
F1000Research

Article Status Summary

Referee Responses

, Saha Institute of NuclearRahul Banerjee

Physics India

, Bose Institute India, Soumen Roy

, Bose InstituteRajdeep Kaur Grewal

India

Latest Comments

No Comments Yet

2

1

WEB TOOL

Ranking the quality of protein structure models using sidechain
 based network properties [v1; ref status: indexed, 

http://f1000r.es/2eu]
Soma Ghosh , Saraswathi Vishveshwara2

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, India

Abstract
Determining the correct structure of a protein given its sequence still remains
an arduous task with many researchers working towards this goal. Most
structure prediction methodologies result in the generation of a large number of
probable candidates with the final challenge being to select the best amongst
these. In this work, we have used Protein Structure Networks of native and
modeled proteins in combination with Support Vector Machines to estimate the
quality of a protein structure model and finally to provide ranks for these
models. Model ranking is performed using regression analysis and helps in
model selection from a group of many similar and good quality structures. Our
results show that structures with a rank greater than 16 exhibit native
protein-like properties while those below 10 are non-native like. The tool is also
made available as a web-server
( ),http://vishgraph.mbu.iisc.ernet.in/GraProStr/native_non_native_ranking.html
where, 5 modelled structures can be evaluated at a given time.
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Introduction
Proteins are known to take up unique well defined structures that 
allow them to function efficiently under a given condition1. This 
becomes much more fascinating when one considers the time taken 
by a protein to fold in vivo2. Studies over the past decades have 
facilitated the preparation of a blueprint of the rules that govern 
protein folding3–6. The roles of hydrophobic residues in structural 
packing, e.g. proline and glycine as helix breakers, are now very 
well established7,8. Details of the various pair-wise interactions 
that hold the structure intact are also available in the literature9. 
However, even with the wealth of resources available, determin-
ing the structure of a protein from its amino-acid sequence still 
remains a challenging task.

To begin with, protein structure prediction requires understanding 
of the differences that exist between a well-folded protein structure 
and a modelled structure. Many large scale decoy structures that 
mimic a native protein structure, but with minor variations (such 
as the sidechain orientations, hydrogen bonds and so on), are now 
freely available10–12. Such datasets are generated using various com-
putational approaches such as molecular dynamics13–15 and discrete 
state models16. Decoy structures can be compared with a large 
number of available native structures, hence, forming an important 
resource to understand patterns that are unique to natively folded 
proteins.

For many years now, proteins structures have been represented as 
networks, with residues forming nodes with edges representing 
various factors that are important for protein structures, such as 
hydrogen bonds17, and Cα distances18. Although these networks 
help in understanding the structure of a protein at the level of 
secondary structures and backbone atoms, determining the subtle 
changes that occur at the level of sidechain interactions are not 
captured. We have been working on Protein Sidechain Network 
(PSN) for a number of years19,20 and have done various rigorous 
analyses at different levels to show its usefulness21–26. Generating 
networks at the level of a sidechain not only takes care of the geom-
etry but also the chemistry that is encoded in the sidechain atoms of 
every amino acid in the polypeptide chain.

Support vector machine (SVM) is a machine learning algorithm 
mainly used for the purpose of classification27. The algorithm uses 
a training dataset to learn patterns and finally use those patterns 
to classify new cases. Given the complexity of biological systems, 
machine learning algorithms are widely used in biology to predict 
cellular locations28,29, cancer tissue classifications based on gene 
expression data30–32 and further in cases of protein structures to 
identify SCOP classes33, binding sites34,35 and also the quality of 
protein structures using features, such as secondary structures and 
hydrophobicity36,37.

Recently, we have demonstrated the capabilities of PSNs to dis-
tinguish native structures from decoy models. We started with 
comparing the network properties of PSNs from native and decoy 
models where we established the unique network features exhib-
ited by native structures38. This work was further followed by an 
in-depth analysis, where PSNs at different interaction strengths 
(Imin = 0%–7%) and SVM were used in tandem to classify the 

protein as native or non-native like. Further, the method was vali-
dated using a large number of CASP 10 [10th community wide 
experiment on the Critical Assessment of Techniques for Protein 
Structure Prediction] predicted models. Overall, an accuracy of 
94% was achieved by this method39.

As an extension of our previous work, where a simple binary classi-
fication was carried out39, here we have developed a method to rank 
the quality of model structures through probability estimates. This 
advance is particularly important in cases where one needs to select 
the best quality structures from a set of many similar and good qual-
ity models. Many tools have now been developed that can success-
fully generate many possible structure candidates from a sequence; 
however, predicting the best from this list is still a demanding task 
and needs attention. In the present study we have observed that the 
structures with a rank greater than 16 generally show native like 
properties and hence this method provides a good measure for the 
rank and quality of a model.

Methods
The main aim of this work was to obtain a ranking for a set of mod-
eled structures and to select the best modeled structure that closely 
resembles a native structure. To achieve this goal, we obtained a 
large number of native and non-native structures and generated 
PSNs. The network parameters from the PSNs are combined with 
SVM to build a mathematical model and the ranking of each struc-
ture is determined using logistic regression analysis. Details of each 
step are provided below.

Datasets
Two sets of data were used for this study;

a) a positive dataset (PSN-QA_positive), that consisted of 5422 
protein crystal structures with resolution < 3A, R-factor < 0.25 and 
PDB size > 100 This dataset was curated using PISCES40,

b) a negative dataset (PSN-QA_negative) that considered different 
decoys as well as modelled structures from various publicly avail-
able resources and databases.

Details of the individual datasets are provided in Table 1. Finally, a 
total of 29543 non-native structures were obtained.

Protein Structure Network : Quality Assessment (PSN-QA)

4 Data Files

http://dx.doi.org/10.6084/m9.figshare.902838

Construction of the Protein Structure Network
As mentioned above, our laboratory has been working extensively 
on protein structure networks19, specifically generated at the level 
of non-covalent interactions of sidechains. Details to generate 
PSNs are available in our previous work20 and a brief description is 
provided here.

PSNs are generated by considering amino acids as nodes and edges 
are constructed between these nodes based on the non-covalent 
interaction strengths between them. Interaction strengths between 
any two residues as follows,any two residues is calculated as follows,
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Table 1. List of resources from which decoy/modelled structures have been obtained.

Dataset # decoy/modelled 
structures Website

CASP3 971 http://predictioncenter.org/download_area/CASP3/

CASP7 10 http://predictioncenter.org/download_area/CASP7/

CASP8 10299 http://predictioncenter.org/download_area/CASP8/

CASP9 7711 http://predictioncenter.org/download_area/CASP9/

CASP10b 1428 http://predictioncenter.org/download_area/CASP10/

Rosetta protein decoy 
set 2660 http://depts.washington.edu/bakerpg/decoys/

Standard and complete 
collection of decoy set 1799 http://babylone.ulb.ac.be/decoys

Single decoy set 17 http://dd.compbio.washington.edu/download.shtml

Haemoglobin structural 
set 609 http://dd.compbio.washington.edu/download.shtml

Immunoglobulin 
structural set 3659 http://dd.compbio.washington.edu/download.shtml

Immunoglobulin 
structural hire set 380 http://dd.compbio.washington.edu/download.shtml

Table modified from39
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where, Iij = strength of interaction between residues i and j, where 
|i – j| ≥ 2; nij = number of distinct interacting atom pairs between 
i and j within a distance cut-off of 4.5 Å (excluding the backbone 
atoms); Ni and Nj are the normalization values for residues i and 
j obtained from a statistically significant dataset of proteins, as 
defined in our previous work20. Based on the interaction strengths 
between these residues, PSNs can then be generated at different 
interaction strength cutoffs (Imin), with a lower cutoff generating a 
dense network and including even the weaker interactions, while a 
higher cutoff signifies a network made of very strong non-covalent 
interactions and hence sparse. For this study, PSNs were generated 
at different Imins ranging from 0% to 7%.

Various network parameters such as number of non-covalent inter-
actions (NCov), size of the largest cluster (SLClu), clustering 
coefficient (CCoe), size of the largest k-1 and k-2 communities, are 
calculated for each PSNs generated. Furthermore, the differences 
between these parameters at consecutive Imins are also considered in 
this study. In our previous studies39, we have discussed the impor-
tance of the transition profile of the various network parameters as 
a function of Imin to characterize the native structures and therefore 
distinguish them from the non-native ones. Along with the network 
parameters, main chain hydrogen bonds (MHB)41 were also analysed 

and included in the study. Table 2 provides a detailed list of all the 
network parameters that have been used in this study.

Support Vector Machine
As described before, SVMs are machine learning algorithms that 
learn patterns from a training dataset and further use that pattern to 
classify new datasets. In this study, we have built an SVM classifier 
based on the patterns that are specific for a native PSN. First, we 
randomly divided the datasets into a training set and a test set, so 
that the training set contained 3000 native structures and 3000 non-
native structures. Remaining structures were set aside to form the test 
set. This was repeated 10 times to generate 10 random test sets and 
training sets. Compared to our previous study, we here went one step 
further and used the liblinear package of LibSVM42,43, to obtain the prob-
ability estimates (using –s8 option in the liblinear package) of each 
data point and thereby to obtain ranks for each of them. Furthermore, 
since the different network parameter values have different ranges, 
the values were scaled between -10 to +10 before the analysis.

Results
Network features of PSNs
Twelve network features (at different Imins) (Table 2) and MHB 
are combined to get a total of 94 features that best characterize a 
PSN. Details about these parameters and the characteristic transi-
tion curves specific to PSNs generated from native structures are 
discussed in detail in our previous work39. Briefly, the transition 
profiles (Figure 1) as obtained by plotting the network features of 
native protein structures as a function of Imin show three specific 
features, a) higher value at lower Imin, (b) lower value at higher Imin 
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Table 2. List of network features calculated in this study.

Parameter Description

NCov Number of non-covalent interactions, defined by the number of edges 
in a PSN

SLClu Set of connected nodes with maximum number of residues (evaluated 
using DFS algorithm44)

Top1-ComSk1

A clique is a subset of nodes in the network, such that all nodes are 
connected to all other nodes. Union of k-cliques such that k-1 nodes 
are shared between the cliques is termed as k-1-community45. This 
parameter represents the size of the largest k-1-community

Top2-ComSk1 Cumulative size of the top2 largest k-1-community

Top3-ComSk1 Cumulative size of the top3 largest k-1-community

ComSk2 Union of k-cliques such that k-2 nodes are termed as k-2-community. 
Represents the size of the largest k-2-community

Ccoe Avg. clustering coefficient of the network, based on the algorithm 
given in46

CCoe-LClu Avg. clustering coefficient of the largest cluster. This was calculated by 
extracting the subnetwork that forms the largest cluster

CCoe-Lcomm Avg. clustering coefficient of the largest k-2 community

d(NCov) Represents the transition profile of non-covalent interaction as a 
function of Imin

d(SLClu) Represents the transition of the size of the largest cluster as a function 
of Imin

d(ComSk2) Represents the transition of the size of the largest k-2 community as a 
function of Imin

Table adapted from39

Figure 1. Transition profile of native protein structures and their corresponding decoy/modelled structures. Transition profile of 
one of the network features (SLClu; see Table 2) as a function of Imin is shown for 7 randomly selected native structures [green] and their 
corresponding decoy structures [red]. A clear distinction between the two transition profiles is visible, highlighting the 3 characteristic features 
that are uniquely displayed by native protein structures. X axis represents Imin from 0% to 7% and Y axis represents the average value of the 
SLClu obtained by native and decoy/modelled structures.
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CASP and Rosetta and therefore in many cases might also contain 
structures very close to native or almost native like, thereby leading 
to some structure scoring beyond 16, but always ≤ 20. From Figure 2, 
it can now be safely assumed that structures scoring above 16 
show native like properties and scores of bad, unrefined models are 
generally very low.

Web-server
This tool is now made freely available for public use in the form 
of a web-server, http://vishgraph.mbu.iisc.ernet.in/GraProStr/na-
tive_non_native_ranking.html. Figure 3 shows the home page of 
the web-server (Figure 3a) and the output format (Figure 3b). A test 
case (PDB Id: 1CG5 and its decoy structures from Rosetta) is also 
provided with its scores as an example. Figure 4 shows the screen-
shot of the example test case. The tool can analyse five structures at 
a given time. For structures with multiple chains, individual chains 
are treated as different structures for the analysis. The tool accepts 
files in PDB formats as input and outputs the ranks for each model 
in a tabular format.

Discussion
Proper folding of protein structures is imparted by various ener-
getic and topological features1,3–9. While the secondary structures 
are stabilized by backbone hydrogen bonds, the mutual orienta-
tion of the secondary structures are uniquely determined by the 
sidechain interactions. Although studies at the backbone level 
have contributed enormously to the understanding of the protein 
structure17,18, they are not sufficient to understand the subtle balance 

and finally (c) steep transition between Imin = 1%–4%. Figure 1 
shows the transition profile of 7 randomly selected native protein 
structures and their corresponding 981 model structures. A clear 
difference between the transition profiles of a native protein struc-
ture and decoy/modelled structures is visible. These differences are 
observed in all the datasets used in this study and forms the basis of 
the method developed here.

SVM and the liblinear package
The main aim of this work was to obtain a ranking scheme for struc-
ture quality prediction. The 94 network features were combined 
into SVM using the liblinear package to obtain a ranking model. 
Specifically, for model generation, ‘L2-regularized L2-loss ranking 
support vector machine’ solver and cost value (c) equal to 2 was 
used43. As mentioned in the Methods section, 10 random training 
and test sets were obtained and the ranking model was generated for 
all the train sets. Finally, the model which showed the best pairwise 
accuracy of 98.2% was selected for further analysis.

Rank estimates
Figure 2 shows the percentage distribution of the ranks obtained by 
the 5422 native protein structures and 29543 non-native structures. 
These ranks represent the quality of the structures as determined by 
the network parameters using the SVM trained model. From Figure 2, 
it is now quite evident that native structures almost always score 
above 16, while the scores of the non-native structures range from 
-70 to 20 with the majority being ≤ 16. It should be pointed out here 
that the dataset of decoy structures is taken from databases such as 

Figure 2. Percentage distribution of rank for native and non-native structures. The figure shows the percentage distribution of ranks for 
the 5422 native structures (blue) and 29543 decoy/modelled structures (red). X-axis represents ranks while Y-axis represents the percentage 
distribution. It is clear that native structures have higher ranks (> 16) as compared to the decoy/modelled structures.
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Figure 3. Web-server for ranking protein structures. The figure shows screenshots of the a) home page and b) results page for structure 
ranking. At a given time, 5 structures can be uploaded. For structures with multiple chains, each chain would be treated individually. The 
output would be provided in a tabular format.

Page 6 of 11

F1000Research 2014, 3:17 Last updated: 06 MAY 2014



Figure 4. Example test case as shown in the web-server. For easy understanding, a test case of native structure (PDB Id: 1CG5) and its 
two decoy structures (from Rosetta) is also made available. The page shows the structures and the PSN scores obtained by them. PDB 
files are also available for download.

at the atomic level. Our previous studies have highlighted the role of 
non-covalent interactions of the sidechain atoms in functioning23,25,26 
as well as stability22,24 of protein structures. Protein structure 
networks are designed to account for sidechain interactions and 
therefore the network captures not only the geometric but also the 
chemistry encoded in the sidechain.

In our earlier studies, we had exploited protein structure networks 
to discriminate the native structures from the non-native ones. 
This is mainly done at the level of sidechain with only one 
important feature, MHB, representing the properties of the back-
bone atoms. In all these studies38,39, discrimination between the 
two sets is done qualitatively, with the method simply classifying 
the structures as native or non-native. Such qualitative analysis 
becomes ineffective when used for closely related and almost 

native like structures. However, given the current state of art in 
the field of protein structure prediction, we believe that expertise 
has been attained to predict near native like structures and more 
work is required now to select the best structure from a set of very 
similar structures.

The present work is an extension of our earlier work, where we 
have addressed the issue described above in a quantitative manner. 
Here, we have built a model that would score the structures based 
on how closely they mimic a native structure, instead of providing 
a simple binary classification. We were able to use the liblinear 
package of libSVM to build such a model. The model was further 
tested on a set of 5422 native structures and 29543 decoy/modelled 
structures. The ranking scheme (Figure 2) is clearly able to dis-
criminate good structures from the bad ones. All the 5422 native 
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Software 
Protein Structure Network Quality Assessment (PSN-QA) tool: 
http://vishgraph.mbu.iisc.ernet.in/GraProStr/native_non_native_
ranking.html 
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structures get a rank greater than 16, while the scores for 
decoy/modelled structures range from -70 to 20. Overall, it can 
be concluded that structures with score > 16 display native like 
properties as evaluated from a network perspective and the 
models below the score of 12 are definitely show non-native like 
properties and do not mimic native structures.

Conclusion
In summary, large numbers of native as well as decoy/modelled 
structures have been used to build an SVM model. This model was 
trained using 94 features that included 93 network parameters and 
main chain hydrogen bonds. The model has an overall accuracy of 
98.2% and can successfully rank structures based on their quality as 
determined from protein structure networks. Generally, structures 
with rank > 16 display native like properties and can be regarded 
as good quality structures. This is an important advancement from 
the previous qualitative assessments and would be helpful in cases 
where one needs to extract the best structure from a set of closely 
related structures.

Data and software availability
Data 
Figshare: Protein Structure Network : Quality Assessment (PSN-QA), 
doi: 10.6084/m9.figshare.90283847.
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This paper aims at ranking protein structures in order to differentiate native protein structures from
non-native/decoy models. For this, the authors employ machine learning approaches (Support Vector
Machines) and assign ranks, based on regression analysis, to these models using Protein Structure
Networks. This study includes the side chain interactions of amino acid residues unlike the previous
network based approaches for detecting the most native-like structures from a huge set of decoys.
 
The authors have built upon their earlier work employing Protein Structure Networks (PSN) to differentiate
the native conformations from decoy/modelled structures; PSN parameters (93 network features) along
with main chain hydrogen bonds were used to built the SVM classifier. The web tool provides wide and
simple accessibility of the aforementioned methods to the larger community. Non-specialists should find it
useful.
 
We have the following comments:

Use of network metrics – mostly based on “size” of higher communities and largest cluster, and the
average clustering coefficients have been discussed by the authors. A discussion as to why these
particular metrics have been chosen over so many other available network metrics would certainly
be helpful for researchers with a keen interest in network theory.
 
The methodology of ranking structures could certainly be presented in more detail. The part
preceding “Finally, the model which showed the best pairwise accuracy of 98.2% was selected for

 would do much better with a more detailed explanation, especially about howfurther analysis”
LibSVM is useful here.

 
It would be good to know the computational complexity as well as advantages of the present approach
over other accessible packages. A table summarizing this would be a highly desirable addition especially
because the authors state in the Conclusion that this is an important advancement from the previous
qualitative assessments and would be helpful in cases where one needs to extract the best structure from
a set of closely related structures.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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The title is appropriate, and the abstract represents a suitable summary of the work.
 
Although the design and methodology of the calculation are appropriate for the subject under  
study, some aspect of the calculation could have been explained in greater detail. This is
discussed in greater detail in the report below.
 
The conclusions are justified on the basis of the results obtained in the study.
 
Enough information has been provided to replicate the calculations.

The authors provide a novel method to validate protein structures based on the network properties of
non-bonded side chain contacts within proteins. The method could find extensive application in the
structural validation of both experimentally determined protein structures by x-ray crystallography, or
modeled structures. Thus as a validation tool it could prove to be an extremely valuable addition to other
existing methods. The authors have also installed a web server, thus making the facility available to a
wide cross section of potential users.

The success of any validation method depends on the scoring (or ranking) scheme adopted to sort
structures based on some criteria. Unfortunately, the details regarding the ranking scheme are extremely
terse or assume that the reader will be conversant with the details of support vector machines (SVM) and
the relevant software (LibSVM). That need not be the case, as potentially work such as this should have a
wide appeal. Although the authors do cite previous work, they could discuss this in somewhat greater
detail. What do the terms or options used in the sentence ‘Specifically, for model generation,

  .’,‘L2-regularized L2-loss ranking support vector machine’ solver and cost value (c) equal to 2 was used
actually signify? Why was the specific option (s8) chosen?

The authors could also compare their methodology with currently available validation packages such as 
or on a small database consisting of native protein and decoys. Given the fact thatProcheck Molprobity 

experimentally determined erroneous structures occasionally seep through the currently available
validation filters, this method could provide crucial information in error detection, where other methods
consistently fail.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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