns
to classify new cases. Given the complexity of biological systems,
machine learning algorithms are widely used in biology to predict
cellular locations”*, cancer tissue classifications based on gene
expression data®* and further in cases of protein structures to
identify SCOP classes™, binding sites*** and also the quality of
protein structures using features, such as secondary structures and
hydrophobicity**’.

Recently, we have demonstrated the capabilities of PSNs to dis-
tinguish native structures from decoy models. We started with
comparing the network properties of PSNs from native and decoy
models where we established the unique network features exhib-
ited by native structures®. This work was further followed by an
in-depth analysis, where PSNs at different interaction strengths
(Iyin = 0%—7%) and SVM were used in tandem to classify the
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protein as native or non-native like. Further, the method was vali-
dated using a large number of CASP 10 [10" community wide
experiment on the Critical Assessment of Techniques for Protein
Structure Prediction] predicted models. Overall, an accuracy of
94% was achieved by this method™.

As an extension of our previous work, where a simple binary classi-
fication was carried out™, here we have developed a method to rank
the quality of model structures through probability estimates. This
advance is particularly important in cases where one needs to select
the best quality structures from a set of many similar and good qual-
ity models. Many tools have now been developed that can success-
fully generate many possible structure candidates from a sequence;
however, predicting the best from this list is still a demanding task
and needs attention. In the present study we have observed that the
structures with a rank greater than 16 generally show native like
properties and hence this method provides a good measure for the
rank and quality of a model.

Methods

The main aim of this work was to obtain a ranking for a set of mod-
eled structures and to select the best modeled structure that closely
resembles a native structure. To achieve this goal, we obtained a
large number of native and non-native structures and generated
PSNs. The network parameters from the PSNs are combined with
SVM to build a mathematical model and the ranking of each struc-
ture is determined using logistic regression analysis. Details of each
step are provided below.

Datasets
Two sets of data were used for this study;

a) a positive dataset (PSN-QA_positive), that consisted of 5422
protein crystal structures with resolution < 3A, R-factor < 0.25 and
PDB size > 100 This dataset was curated using PISCES*,

b) a negative dataset (PSN-QA_negative) that considered different
decoys as well as modelled structures from various publicly avail-
able resources and databases.

Details of the individual datasets are provided in Table 1. Finally, a
total of 29543 non-native structures were obtained.

Protein Structure Network : Quality Assessment (PSN-QA)
4 Data Files
http://dx.doi.org/10.6084/m9.figshare.902838

Construction of the Protein Structure Network

As mentioned above, our laboratory has been working extensively
on protein structure networks'”, specifically generated at the level
of non-covalent interactions of sidechains. Details to generate
PSNs are available in our previous work™ and a brief description is
provided here.

PSNs are generated by considering amino acids as nodes and edges
are constructed between these nodes based on the non-covalent
interaction strengths between them. Interaction strengths between
any two residues is calculated as follows,
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Table 1. List of resources from which decoy/modelled structures have been obtained.

# decoy/modelled

DEZEL: structures
CASP3 971
CASP7 10
CASP8 10299
CASP9 7711
CASP10b 1428
SRgtsetta protein decoy 2660
Standard and complete 1799
collection of decoy set

Single decoy set 17
SH;emoglobin structural 609
Immunoglobulin 3659
structural set

Immunoglobulin 380

Website

http://predictioncenter.org/download_area/CASP3/
http://predictioncenter.org/download_area/CASP7/
http://predictioncenter.org/download_area/CASP8/
http://predictioncenter.org/download_area/CASP9/
http://predictioncenter.org/download_area/CASP10/

http://depts.washington.edu/bakerpg/decoys/

http://babylone.ulb.ac.be/decoys
http://dd.compbio.washington.edu/download.shtml

http://dd.compbio.washington.edu/download.shtml

http://dd.compbio.washington.edu/download.shtml

http://dd.compbio.washington.edu/download.shtml

structural hire set

Table modified from*

o %100

where, I; = strength of interaction between residues i and j, where
li-j =2 n; = number of distinct interflcting atom pairs between
i and j within a distance cut-off of 4.5 A (excluding the backbone
atoms); N; and N; are the normalization values for residues i and
j obtained from a statistically significant dataset of proteins, as
defined in our previous work®’. Based on the interaction strengths
between these residues, PSNs can then be generated at different
interaction strength cutoffs (I, ), with a lower cutoff generating a
dense network and including even the weaker interactions, while a
higher cutoff signifies a network made of very strong non-covalent
interactions and hence sparse. For this study, PSNs were generated
at different I, s ranging from 0% to 7%.

(D

min

Various network parameters such as number of non-covalent inter-
actions (NCov), size of the largest cluster (SLClu), clustering
coefficient (CCoe), size of the largest k-1 and k-2 communities, are
calculated for each PSNs generated. Furthermore, the differences
between these parameters at consecutive I, s are also considered in
this study. In our previous studies”, we have discussed the impor-
tance of the transition profile of the various network parameters as
a function of I, to characterize the native structures and therefore
distinguish them from the non-native ones. Along with the network
parameters, main chain hydrogen bonds (MHB)"' were also analysed

and included in the study. Table 2 provides a detailed list of all the
network parameters that have been used in this study.

Support Vector Machine

As described before, SVMs are machine learning algorithms that
learn patterns from a training dataset and further use that pattern to
classify new datasets. In this study, we have built an SVM classifier
based on the patterns that are specific for a native PSN. First, we
randomly divided the datasets into a training set and a test set, so
that the training set contained 3000 native structures and 3000 non-
native structures. Remaining structures were set aside to form the test
set. This was repeated 10 times to generate 10 random test sets and
training sets. Compared to our previous study, we here went one step
further and used the liblinear package of LibSVM™*, to obtain the prob-
ability estimates (using —s8 option in the liblinear package) of each
data point and thereby to obtain ranks for each of them. Furthermore,
since the different network parameter values have different ranges,
the values were scaled between -10 to +10 before the analysis.

Results

Network features of PSNs
Twelve network features (at different 1, s) (Table 2) and MHB
are combined to get a total of 94 features that best characterize a
PSN. Details about these parameters and the characteristic transi-
tion curves specific to PSNs generated from native structures are
discussed in detail in our previous work®. Briefly, the transition
profiles (Figure 1) as obtained by plotting the network features of
native protein structures as a function of I, show three specific
features, a) higher value at lower I, (b) lower value at higher [

min> min
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Table 2. List of network features calculated in this study.

Parameter Description

Number of non-covalent interactions, defined by the number of edges
in a PSN

Set of connected nodes with maximum number of residues (evaluated
using DFS algorithm**)

NCov

SLClu

A clique is a subset of nodes in the network, such that all nodes are
connected to all other nodes. Union of k-cliques such that k-1 nodes
are shared between the cliques is termed as k-1-community*®. This
parameter represents the size of the largest k-1-community

Top1-ComSk1

Top2-ComSk1 Cumulative size of the top2 largest k-1-community
Top3-ComSk1 Cumulative size of the top3 largest k-1-community

Union of k-cliques such that k-2 nodes are termed as k-2-community.

Comste Represents the size of the largest k-2-community
c Avg. clustering coefficient of the network, based on the algorithm
coe . ‘46
given in
CCoe-LClu Avg. clustering coefficient of the largest cluster. This was calculated by

extracting the subnetwork that forms the largest cluster
CCoe-Lcomm  Avg. clustering coefficient of the largest k-2 community

Represents the transition profile of non-covalent interaction as a

diNCov) function of |
d(SLClu) (I;{felpresents the transition of the size of the largest cluster as a function
d(ComsSk2) Represents the transition of the size of the largest k-2 community as a

function of |

Table adapted from®

1 I

—native protein structures
—— decoy/modelled structures

0.9

0.8— ES == -

03— - -

0.2— =

Imin

Figure 1. Transition profile of native protein structures and their corresponding decoy/modelled structures. Transition profile of
one of the network features (SLClu; see Table 2) as a function of |, is shown for 7 randomly selected native structures [green] and their
corresponding decoy structures [red]. A clear distinction between the two transition profiles is visible, highlighting the 3 characteristic features
that are uniquely displayed by native protein structures. X axis represents |, from 0% to 7% and Y axis represents the average value of the
SLClu obtained by native and decoy/modelled structures.
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and finally (c) steep transition between I ; = 1%—4%. Figure |
shows the transition profile of 7 randomly selected native protein
structures and their corresponding 981 model structures. A clear
difference between the transition profiles of a native protein struc-
ture and decoy/modelled structures is visible. These differences are
observed in all the datasets used in this study and forms the basis of
the method developed here.

SVM and the liblinear package

The main aim of this work was to obtain a ranking scheme for struc-
ture quality prediction. The 94 network features were combined
into SVM using the liblinear package to obtain a ranking model.
Specifically, for model generation, ‘L2-regularized L2-loss ranking
support vector machine’ solver and cost value (c) equal to 2 was
used”. As mentioned in the Methods section, 10 random training
and test sets were obtained and the ranking model was generated for
all the train sets. Finally, the model which showed the best pairwise
accuracy of 98.2% was selected for further analysis.

Rank estimates

Figure 2 shows the percentage distribution of the ranks obtained by
the 5422 native protein structures and 29543 non-native structures.
These ranks represent the quality of the structures as determined by
the network parameters using the SVM trained model. From Figure 2,
it is now quite evident that native structures almost always score
above 16, while the scores of the non-native structures range from
-70 to 20 with the majority being < 16. It should be pointed out here
that the dataset of decoy structures is taken from databases such as
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CASP and Rosetta and therefore in many cases might also contain
structures very close to native or almost native like, thereby leading
to some structure scoring beyond 16, but always < 20. From Figure 2,
it can now be safely assumed that structures scoring above 16
show native like properties and scores of bad, unrefined models are
generally very low.

Web-server

This tool is now made freely available for public use in the form
of a web-server, http://vishgraph.mbu.iisc.ernet.in/GraProStr/na-
tive_non_native_ranking.html. Figure 3 shows the home page of
the web-server (Figure 3a) and the output format (Figure 3b). A test
case (PDB Id: 1CGS5 and its decoy structures from Rosetta) is also
provided with its scores as an example. Figure 4 shows the screen-
shot of the example test case. The tool can analyse five structures at
a given time. For structures with multiple chains, individual chains
are treated as different structures for the analysis. The tool accepts
files in PDB formats as input and outputs the ranks for each model
in a tabular format.

Discussion

Proper folding of protein structures is imparted by various ener-
getic and topological features'-~. While the secondary structures
are stabilized by backbone hydrogen bonds, the mutual orienta-
tion of the secondary structures are uniquely determined by the
sidechain interactions. Although studies at the backbone level
have contributed enormously to the understanding of the protein
structure'”'¥, they are not sufficient to understand the subtle balance

60

40

Percentage Distribution

-
=3

<10

30~ *
20
0 I \I | | | 1 - — —
10 12 14 16 18 20

Il native
Il decoy

22 >22

Rank Estimates

Figure 2. Percentage distribution of rank for native and non-native structures. The figure shows the percentage distribution of ranks for
the 5422 native structures (blue) and 29543 decoy/modelled structures (red). X-axis represents ranks while Y-axis represents the percentage
distribution. It is clear that native structures have higher ranks (> 16) as compared to the decoy/modelled structures.
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Native/Non-native Rank

Number of PDBs to upload {max upto 5} * l:l

Upload coordinates (PDB format)

[ choose File | No file chosen

Upload coordinates (PDB format)

No file chosen

Upload coordinates (PDB format)

No file chosen

Upload coordinates (PDB format)

| Choose File | No file chosen
Upload coordinates (PDB format)

No file chosen

See example

To obtain a simple binary classification of the models into native and non-

diat

native and further to d load the inter

e files and transition

profiles, please visit Native/Non-native Classification

3 pdb files uploaded for analysis :

1FKB 110020.pdb : renamed as pdbl.pdb

1AIU.pdb : renamed as pdb2.pdb

1ASH.pdb : renamed as pdb3.pdb

Checking PDB file for atom coordinates

Number of chains (pdb number 1): No chain information provided .. Assuming monomeric structure

Number of chains (pdb number 2): 1

Number of chains (pdb number 3): 1

PDB pruning...

Structural Assessment of the PDB structures uploaded.

PDB_id(with_chain)

Rank

pdb2A.pdb

18.4595

pdb3A.pdb

17.5152

pdb1.pdb

5.4147

Figure 3. Web-server for ranking protein structures. The figure shows screenshots of the a) home page and b) results page for structure
ranking. At a given time, 5 structures can be uploaded. For structures with multiple chains, each chain would be treated individually. The
output would be provided in a tabular format.
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DECOY 1 DECOY 2

PDB Id: 1CG5 (NATIVE) PSN-QA Score = 17.80,
DECOY 1 PSN-QA Score = 6.70 ; RMSD (wrt Native) = 4.09 A,
QA Score = 3.58; RMSD (wrt Native) = 5.28 A

Figure 4. Example test case as shown in the web-server. For easy understanding, a test case of native structure (PDB Id: 1CG5) and its
two decoy structures (from Rosetta) is also made available. The page shows the structures and the PSN scores obtained by them. PDB

files are also available for download.

at the atomic level. Our previous studies have highlighted the role of
non-covalent interactions of the sidechain atoms in functioning®**
as well as stability’>** of protein structures. Protein structure
networks are designed to account for sidechain interactions and
therefore the network captures not only the geometric but also the
chemistry encoded in the sidechain.

In our earlier studies, we had exploited protein structure networks
to discriminate the native structures from the non-native ones.
This is mainly done at the level of sidechain with only one
important feature, MHB, representing the properties of the back-
bone atoms. In all these studies’, discrimination between the
two sets is done qualitatively, with the method simply classifying
the structures as native or non-native. Such qualitative analysis
becomes ineffective when used for closely related and almost

native like structures. However, given the current state of art in
the field of protein structure prediction, we believe that expertise
has been attained to predict near native like structures and more
work is required now to select the best structure from a set of very
similar structures.

The present work is an extension of our earlier work, where we
have addressed the issue described above in a quantitative manner.
Here, we have built a model that would score the structures based
on how closely they mimic a native structure, instead of providing
a simple binary classification. We were able to use the liblinear
package of 1ibSVM to build such a model. The model was further
tested on a set of 5422 native structures and 29543 decoy/modelled
structures. The ranking scheme (Figure 2) is clearly able to dis-
criminate good structures from the bad ones. All the 5422 native
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structures get a rank greater than 16, while the scores for
decoy/modelled structures range from -70 to 20. Overall, it can
be concluded that structures with score > 16 display native like
properties as evaluated from a network perspective and the
models below the score of 12 are definitely show non-native like
properties and do not mimic native structures.

Conclusion

In summary, large numbers of native as well as decoy/modelled
structures have been used to build an SVM model. This model was
trained using 94 features that included 93 network parameters and
main chain hydrogen bonds. The model has an overall accuracy of
98.2% and can successfully rank structures based on their quality as
determined from protein structure networks. Generally, structures
with rank > 16 display native like properties and can be regarded
as good quality structures. This is an important advancement from
the previous qualitative assessments and would be helpful in cases
where one needs to extract the best structure from a set of closely
related structures.

Data and software availability

Data

Figshare: Protein Structure Network : Quality Assessment (PSN-QA),
doi: 10.6084/m9.figshare.902838%.
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This paper aims at ranking protein structures in order to differentiate native protein structures from
non-native/decoy models. For this, the authors employ machine learning approaches (Support Vector
Machines) and assign ranks, based on regression analysis, to these models using Protein Structure
Networks. This study includes the side chain interactions of amino acid residues unlike the previous
network based approaches for detecting the most native-like structures from a huge set of decoys.

The authors have built upon their earlier work employing Protein Structure Networks (PSN) to differentiate
the native conformations from decoy/modelled structures; PSN parameters (93 network features) along
with main chain hydrogen bonds were used to built the SVM classifier. The web tool provides wide and
simple accessibility of the aforementioned methods to the larger community. Non-specialists should find it
useful.

We have the following comments:
®  Use of network metrics — mostly based on “size” of higher communities and largest cluster, and the
average clustering coefficients have been discussed by the authors. A discussion as to why these
particular metrics have been chosen over so many other available network metrics would certainly
be helpful for researchers with a keen interest in network theory.

®  The methodology of ranking structures could certainly be presented in more detail. The part
preceding “Finally, the model which showed the best pairwise accuracy of 98.2% was selected for
further analysis” would do much better with a more detailed explanation, especially about how
LibSVM is useful here.

It would be good to know the computational complexity as well as advantages of the present approach
over other accessible packages. A table summarizing this would be a highly desirable addition especially
because the authors state in the Conclusion that this is an important advancement from the previous
qualitative assessments and would be helpful in cases where one needs to extract the best structure from
a set of closely related structures.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.
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® The title is appropriate, and the abstract represents a suitable summary of the work.

® Although the design and methodology of the calculation are appropriate for the subject under
study, some aspect of the calculation could have been explained in greater detail. This is
discussed in greater detail in the report below.

® The conclusions are justified on the basis of the results obtained in the study.

®  Enough information has been provided to replicate the calculations.
The authors provide a novel method to validate protein structures based on the network properties of
non-bonded side chain contacts within proteins. The method could find extensive application in the
structural validation of both experimentally determined protein structures by x-ray crystallography, or
modeled structures. Thus as a validation tool it could prove to be an extremely valuable addition to other
existing methods. The authors have also installed a web server, thus making the facility available to a
wide cross section of potential users.

The success of any validation method depends on the scoring (or ranking) scheme adopted to sort
structures based on some criteria. Unfortunately, the details regarding the ranking scheme are extremely
terse or assume that the reader will be conversant with the details of support vector machines (SVM) and
the relevant software (LibSVM). That need not be the case, as potentially work such as this should have a
wide appeal. Although the authors do cite previous work, they could discuss this in somewhat greater
detail. What do the terms or options used in the sentence ‘Specifically, for model generation,
‘L2-regularized L2-loss ranking support vector machine’ solver and cost value (c) equal to 2 was used.’,
actually signify? Why was the specific option (s8) chosen?

The authors could also compare their methodology with currently available validation packages such as
Procheck or Molprobity on a small database consisting of native protein and decoys. Given the fact that
experimentally determined erroneous structures occasionally seep through the currently available
validation filters, this method could provide crucial information in error detection, where other methods
consistently fail.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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