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Abstract

Gridded precipitation data are becoming an important source for driving hydrologic models to achieve stable and valid
simulation results in different regions. Thus, evaluating different sources of precipitation data is important for improving the
applicability of gridded data. In this study, we used three gridded rainfall datasets: 1) National Centers for Environmental
Prediction - Climate Forecast System Reanalysis (NCEP-CFSR); 2) Asian Precipitation - Highly-Resolved Observational Data
Integration Towards Evaluation (APHRODITE); and 3) China trend - surface reanalysis (trend surface) data. These are
compared with monitoring precipitation data for driving the Soil and Water Assessment Tool in two basins upstream of
Three Gorges Reservoir (TGR) in China. The results of one test basin with significant topographic influence indicates that all
the gridded data have poor abilities in reproducing hydrologic processes with the topographic influence on precipitation
quantity and distribution. However, in a relatively flat test basin, the APHRODITE and trend surface data can give stable and
desirable results. The results of this study suggest that precipitation data for future applications should be considered
comprehensively in the TGR area, including the influence of data density and topography.
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Introduction

Precipitation data are generally recognized as the most

important driving data for hydrologic models. However, con-

strained by the sparse distribution of observation stations, the

applicability of such models is limited. With development of

modern observation and massive computing technologies, the

estimation of precipitation based on combination of multi-source

data (historical observed, radar and satellite) has become a feasible

means for extending model applications. Various data are

published for global or regional modeling, including climate

change, global water cycle, and ecology modeling [1–3]. For

example, Chappell [4] used TRMM data, station observed data

and a kernel-based statistical blending algorithm to produce 5-km

resolution gridded precipitation data for Australia. Additionally, Li

et al. [5] and Huang et al. [6] used spline interpolation and the

trend surface methods to generate 5-km resolution gridded

precipitation data for New Zealand and China. With the

expanded application requirements, these data have been widely

used for hydrologic modeling in various studies and regions

[7,8,9].

However, errors in the gridded precipitation data have a high

probability for inducing errors and uncertainties in hydrologic

simulations. Thus, validations and evaluations of these gridded

data require attention. The gridded data are generally compared

with observed data. For example, Wang and Zeng [10] evaluated

six reanalysis climate data products (MERRA, NCEP/NCAR-1,

NCEP-CFSR, ERA-40, ERA-Interim, and GLDAS) versus in situ

measurements at 63 weather stations on the Tibetan Plateau,

showing that the NCEP-CFSR (National Centers for Environ-

mental Prediction Climate Forecast System Reanalysis) data had

the best overall performance. Bao et al. [11] successfully evaluated

four different data (NCEP-NCAR reanalysis, NCEP-CFSR, ERA-

40, and ERA-Interim) products based on an enhanced observed

network, and the results showed that the performance of NCEP-

CFSR and ERA-Interim data were superior for the Tibetan

Plateau. Areal accuracy and validity of gridded precipitation data

are evaluated using a hydrologic model. For example, Fuka et al.

[12] presented a method using the NCEP-CFSR global meteo-

rological data to model five watersheds representing different

hydro-climate regimes. The results proved that NCEP-CFSR

precipitation can provide runoff simulations that are as good as or

better than traditional weather gauging stations. Vu et al. [13]

compared five different sources of rainfall data for the Vietem

River basin using the Soil and Water Assessment Tool (SWAT)

model, finding that all the gridded data could capture hydrologic

processes in this tropical basin well. For model driving, most

gridded precipitation data are developed for application to much
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larger basins, for example continental or global scale [1,3], and

their applicability is always validated in such large basins

[12,13,14]. In small basins, it is commonly recognized that

precipitation is mainly influenced by topographic, wind direction,

hill aspect, and other factors, and the creation or reanalysis of

precipitation data in such small basin usually required more

Figure 1. Basic geo-information of the test basins.
doi:10.1371/journal.pone.0112725.g001

Table 1. Basic geo-information of Dong River and Puli River basins.

Area* (km2) Minimum (m) Maximum (m) Average (m) Std**(m) Slope (degree)

Dong River 1098 192 2569 1155 560 23.2

Puli River 366 267 1326 627 213 12.1

Note: *Area means the basin area of runoff observation stations,
**Std means the standard error of the elevation.
doi:10.1371/journal.pone.0112725.t001
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detailed information compared with the data in large scale basins

[15,16,17]. However, the applicability of various gridded data to

such basins requires further investigation.

The Three Gorges Reservoir (TGR) in the middle reach of the

Yangtze River is the largest hydropower project in the world.

Although TGR has the benefit of flood control and electric

generation, its influence on hydrologic processes, its alteration of

ecological systems and the environment has attracted public

attention. Hydrologic models have been applied to this region to

analyze these influences at different spatiotemporal scales [18–21].

However, limited by sparse observation stations in the mountains

and missing observations in immigration regions, the applicability

of those models remains limited in this study area. Additionally,

water resource analysis and pollution control in the TGR area are

needed for local tributary basins, which have strong topographic

variation, relatively small scales, and a lack of dense observed data.

Although global or regional gridded precipitation data are

probable sources for model simulation in such regions, the

applicability of these data require further study.

Thus, the main objective of this study was to evaluate various

gridded precipitation data by both station validation and model

driving tests for the area upstream of TGR. In this area, two

subbasins of the Pengxi River were selected as the test basin.

NCEP-CFSR, Asian Precipitation - Highly-Resolved Observa-

tional Data Integration Towards Evaluation (APHRODITE), and

trend surface data were used for the evaluation. These gridded

data were compared with observed data. Then, simulation results

of the data were appraised based on quantitative evaluation

indices of model simulation and uncertainties. Spatial density and

receptiveness of the topography for the various data are also

discussed.

Study Area and Data

Study basins
We selected two test basins (of the Dong and Puli rivers) for

study. These basins belong to the basin of the Pengxi River, one of

the main tributaries on the north shore of TGR [21]. In this

region, average annual precipitation is 1100–1500 mm. Daily

discharge data were collected from gauging stations in the two

basins (Figure 1; Table 1), Wenquan in the Dong River basin and

Yujia in the Puli River basin. Wenquan is at the outlet of the Dong

River basin, and Yujia is on the upper main channel of the Puli

River basin. Drainage area of Wenquan station is 1098 km2, and

366 km2 for Yujia station (Table 1).

Digital elevation model data at resolution 90 m (Shuttle Radar

Topography Mission) were used to generate topographic infor-

mation for the SWAT model. A land-use map extracted from

Landsat Thematic Mapper data [21] and a soil map were used to

generate hydrologic response units (HRUs), which were used as

basic cells to calculate parameters in SWAT. Land-use types were

reclassified into nine types [21]. Basin soil data were identified

from the Chinese national 1:1,000,000 scale soil map including

five soil types [21,22].

Daily climate inputs for SWAT included precipitation, mini-

mum and maximum air temperature, and wind speed. The air

temperature and wind speed data were collected from meteoro-

logical stations within the study area (Figure 1). Details of the

various precipitation data are introduced in Section 2.2.

Additional climate variables such as solar radiation and relative

humidity were produced from a weather generator, using values

from the nearest standard weather station [21,22].

Various Precipitation datasets
Monitoring Precipitation data. The monitoring precipita-

tion data were acquired from a local observed agency. These were

from four stations in the Dong River basin and three in the Puli

River basin (Table 2). The period for all stations is 1 January 2000

to 31 December 2006.

NCEP-CFSR data. The NCEP-CFSR data is available for

1979–2013. They were designed and implemented as a global,

high-resolution coupled atmosphere-ocean-land surface-sea ice

system to provide the best estimate of the state of these coupled

domains in the period [1]. The optimum interpolation algorithm

of Xie et al. [23] is employed to partially account for the

orographic enhancements in precipitation [1]. Although the

original NCEP-CFSR data were based on a four-times-per-day

step, the official website of the SWAT model (http://

globalweather.tamu.edu/) supplied daily assimilation data for

global application, as with the APHRODITE data, and the period

of study was also 1 January 2000 to 31 December 2006. Spatial

resolution of the NCEP-CFSR data is 0.5 degrees. See File S1 for

the detail NCEP-CFSR data of the test basins.

APHRODITE data. The APHRODITE project created

continuous daily gridded precipitation data for 1951–2007. These

data cover monsoon Asia, the Middle East, and Russia. Version

V1101R1 data of monsoon Asia were used in this study, with

spatial resolution of 0.25 degrees [3]. The available data period

was 1 January 1979 to 31 December 2007. The data cover the

entire Pengxi River basin and the period 1 January 2000 to 31

December 2007 (Figure 1). The APHRODITE data combined

the monitoring data in mountain areas and the Parameter-

Elevation Regressions on Independent Slopes Model (PRISM)

monthly precipitation climatology to correct the bias caused by

Table 2. Basic geo-information of precipitation observation stations in the Dong River and the Puli River basins.

Dong River Abbreviation Latitude Longitude Elevation(m)

Da Jin DJ 31.5178 108.4533 912

Guan Mian GM 31.5365 108.694 1204

Wen Quan WQ 31.3145 108.4744 225

Yan Shui YSH 31.4313 108.694 1176

Puli River Latitude Longitude Elevation(m)

He Xing HX 30.7701 107.9229 480

Qiao Ting QT 30.8355 108.1262 574

Yu Jia YJ 30.8799 108.0234 520

doi:10.1371/journal.pone.0112725.t002
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orographic effects of Xie et al. [23]. File S2 list the APHRODITE

data of the test basins in this study.

Trend surface data. Data of the land surface model forcing

field for mainland China during 1958–2010, was provided by Li et

al. [5]. We used the precipitation data from this dataset, with

temporal and spatial resolutions daily and 0.05 degrees, respec-

tively. The period is the same as that of the other data. The trend

surface dataset applied the thin smoothing spline method to

construct the surface trend of the precipitation; however, limited to

the available of observed precipitation data, the trend surface

product of precipitation didn’t include the correction of elevation

[5]. File S3 list the trend surface data of the test basins in this

study.

Methodology

Soil Water Assessment Tool
SWAT is a temporally continuous, semi-distributed hydrologic

model that was used to represent hydrologic and water quality

processes in various basins with different temporal and spatial scale

[24]. SWAT subdivides a watershed into subbasins connected by a

stream network, and further delineates HRUs with unique

combinations of land cover and soils in each subbasin. The

hydrologic routines within SWAT account for snowfall and melt,

vadose zone processes (infiltration, evaporation, plant uptake,

lateral flows, and percolation), and groundwater flows [25,26]. A

modified SCS curve number method is employed to simulate the

river runoff in the SWAT model, the Evapotranspiration (ET) is

mainly calculated by using the Penman-Monteith method [25].

Moreover, the river channel routing of SWAT model is calculated

by using a variable storage method [26].

Model calibration settings
We used a daily simulation step for the SWAT model. The

observed data is from 2002 to 2006 in Dong River basin, and it is

from 2002 to 2004 in Puli River basin. Given a lack of river

discharge observed data in the study area during the 2000s, we

only conduct the validation in Dong River basin from 2005 to

2006. For the Dong River basin and Puli River basin, the

calibration period is from 2002 to 2004.

We used the SWAT model calibration software SWAT-CUP

4.3.7 [27] to perform auto-calibration in the two study areas.

SWAT-CUP is a public domain program, and thus can be copied

and used freely. Among the model calibration methods available

with SWAT-CUP, SUFI-2 has proven effective for calibrating and

validating the SWAT model in different regions, with limited

computational cost and high accuracy [27,28]. In our study areas,

applicability of the SUFI-2 method was also demonstrated by

Wang et al. [21] and Yang et al. [22] for runoff and water quality

modeling.

Results of hydrologic models are mainly controlled by two

factors, input data and model structure, which is usually indicated

by its parameterization. Thus, to conduct a ‘‘pure’’ evaluation for

various precipitation data, we followed these rules:

1) The initial sampling ranges of the parameters were the same

for both basins (Table 3)

2) Parameter sets generated by the Latin hypercube method [27]

were the same for all precipitation data in each test basin

Table 3. Parameters used for auto-calibration of the two test basins.

Parameters Type Min Max Meaning

ALPHA_BF v* 0 1 Base-flow alpha factor (days)

ALPHA_BNK v 0 1 Base-flow alpha factor for bank storage

CH_K2 v 5 130 Effective hydraulic conductivity (mm/h)

CH_N2 v 0 3 Manning’s n value for main channel

CN2 r** 20.3 0.3 Initial SCS CN II value

ESCO v 0.5 1 Soil evaporation compensation factor

GW_DELAY v 0 30 Groundwater delay (days)

GW_REVAP v 0 0.2 Groundwater ‘‘revap’’ coefficient

OV_N.hru v 0 0.8 Manning’s ‘‘n’’ value for overland flow

SOL_AWC r 20.3 0.3 Average available water

SOL_BD r 20.3 0.3 Soil Bulk Density

SOL_K r 20.3 0.3 Saturated conductivity

SURLAG v 4 7 Surface runoff lag time (days)

Note: * v means actual value of calibrated parameter, and ** r means its relative range.
doi:10.1371/journal.pone.0112725.t003

Table 4. Station numbers in the two test basins.

Test basin Monitoring NCEP APHRODITE T-S

Dong River 4 4 5 32

Puli River 3 2 3 12

Note: *NCEP stands for NCEP-CFSR data and **T-S for trend surface data.
doi:10.1371/journal.pone.0112725.t004
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3) Repetition of SWAT-CUP was fixed at 1000 times for

different input rainfall data

Evaluation of Model Performance
Parameter sensitivity. We used 18 parameters for model

calibration (Table 3). The parameter sensitivity analysis method of

SWAT-CUP is based on the Latin hypercube [29,30] and multiple

regression methods. The multiple regression equation is as

followed:

Gsen~biz
Xn

i~1

ai|Prami ð1Þ

Here, Gsen is the value of evaluation index for the model

simulations, bi is a constant in multiple linear regression equation

ai is a coefficient of the regression equation, Prami is a parameter

generated by the Latin hypercube method, and n is the amount of

parameters. The Latin hypercube method ensures that the full

range of all parameters has been sampled. The multiple regression

method that assigns changes of each model run output can be

unambiguously attributed to the changed parameters [27,31]. The

t-test of this equation is applied to indicate the sensitivity of each

parameter Prami.

Evaluation of runoff simulation. The Nash Sutcliffe

Efficiency (NSE) [32] and coefficient of determination (R2) were

chosen as indexes to evaluate the performance of various

precipitation data for driving the hydrologic model. NSE and

R2are calculated as

NSE~1{

Xn

i~1

Pi{Oið Þ2

Xn

i~1

Oi{O
� �2

ð2Þ

R2~

Xn

i~1

Pi{P
� �

| Oi{O
� �

Xn

i~1

Pi{P
� �2

Xn

i~1

Oi{O
� �2

ð3Þ

Here, Oi is observed runoff on day i, Ois average observed

runoff, Piis the simulated value on day i, and Pis average

simulated runoff. The NSE is also used as the evaluation index

(Gsen) for the parameter sensitivity analysis in the Eq.(1).

Evaluation of model uncertainty. In SWAT-CUP, output

uncertainty is quantified by the 95% prediction uncertainty band

(95PPU), calculated at the 2.5 and 97.5% levels of the cumulative

distribution function of the output variables [27,28]. Two indices,

the r-factor and p-factor, are used for evaluating output

uncertainty based on the 95PPU. The r-factor is calculated by

r{factor~

1

n

Xn

t1~1
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sobs
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Here, yt1,97:5% and yt1,2:5% represent the upper and lower

boundaries of the 95PPU, t1 is the observed data and sobs

symbolizes the standard deviation of the measured data [28]. The

p-factor is the percentage of observed data bracketed by the

95PPU band, and the r-factor stands for thickness of the

uncertainty band [28].

The threshold for distinguishing the behavioral and non-

behavioral simulation was set to 0.5 for NSE. Optimal calibration

and parameter uncertainty for both methods was measured on the

basis of proximity of the p-factor to 100% and r-factor to 1 [28].

Results

Based on the input data, results of watershed delineation and

weather station distribution are listed in Table 4. There are 37

subbasins of the Dong River basin and 13 subbasins in the Puli

River basin. Based on nearest distance, which is calculated using

station location and geographic centers of the subbasins, the

SWAT model automatically assigns precipitation stations to each

subbasin. The amounts of precipitation data in the two test basins

are shown in Figure 1.

Station validation and spatial distribution of various
precipitation data

Station validation. We also used four stations in the Dong

River basin to evaluate accuracy of the various precipitation data.

Three different evaluation indices were determined: 1) correlation

efficiency (R), 2) mean error (ME), and 3) mean absolute error

(MAE). Equations for these indices are

R~

Xn

i~1

yobserved{yobserved,aveð Þ| yGridded{yGridded,aveð Þ

Xn

i~1

yobserved{yobserved ,aveð Þ2
" #1=2 Xn

i~1

yGridded{yGridded,aveð Þ2
" #1=2

ð5Þ

ME~
1

n

Xn

i~1

yobserved{yGriddedð Þ ð6Þ

MAE~
1

n

Xn

i~1

Dyobserved{yGridded D ð7Þ

Here, yobserved is observed precipitation data on day i,
yobserved,ave is the average value of observed precipitation data,

yGridded represents the gridded precipitation data on day i,
yGridded,ave is the average value of the gridded precipitation data,

and n is the total number of observed values.

The observation station and nearest station were used for

comparison. The results are presented in Table 5. The results of R

for the Dong River basin show that at all four stations, NCEP-

CFSR had a satisfactory performance compared with the other

two datasets. The APHRODITE and trend surface data achieved

reasonable R values compared with the NCEP-CFSR data in Puli

River basin. Regarding ME, the APHRODITE and trend surface

data produced at all stations, a negative difference compared with

the monitoring precipitation data indicated that the first two

datasets underestimated the precipitation data at those sites.

Regarding the NCEP-CFSR data, positive ME values at DJ and

GM stations indicate overestimation of the precipitation. In

contrast, at WQ and YSH stations, NCEP-CFSR underestimated
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Figure 2. Spatial distribution of annual precipitation value for various precipitation datasets for the Dong River (up) and the Puli
River (down) basins, from left to right is Monitoring data, NCEP CFSR data, APHRODITE and trend surface data.
doi:10.1371/journal.pone.0112725.g002

Figure 3. Annual precipitation value of various precipitation datasets for the Dong River (left) and the Puli River (right) basins.
doi:10.1371/journal.pone.0112725.g003
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the precipitation. The NCEP-CFSR data had the largest MAE

values at all validation stations compared with the APHRODITE

and trend surface data. For the latter two datasets, MAE for all

stations was 2.50–4.0 mm, which was a small range compared

with that of the NCEP-CFSR data.

There were three validation stations in the Puli River basin

(Table 3). Results are presented in Table 6. The results of R for

that basin show that APHRODITE data gave the best perfor-

mance compared with the other two datasets. ME values of

APHRODITE and trend surface data were positive, which means

that the precipitation data were overestimated at the three stations.

For the NCEP-CFSR data, ME values were negative at QT and

YJ stations and positive at HX. MAE had the same tendency as

the results for the Dong River basin. The APHRODITE and

trend surface data delivered more accurate results relative to the

NCEP-CFSR data.

Spatial distribution of various precipitation data. The

areal distributions of different precipitation datasets are shown in

Figure 2 and 3. The annual precipitation distribution of in Dong

River basin (Figure 2, left) indicate that the results of monitoring

data and the NCEP-CFSR data present more variation compared

with the APRHODITE data and the trend surface data. The

precipitation value of Dong River basin calculated by the

monitoring data is varied from 800 mm to 1600 mm. The value

of NCEP-CFSR data indicates a more large variation, which is

from 800 mm to 1800 mm. However, the results of APHRODI-

TE data and the trend surface data show that the annual

precipitation in Dong River basin is from 1000 mm to 1200 mm.

In the Puli River basin, the monitoring precipitation data indicate

that the annual precipitation amount is from 800 mm to 1200 mm

in Puli River basin (Figure 2, right). As same as in the Dong River

basin, the APHRODITE data and the trend surface data also

perform similar results in Puli River basin. The range of annual

precipitation of these two datasets is from 1100 mm to 1300 mm.

Though the NCEP-CFSR also shows the annual precipitation is

from 1100 mm to 1300 mm, the spatial distribution clearly

indicate that it present contrary results compared with other three

datasets. In the downstream of Puli River basin, the annual

precipitation calculated from the NCEP-CFSR data is lower than

other three datasets. However, in the upstream, the annual

precipitation of NCEP-CFSR data present relative higher values

compared with other datasets.

The annual precipitation value in the Dong River basin

(Figure 3, left) shows that in the north and northwest portions,

which have high elevations, the NCEP-CFSR data had positive

differences compared with other data. This means that the input

precipitation values for the SWAT model subbasin were much

higher than other data. In contrast, in the downstream area of the

Dong River basin, the NCEP-CFSR data had negative differences

relative to the other datasets. For the APHRODITE and trend

surface data, their differences with the monitoring data were

greater in the upstream (high elevation) area, but smaller in the

downstream area. In the Puli River basin (Figure 3, right), the

monitoring and NCEP-CFSR data had sensible differences with

the APHRODITE and trend surface data. The NCEP-CFSR data

had positive differences compared with the APRHODITE and

trend surface data; however, the monitoring data had negative

differences.

Spatial distributions of the various datasets indicate that the

input precipitation data varied greatly across the test basin. Such

differences may lead directly to variations of simulation results and

produce uncertainties in the SWAT model. However, because of

the lack of observed precipitation data in each subbasin, we cannot

directly evaluate the quality of the various datasets there. This

situation is also inadequate for evaluating performances of the

precipitation datasets based only on in situ validation and spatial

distributions. Therefore, model calibration must be done.

Results of daily runoff simulation
Results of parameter sensitivity analysis are shown in Table 7. It

is clear that in both the Dong and Puli River basins, the most

sensitive parameters were ALPHA_BNK, CH_K2, CH_N2, and

CN2. However, from the average rank of each basin, the order of

sensitive parameters is different. This order is ALPHA_BNK,

CH_K2, CH_N2 and CN2 in the Dong River Basin. For the Puli

River Basin, the average rank value clearly shows that CN2 was

more sensitive than the other three parameters. There were no

Figure 4. R2 and NSE of various precipitation datasets for the Dong River and the Puli River basins during the calibration period.
doi:10.1371/journal.pone.0112725.g004

Figure 5. R2 and NSE of various precipitation datasets for the
Dong River during the validation period.
doi:10.1371/journal.pone.0112725.g005
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differences in sensitive parameters for the various precipitation

datasets, and the other parameters were not sensitive to the

hydrologic simulation. In the Dong River basin, the monitoring

precipitation data and the gridded data obtain very similar results,

except the 4th rank of sensitive parameter. However, the sensitive

rank in the Puli river basin show that the gridded datasets presents

more consistent results compared with the monitoring data,

especially for the CH_K2 and CH_N2, the ranks are different in

monitoring data and gridded data. Moreover, compared with the

two test basins, the gridded precipitation data can obtain similar

sensitive parameter ranks rather than the monitoring data.

Daily runoff simulation results for the Dong River basin and

Puli River basin are shown in Figures 4 and 5, respectively. For

the Dong River Basin, during the calibration period, R2 is 0.89

and NSE is 0.87 of the monitoring precipitation data. For NCEP-

CFSR data, R2 is 0.37 and NSE is 0.37, which show a significant

decrease relative to the monitoring data, and are lower than the

threshold of behavioral simulation (NSE = 0.5). R2 and NSE are

0.60 and 0.49 for APHRODITE data, respectively. Although

these values are higher than for the NCEP-CFSR data, they are

under the threshold for behavioral simulation assessment. The

trend-surface data show similar results to the APHRODITE data,

with a slight decrease. NSE of the trend surface data exceeded the

behavioral threshold value (NSE = 0.50; R2 = 0.61). During the

validation period, the R2 and NSE values of monitoring data

presents relatively good results (R2 = 0.82; NSE = 0.79), for the

NCEP-CFSR data, the performances are improved (R2 = 0.61;

NSE = 0.60). In the results of APHRODITE data, the R2 is 0.65

which is slightly improved compared with the calibration period;

however, the NSE slightly decreases to 0.46. For the trend surface

data, the performances (R2 = 0.72; NSE = 0.53) of trend surface

data during the validation period are also improved compared

with the calibration period. The hydrograph for the Dong River

basin (Figure 6, up, and Figure 7) demonstrated that only the

Figure 6. Simulation hydrographs of various precipitation datasets for the Dong River (up) and the Puli River (down) basins during
the calibration period. NCEP stands for NCEP-CFSR data and T-S for trend surface data.
doi:10.1371/journal.pone.0112725.g006

Figure 7. Simulation hydrograph of various precipitation datasets for the Dong River basin during the validation period. NCEP
stands for NCEP-CFSR data and T-S for trend surface data.
doi:10.1371/journal.pone.0112725.g007
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monitoring precipitation data could reproduce the hydrograph

well during flood periods, compared with the various gridded

datasets.

For the Puli River basin (Figure 4), R2 is 0.83 and NSE is 0.80

for APHRODITE data, and are respectively 0.84 and 0.82 for the

trend surface data. For the monitoring data, the indices are

R2 = 0.50 and NSE = 0.41. R2 and NSE were 0.29 and 0.23,

respectively for the NCEP-CFSR data, both of which represent

significant decrements relative to the other two datasets. The

hydrograph (Figure 6, down) shows that the peak flow and

sequence in the Puli River basin matched well for the APHRO-

DITE and trend surface data, compared with the monitoring data

and NCEP-CFSR data.

Model uncertainties induced by various precipitation
data

The p-factor and r-factor results are shown in Figure 8. Trends

of the factors are the same as R2 and NSE. In the Dong River

basin, the monitoring precipitation data gave the best results.

Because there was no simulation result in excess of the behavioral

threshold, p-factor and r-factor values were set to zero for both

NCEP-CFSR and APHRODITE data. The results of both factors

for the trend surface data show that they had greater uncertainties

compared with the observed data.

In the Puli River basin (Figure 8), the APHRODITE and trend

surface data yielded more preferable results relative to the

monitoring and NCEP-CFSR data. Because there was no

Figure 8. p-factor and r-factor of different precipitation datasets for the Dong River and the Puli River basins. NCEP stands for NCEP-
CFSR data and T-S for trend surface data.
doi:10.1371/journal.pone.0112725.g008

Figure 9. Correlation between elevation difference and precipitation difference in the Dong River basin (significant level a = 0.05).
a) Monitoring data; b) NCEP-CFSR data; c) APHRODITE data; d) trend surface data.
doi:10.1371/journal.pone.0112725.g009
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simulation result in excess of the behavioral threshold, p-factor and

r-factor values were set to zero for the NCEP-CFSR data. For the

monitoring data, although they obtained behavioral simulations,

the p-factor and r-factor values still demonstrate that they led to

more uncertainties relative to the APHRODITE and trend surface

data.

Discussion

Performances of various precipitation data upstream of
TGR

In situ validation performances of the various precipitation

datasets for the Dong and Puli basin show that APHRODITE and

trend surface data can reflect the basic quantity of precipitation, as

determined by R, ME, and MAE. The NCEP-CFSR data always

gave larger errors compared with the other two datasets.

Additionally, the APHRODITE data were more accurate than

the trend surface data; however, the differences were not

significant. As presented, the monitoring data were accurate but

could only represent precipitation in or near the station.

Consequently, to evaluate the performance of the different

datasets, we should also rely on the model results.

The daily runoff simulation results of the SWAT model proved

that the APHRODITE and trend surface data could reproduce

the hydrologic processes in both the Dong and Puli basin more

effectively than NCEP-CFSR. The model uncertainty results also

suggest that the latter dataset has greater uncertainties compared

with the other two. Amongst all the gridded datasets, the trend

surface data always achieved the best results, as determined by

both monitoring data and hydrologic model testing. The spatial

distribution results already demonstrated that the NCEP-CFSR

data gave significant differences compared with the other two

datasets and the monitoring data. Section 4.2 revealed that the

significant spatial distribution differences of the datasets can lead

to variable simulation results. Further, the model uncertainty

results indicate that the spatial distribution of NCEP-CFSR data

may directly cause a relatively weak performance and greater

uncertainty in the SWAT model.

Compared with sparse and isolated observation stations, the

gridded data have an advantage in considering effects of station

surroundings for prediction at a fixed location [1,24]. Thus, the

consideration of impacts from surrounding stations in APHRO-

DITE and trend surface data products may make them more valid

and permit more robust data input to SWAT model runoff

determination at TGR, compared with the NCEP-CFSR data.

The data source for the latter dataset is global public observation

stations [1]. Thus, compared with the APHRODITE dataset that

covers Asia with over 40,000 stations [3,24], the NCEP-CFSR

data are too sparse to achieve accurate reanalysis results in our

study area. Li et al. [5] explained that the trend surface data are

also based on public global exchange stations, but the present

simulation results suggest that the trend surface interpolation

method and its products may be more applicable to our study

area.

Nevertheless, we recognize that the performances of the various

gridded precipitation data were weak relative to the monitoring

data for the Dong River basin, where there are large elevation

differences. As mentioned above, in micro-scale or meso-scale

basins, precipitation can be influenced by various factors such as

topography, wind speed, and hill aspects. Given this, the gridded

precipitation data may lose the capacity to reflect the precipitation

distribution accurately. Thus, we also addressed the applicability

of various precipitation datasets by considering topographic

influences and data density.

Figure 10. Correlation between elevation difference and precipitation difference in the Puli River basin (significant level a = 0.05). a)
Monitorin data; b) NCEP-CFSR data (only one point available, so linear regression analysis is missing); c) APHRODITE data; d) trend surface data.
doi:10.1371/journal.pone.0112725.g010

Evaluation Gridded Precipitation Data in Three Georges Reservoir

PLOS ONE | www.plosone.org 12 November 2014 | Volume 9 | Issue 11 | e112725



Applicability of different precipitation data: topography
If the topography strongly affects precipitation, strong linear

relationships can be obtained by analyzing elevation and

precipitation differences among stations [33,34]. The ‘‘precipita-

tion lapse rate’’ is used to evaluate this relationship. We used this

rate to assess the precipitation influence in each basin, using

Pdis~PLAPS|Elediszb ð8Þ

Here, Pdis is the precipitation difference between a pair of

stations (the station pair is determined by permutations of all

available stations used in the SWAT model), Eledis is the elevation

difference between the pair, PLAPS is the first order or slope of

the linear regression equation, and b is the intercept of the linear

equation. For both Dong River basin and Puli River basin, the

linear regression analysis is conducted with the F-test in significant

level a= 0.05 (Table 8). The results are presented in Figures 9 and

10.

In the Dong River basin, R2 of the linear regression equation for

the monitoring data (Table 8, Figure 9a) was nearly 1, clearly

indicating a strong correlation between elevation and precipitation

differences. Conversely, judging by the F-test, there is no

correlated relationship between elevation and precipitation for

APHRDOITE and NCEP-CFSR data. Though the F-test value is

larger than its value in the significant level (Table 8), the R2 of

trend surface data indicate the linear regression relationships

between elevation and precipitation is weak results in Dong River

basin. (Figure 9 b), c) and d)). In the Puli River basin, the linear

regression result at the significance level 0.05 ((Table 8, Figure 10)

shows there is no significant linear relationship between elevation

and precipitation data for all the precipitation datasets in this

basin.

Moreover, basic geo-information of the two test basins (Table 1)

confirms their different elevations. In the Dong River basin, the

minimum elevation is 192 m and maximum 2569 m; its standard

error is 560 m and the slope is 23.2 degrees. In the Puli River

basin, the minimum elevation is 267 m and maximum 1326 m,

with standard error 213 m and slope 12.1 degrees. Obviously, the

topography has greater variation in the Dong River basin than in

the Puli River basin.

Considering the simulation results of Section 4.2 in the Dong

River basin, the results of simulation and uncertainty clearly

demonstrate that the monitoring data gave results superior to

those of the gridded data. Significant differences of precipitation

lapse rate of monitoring precipitation data strongly suggest that for

Dong River basin, topography is the main influence on the spatial

distribution of precipitation data, which thereby affects SWAT

model simulation results. However, in the Puli River basin, all data

indicate that topography is not the main influence on precipitation

variation. Uhlenbrook et al. [35] indicated that the topographic

influence on the rainfall will also significantly influence the results

of hydrological model. Weisse and Bois [36] also demonstrated

that topographic characterization has significant influence on the

rainfall, especially the heavy rainfall in the French Alps. Sanchez-

Moreno et al. [37] also presented the topography can significantly

influence the trend of monthly and seasonal precipitation

distribution in Santiago Island, Cape Verde. In our study, the

results of Dong River basin also clearly demonstrated that the

gridded precipitation data cannot reflect the rainfall distribution

which is greatly influenced by the topography. Contrarily, in Puli

River basin, of which the precipitation receives less influence form

the topographic, the simulation results indicate that the gridded
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data can reflect the value and distribution of precipitation more

effectively compared with the sparse monitoring data.

As presented in the section 2.2, except the trend surface

method, the NCEP-CFSR data and the APRHODITE data are

all employed the optimum interpolation method for correction of

Topographic. However, our results indicate that the effects of the

correction datasets on local regions still cannot match the

applicable of SWAT model. Moreover, Silva et al. [38] indicate

that the NCEP CFSR data may overestimate the precipitation in

the coastal mountain area in Brazil. Andermann et al. [39] shown

that for APHRODITE data also it can present relatively good

performances in yearly and monthly steps in mountain areas of

Himalaya front, and its performances in daily step is still need to

be improved. Ono et al. [40] also reported that for the heavy

rainfall investigation in Mekong River, the local topography is still

need to be considered as a correction factor for improving the

accurate of APHRODITE data. The results of our research

indicate that for their applications in local regions, the applica-

bility, especially, topographic effects should be considered and

discussed firstly.

Applicability of various precipitation data: spatial density
In addition to topography, input precipitation data density is an

influence, and alters the hydrologic model results. Basic informa-

tion on station density is given in Figure 1 and Table 4. In Dong

River Basin, the NCEP-CFSR and APHRODITE data have the

same spatial density as the monitoring data. The trend surface

data, from more than 30 stations for the simulation, gave a poor

result compared with monitoring data. In the Puli River Basin,

those data were from 12 stations and the APHRODITE data only

three stations, but the performance of these data showed no

significant difference. Additionally, station density was similar for

monitoring (three stations) and NCEP-CFSR (two stations) data.

Compared with the APHRODITE data, however, those two

datasets had less capacity to portray the hydrologic processes in the

Puli River Basin.

The gridded data usually contain precipitation data of high

density for simulation, relative to large basins. However, the

performances of the hydrologic simulations in this study strongly

suggest the spatial density has no major influence on model

simulations of this study area. Data accuracy and representative-

ness is more important. Additionally, these gave auxiliary proof

that topography is the dominant influence in the study basin.

Conclusions

The objective of the present study was to evaluate the

capabilities of various gridded precipitation datasets (NCEP-

CFSR, APHRODITE, and trend surface) for the area upstream

of TGR, using both monitoring data and a hydrologic model.

Two test basins (Dong and Puli) were selected for data

evaluation. Comparisons between the gridded and monitoring

precipitation data suggest that APHRODITE data can explain the

precipitation more accurately than the other two datasets at

observation stations. For model testing in the Dong River basin

where there is significant elevation variation, the simulation results

suggest that all gridded precipitation data had reduced abilities to

drive SWAT for achieving reasonable results. However, in the Puli

River basin with relatively flat topography, the APHRODITE and

trend surface data can give more accurate results than the NCEP-

CFSR data, and even better than the monitoring data.

The results also prove that the APHRODITE and trend surface

data are more stable and applicable than the NCEP-CFSR data in

the study area. The results also suggest that in the application of

the hydrologic or other models to the TGR using the gridded

precipitation datasets, one must consider topographic effects on

those data.
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