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Abstract

We contribute a novel, ball-histogram approach to DNA-binding propensity prediction of proteins. Unlike state-of-
the-art methods based on constructing an ad-hoc set of features describing physicochemical properties of the
proteins, the ball-histogram technique enables a systematic, Monte-Carlo exploration of the spatial distribution of
amino acids complying with automatically selected properties. This exploration yields a model for the prediction of
DNA binding propensity. We validate our method in prediction experiments, improving on state-of-the-art
accuracies. Moreover, our method also provides interpretable features involving spatial distributions of selected
amino acids.

Introduction
The process of protein-DNA interaction has been an
important subject of recent bioinformatics research,
however, it has not been completely understood yet.
DNA-binding proteins have a vital role in the biological
processing of genetic information like DNA transcription,
replication, maintenance and the regulation of gene
expression. Several computational approaches have
recently been proposed for the prediction of DNA-binding
function from protein structure.
In the early 80’s, when the first three-dimensional

structures of protein-DNA complexes were studied,
Ohlendorf and Matthew [1] noticed that the formation
of protein-DNA complexes is energetically driven by the
electrostatic interaction of asymmetrically distributed
charges on the surface of the proteins complementing
the charges on DNA. Large regions of positive electro-
static potentials on protein surfaces have been suggested
to be a good indication of DNA-binding sites.
Stawiski et al. [2] proposed a methodology for predicting

Nucleic Acid-binding function based on the quantitative

analysis of structural, sequence and evolutionary proper-
ties of positively charged electrostatic surfaces. After defin-
ing the electrostatic patches they found the following
features for discriminating the DNA-binding proteins
from other proteins: secondary structure content, surface
area, hydrogen-bonding potential, surface concavity,
amino acid frequency and composition and sequence con-
servation. They used 12 parameters to train a neural net-
work to predict the DNA-binding propensity of proteins.
Jones et al. [3] analysed residue patches on the surface

of DNA-binding proteins and developed a method of
predicting DNA-binding sites using a single feature of
these surface patches. Surface patches and the DNA-
binding sites were analysed for accessibility, electrostatic
potential, residue propensity, hydrophobicity and residue
conservation. They observed that the DNA-binding sites
were amongst the top 10% of patches with the largest
positive electrostatic scores.
Tsuchiya et al. [4] analysed protein-DNA complexes

by focusing on the shape of the molecular surface of the
protein and DNA, along with the electrostatic potential
on the surface, and constructed a statistical evaluation
function to make predictions of DNA interaction sites
on protein molecular surfaces.
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Ahmad and Sarai [5] trained a neural network based on
the net charge and the electric dipole and quadrupole
moments of the protein. It was found that the magnitudes
of the moments of electric charge distribution in DNA-
binding protein chains differ significantly from those of a
non-binding control data set. It became apparent that the
positively charged residues are often clustered near the
DNA and that the negatively charged residues either form
negatively charged clusters away from the DNA or get
scattered throughout the rest of the protein. The entire
protein has a net dipole moment, because of the topologi-
cal distribution of charges. The resulting electrostatic
force may steer proteins into an orientation favorable for
binding by ensuring that correct side of the protein is
facing DNA.
Bhardwaj et al. [6] examined the sizes of positively

charged patches on the surface of DNA-binding proteins.
They trained a support vector machine classifier using
positive potential surface patches, the protein’s overall
charge and its overall and surface amino acid composition.
In case of overall composition, noticeable differences were
observed between the binding and the non-binding case
with respect to the frequency of Lys and Arg. These are
positively charged amino acids, so their over-representa-
tion in DNA-binding proteins is evident.
A further advancement in DNA binding propensity pre-

diction was presented by Szilágyi and Skolnick [7]. Their
method was based on a logistic regression classifier with
ten variables (physicochemical properties) to predict from
sequence and low-resolution structure of a protein
whether it is DNA-binding. To find features that discrimi-
nate between DNA-binding and non-DNA-binding pro-
teins, they tested a number of properties. The best
combination of parameters resulted in the amino acid
composition, the asymmetry of the spatial distribution of
specific residues and the dipole moment of the protein.
The above approaches rely exclusively on protein

structure data (whether sequential or spatial). To our
knowledge, the predictive accuracy achieved by the lastly
mentioned strategy [7] was only improved by incorpor-
ating an additional source of background knowledge, in
particular, information on evolutionarily conserved
domains. Nimrod et al. [8] presented a random forest
classifier for identifying DNA-binding proteins among
proteins with known 3D structures. First, their method
detects clusters of evolutionarily conserved regions on
the surface of proteins using the PatchFinder algorithm.
Next, a classifier is trained using features like the elec-
trostatic potential, cluster-based amino acid conserva-
tion patterns, the secondary structure content of the
patches and features of the whole protein, including all
the features used by Szilágyi and Skolnick [7].
It is nevertheless important to continue improving

methods that do not exploit evolutionary information.

Such methods are valuable mainly due to their ability to
predict DNA-binding propensity for engineered proteins
for which evolutionary information is not available.
Engineered proteins are highly significant for example in
emerging gene-therapy technologies [9].
In this paper we will be concerned with prediction of

DNA-binding propensity from spatial structure informa-
tion without using evolutionary information. To this end,
we propose the ball-histogram method, which improves
on the state-of-the-art approaches in the following way.
Rather than constructing an ad-hoc set of features
describing the physicochemical properties of the proteins,
we base our approach on a systematic, Monte-Carlo-style
exploration of the spatial distribution of amino-acids
complying to automatically selected properties. For this
purpose we employ so-called ball histograms, which are
capable of capturing joint probabilities of these specified
amino acids occurring in certain distances from each
other. Another positive aspect of our method is that it
provides us with interpretable features involving spatial
distributions of selected amino acids.

Data
DNA-binding proteins are proteins containing DNA-
binding domains. A DNA-binding domain is an inde-
pendently folded protein domain that contains at least
one motif that recognizes double- or single-stranded
DNA. We investigate structural relations within these
proteins following the spatial distributions of certain
amino acids in available DNA-protein complexes.
We decided to work with a positive data set (PD138) of

138 DNA-binding protein sequences in complex with
DNA. It was created using the Nucleic Acid Database by
[7] - it contains a set of DNA-binding proteins in complex
with DNA strands with a maximum pairwise sequence
identity of 35% between any two sequences. Protein struc-
tures have ≤ 3.0Å resolution. An example DNA-binding
protein in complex with DNA is shown in Figure 1.
Rost and Sander constructed a dataset (RS126) for

secondary structure prediction. Ahmad & Sarai [5]
removed the proteins related to DNA binding from it,
thus getting a final dataset of non-DNA-binding pro-
teins. We used this set of non-DNA-binding proteins as
our negative dataset (NB110).
We also used an extended dataset (NB843) by Nimrod

et al. [8]. This dataset contains additional 733 structures
of non-DNA-binding proteins. The additional structures
were gathered using the PISCES server.
Entries in this list include crystal structures with a

resolution better than 3.0Å. The sequence identity
between each pair of sequences is smaller than 25%.
From the structural description of each protein we

extracted the list of all contained amino acids with
information on their type and spatial structure.
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Method
In this section we describe our novel method for predictive
classification of DNA-binding propensity of proteins using
so-called ball histograms. The motivation for the method is
the observation that distributions of certain types of amino
acids differ significantly between DNA-binding and non-
DNA-binding proteins. This suggests that information
about distributions of some amino acids could be used to
construct predictive models able to classify proteins as
binding or non-binding given their spatial structure. We
propose the following approach which is able to capture
fine differences between the distributions. It consists of
four main parts. First, so-called templates are found, which
determine amino acids whose distributions should be cap-
tured by ball histograms. In the second step ball histograms

are constructed for all proteins in a training set. Third, a
transformation method is used to convert these histograms
to a form usable by standard machine learning algorithms.
Finally, a random forest classifier [10] is learned on this
transformed dataset and then it is used for classification.
The reason why we chose the random forest learning algo-
rithm is that it is known to be able to cope with large num-
bers of attributes such as in our case of ball histograms
[11]. We also experimented with the Support Vector
Machine method in the third step, however, it was consis-
tently outperformed by the random forest classifier.

Ball histograms
A template is a list of some Boolean amino acid proper-
ties. A property may, for example, refer to the charge of

Figure 1 Exemplary DNA-binding protein in complex with DNA. Exemplary DNA-binding protein in complex with DNA shown using the
protein viewer software [22]. Secondary structure motifs are shown in green (a-helices), light blue (turns) and pink (coils); the two DNA strands
are shown in blue.
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the amino acid (e.g. Positive), but it may also directly sti-
pulate the amino acid type (e.g. Arginine). An example
of a template is (Arg, Lys, Polar) or (Positive, Negative,
Neutral). A bounding sphere of a protein structure is a
sphere with center located in the geometric center of
the protein structure and with radius equal to the dis-
tance from the center to the farthest amino acid of the
protein plus the diameter of the sampling ball which is
a parameter of the method. We say that an amino acid
falls within a sampling ball if the alpha-carbon of that
amino acid is contained in the sampling ball in the geo-
metric sense.
Given a protein structure, a template τ = (f1, ..., fk), a

sampling-ball radius R and a bounding sphere S, a ball
histogram is defined as:

Hτ (t1, . . . , tk) =

∫ ∫ ∫
(x,y,z)∈S IT,R(x, y, z, t1, . . . , tk)dxdydz∑

(t′1,..,t′k)

∫ ∫ ∫
(x,y,z)∈S IT,R(x, y, z, t′1, . . . , t′k)dxdydz

(1)

where IT, R(x, y, z, t1, ..., tk) is an indicator function
which we will define in turn. The expression∑

(t′1,...,t′k)

∫ ∫ ∫
(x,y,z)∈S

IT,R(x, y, z, t′1, . . . , t′k)dxdydz is

meant as a normalization factor - it ensures that∑
(t1,...,tk)HT(t1, . . . , tk) = 1 . In order to define the indi-

cator function IT, R we first need to define an auxiliary
indicator function I′T,R(x, y, z, t1, . . . , tk)

I′T,R(x, y, z, t1, . . . , tk) =

⎧⎪⎨
⎪⎩

1
if there are exactly ti amino acids complying with property fi
(1 ≤ i ≤ k) in the sampling ball with center x, y, z and radius R,

0 otherwise.

Notice that I′T,R(x, y, z, 0, . . . , 0) does not make any
distinction between a sampling ball that contains no
amino acid at all and a sampling ball that contains some
amino acids of which none complies with the para-
meters in the template T. Therefore if we used I′T,R in
place of IT, R the histograms would be affected by the
amount of empty space in the bounding spheres. Thus,
for example, there might be a big difference between
histograms of otherwise similar proteins where one
would be oblong and the other one would be more
curved. In order to get rid of this unwanted dependence
of the indicator function IT;R on proportion of empty
space in sampling spheres we define IT, R in such a way
that it ignores the empty space. For (t1,..., tk) ≠ 0 we set

IT,R(x, y, z, t1, . . . , tk) = I′T,R(x, y, z, t1, . . . , tk).

In the cases when (t1, ..., tk) = 0 we set IT, R(x, y, z, t1,

..., tk) = 1 if and only if I′T,R(x, y, z, t1, . . . , tk) = 1 and if
the sampling ball with radius R at (x, y, z) contains at
least one amino acid.
Ball histograms capture the joint probability that a

randomly picked sampling ball (See Figure 2) containing
at least one amino acid will contain exactly t1 amino
acids complying with property f1, t2 amino acids

Figure 2 Illustration of the Ball Histogram Method. Amino acids are shown as small balls in sequence forming an amino acid chain. A
sampling ball is shown in violet. Some of the amino acids which comply with properties of an example template are highlighted inside the
sampling ball area. They have different colors according to their type.
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complying with property f2 etc. They are invariant to
rotation and translation of protein structures which is
an important property for classification. Also note that
the histograms would not change if we increased the
size of the bounding sphere.
The indicator function IT, R makes crisp distinction

between the case where an amino acid falls within a
sampling ball on one hand, and the case where it falls
out of it, on the other hand. This could be changed
towards capturing a more complex case by replacing the
value 1 by the fraction of the amino acid that falls
within the sampling ball, however, for simplicity we will
not consider this case in this paper.

Ball-histogram construction
Computing the integral in Equation 1 precisely is infea-
sible therefore we decided to use a Monte-Carlo
method. The method starts by finding the bounding
sphere. First, the geometric center C of all amino acids
of a given protein P is computed (each amino acid is
represented by coordinates of its alpha-carbon). The
radius RS of the sampling sphere for the protein struc-
ture P is then computed as

RS = max
Res∈P

(distance(Res, C)) + R

where R is a given sampling-ball radius. After that the
method collects a pre-defined number of samples from
the bounding sphere. For each sampling ball the algo-
rithm counts the number of amino acids in it, which
comply with the particular properties contained in a
given template and increments a corresponding bin in
the histogram. In the end, the histogram is normalized.
Example 1. Let us illustrate the process of histogram

construction. Consider the template (Arg, Lys) and
assume we already have a bounding sphere. The algo-
rithm starts by placing a sampling ball randomly inside
the bounding sphere. Assume the first such sampling ball
contained the following amino acids: 2 Arginins and 1
Leucine therefore we increment (by 1) the histogram’s
bin associated with vector (2, 0). Then, in the second
sampling ball, we get 1 Histidine and 1 Aspartic acid, so
we increment the bin associated with vector (0, 0). We
continue in this process until we have gathered a suffi-
cient number of samples. In the end we normalize the
histogram. Examples of such histograms are shown in
Figure 3 and 4.

Predictive classification using ball histograms
In the preceding sections we have explained how to con-
struct ball-histograms but we have not explained how we
can use them for predictive classification. One possible
approach would be to define a metric on the space of
normalized histograms and then use either a nearest

neighbour classifier or a nearest-centroid classifier. Since
our preliminary experiments with these classifiers did not
give us satisfying predictive accuracies, we decided to fol-
low a different approach inspired by a method from rela-
tional learning known as propositionalization [12] which
is a method for transferring complicated relational
descriptions to attribute-value representations.
The transformation method is quite straightforward. It

looks at all histograms generated from the protein struc-
tures in a training set and creates a numerical attribute
for each vector of property occurrences which is non-
zero at least in one of the histograms. After that an
attribute vector is created for each training example
using the collected attributes. The values of the entries
of the attribute-vectors then correspond to heights of
the bins in the respective histograms. After this transfor-
mation a random forest classifier is learned on the attri-
bute-value representation. This random forest classifier
is then used for the predictive classification.
In practice, there is a need to estimate the optimal

sampling-ball radius. This can be done by creating sev-
eral sets of histograms and their respective attribute-
value representations corresponding to different radii
and then selecting the optimal parameters using an
internal cross-validation procedure.

Construction of templates
A question that we left unanswered so far in the
description of our method is how to construct appropri-
ate templates, which would allow us to accurately pre-
dict DNA-binding propensity. It is obvious that an all-
inclusive strategy where the template would simply list
all possible properties is infeasible. A template with n
properties will generate training samples with a number
of attributes d that is exponential in n. Furthermore,
machine learning theory [13] indicates that the number
of training samples needed to preserve accurate classifi-
cation grows exponentially in d. In effect, the requested
number of training samples grows doubly-exponentially
with the size of the template. It is thus crucial that the
template consists of only a small number of relevant
properties. On the other hand, omitting some amino
acids completely might be a problem as well. A possible
solution is to use more templates of bounded size
instead of one big template, because the number of
attributes d grows only linearly with the number of
templates.
One possibility could be to use templates with proper-

ties corresponding to amino acid types believed to play
an important role in the DNA-binding process accord-
ing to literature. This could mean, for example, using
the four charged amino acids as properties in a template
- Arg, Lys, Asp, Glu, which are known to often interact
with the negatively charged backbone as well as with
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the bases of the DNA [14-16] or other amino acids
identified as important, e.g. the eight amino acids used
in [7]. We performed such experiments in [17].
Here we advance the strategy by developing an auto-

mated method for template construction. The basic idea
of the method is to find templates which maximize dis-
tance between average histograms from the two classes
(DNA-binding and non-DNA-binding proteins). Intui-
tively, such templates should allow us to construct clas-
sifiers with good discriminative ability. We construct the
templates in a heuristic way using a variant of best-first
search algorithm (Algorithm 1 - Template Search) to
maximize the distance between the average histograms
from the two classes. In this paper we use the Bhatta-
charyya distance [18] which is defined as

DB(ha, hb) = − ln

(∑
x∈X

√
ha(x) · hb(x)

)
,

where ha and hb are histograms and X is their sup-
port-set. Further different distances could be used as
well.
The following example shows that the templates can-

not be constructed greedily. Although we do not directly
prove hardness of the template-search problem here, the
next example gives an intuition why the problem is
probably hard.
Example 2. We assume that we have histograms for

DNA-binding proteins and non-DNA-binding proteins as
shown below and we want to find an optimal template
with length 2. It can be easily verified that greedy search

Figure 3 Example ball histogram constructed for protein 1A31. Example ball histogram with template (Arg, Lys) and sampling-ball radius
R = 12 Åconstructed for proteins 1A31 from PD138.
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starting with an empty template would construct either
the template (Arg, Gly) or (Lys, Gly), but not the opti-
mal template (Arg, Lys).
Consider now the case where the search algorithm

starts from the empty template. In the first step, the tem-
plate (Gly) is constructed because it maximizes distance
between the histograms for the two classes.

Both (Arg) and (Lys) would give rise to identical histo-
grams for the two classes. In the next step, Arg or Lys is
added to this template. However, the resulting template
is clearly not optimal as can be checked by routine cal-
culation of the Bhattacharyya distance which is finite for
the discovered sub-optimal template but which would be
infinite for the optimal template (Arg, Lys).

Figure 4 Example ball histogram constructed for protein 1A3Q. Example ball histogram with template (Arg, Lys) and sampling-ball radius R
= 12 Åconstructed for proteins 1A3Q from PD138.

Table 1 AUCs estimated by 10-fold cross-validation.

Classifier PD138/
NB110

PD138/
NB843

Ball Histograms Random Forest 0.94 ± 0.05 0.87 ± 0.04

SVM 0.92 ± 0.04 0.83 ± 0.03

Logistic
Regression

0.92 ± 0.04 0.84 ± 0.04

Szilágyi and Skolnick
[7]

Random Forest 0.90 ± 0.05 0.82 ± 0.04

SVM 0.92 ± 0.05 0.83 ± 0.05

Table 2 Accuracies estimated by 10-fold cross-validation.

Classifier PD138/
NB110

PD138/
NB843

Ball Histograms Random Forest 0.87 ± 0.08 0.88 ± 0.01

SVM 0.84 ± 0.07 0.87 ± 0.01

Logistic
Regression

0.81 ± 0.05 0.87 ± 0.01

Szilágyi and Skolnick
[7]

Random Forest 0.82 ± 0.07 0.87 ± 0.02

SVM 0.81 ± 0.05 0.87 ± 0.01
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Similarly, if we wanted to construct an optimal tem-
plate of length 1 and if we started with the maximal
template (Arg, Lys, Gly) and then tried to iteratively
remove its elements while greedily maximizing the dis-
tance between the histograms of the two classes then we
would end up with a sub-optimal template as before. In
the first step, Gly would be removed and we would get
the optimal template of size 2 (Arg, Lys). However, in
this case we want to construct a template of length 1.
Therefore, in the next step we would create either the
template (Arg) or (Lys) but not the optimal one (Gly)
(note that the distances for templates (Arg) or (Lys)
are 0).
In order to avoid repeated construction of histograms

from the whole datasets, we construct a histogram cor-
responding to the largest possible template (containing
all amino acid properties), then, during the best-first
search, we construct histograms for the other templates
by marginalising this largest histogram. While searching
for a single template using best-first search is quite
straightforward, searching for several templates is more
complicated. This is because we need to find not only a
set of templates making the distances between the aver-
age histograms as large as possible, but also these tem-
plates should be sufficiently diverse. There are several
possible ways to enforce diversity in the template set,
and we decided to follow a fast heuristic approach. Dur-
ing the template search we penalize all candidate tem-
plates which are subsets of some templates already
discovered in previous runs of the procedure.
Algorithm 1 Template Search
function TemplateSearch()
Templates ¬ {}
for i = 1 to NumberO fTemplates do

i ¬ i + 1
Templates ¬ Templates ∪ BestFirstSearch
(Templates)

end for
function BestFirstSearch(Templates, l)
E+ - set of positive examples (DNA-binding Proteins)
E- - set of negative examples (non-DNA-binding

Proteins)
Open ¬ {()}
Open ¬ Open ∪ {ti ∩ tj |ti, tj Templates}
Closed ¬∅
BestTemplate ¬ ()
Scores ¬ HeuristicScore(Open)
while Open ≠ ∅ do

Template ¬ Remove best template from Open
according to Scores

if (Dx(Template, E+, E-) > Dx(BestTemplate, E+, E-))
∧ (Template ∉ Templates) then

BestTemplate ¬ Template
end if
for T Î Expand(Template) do

if T ∉ Closed then
Closed ¬ Closed ∪ {T}
Open ¬ Open ∪ {T}
if ∃ T’ Î Templates: T ⊆ T’ then
Score ¬ l · HeuristicScore(T)
else
Score ¬ HeuristicScore(T)
end if
Scores ¬ Scores ∪ Score

end if
end for

end while
BestFirstSearch(Templates). In order to direct the

search early to the most promising regions of the
search-space, we first initialize the set Open with all
pairwise intersections of the already discovered tem-
plates. Intuitively, sub-templates which appear in more
templates constitute a kind of a core shared by the most
informative templates. This, together with penalization
of redundant templates, helps the algorithm visit the
most promising parts of the search space.

Results
In this section we present experiments performed on
real-life data described in section Data. We constructed
histograms with automatically discovered templates and
three different sampling-ball radii: 4, 8 and 12 Å. We
trained random forest classifiers selecting optimal sam-
pling-ball radii and optimal numbers of templates (1, 3,
5 or 7 templates) for each fold by internal cross-valida-
tion. The estimated AUCs (area under curve) are shown
in Table 1 and the estimated accuracies are shown in
Table 2. We performed two sets of experiments. In the

Table 3 DNA-binding proteins:

Lys Gly Gly

Arg 0.5 0 0.5 Arg 0.4 0.1 0.5 Lys 0.4 0.1 0.5

0 0.5 0.5 0.2 0.3 0.5 0.2 0.3 0.5

0.5 0.5 0.6 0.4 0.6 0.4

Table 4 Non-DNA-binding proteins:

Lys Gly Gly

Arg 0 0.5 0.5 Arg 0.1 0.4 0.5 Lys 0.1 0.4 0.5

0.5 0 0.5 0.3 0.2 0.5 0.3 0.2 0.5

0.5 0.5 0.4 0.6 0.4 0.6
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first experiment we tested the ball histogram method
with settings as described above (see Ball Histograms in
Tables 1 and 2). In the second experiment we used only
the coarse-grained features of [7]. For both of these
experiments we trained two types of classifiers: random
forests [10] and linear support vector machines [19] in

order to determine the extent to which the choice of
classifiers matters. In addition, we learnt a logistic
regression classifier [20] for the experiment with the
coarse-grained features from [7] since it was the classifier
used originally by the authors of [7]. (We also tried to
learn logistic regression classifiers for the ball-histogram

Figure 5 Discovered pattern example. Protein 1R8E containing the discovered pattern (Arg, Cys, Gly) = (1, 0, 0) shown using the protein
viewer software [22]. Amino acid assumed by the pattern is indicated.
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method but logistic regression turned out to be too slow
with the high number of attributes generated by the ball-
histogram method.) We can see from the experimental
results that the choice of the classifier has low influence
on the performance of the Szilágyi’s and Skolnick’s
method whereas it has slightly bigger impact on the ball-
histogram method. A possible explanation is that random
forest classifier is able to cope with large numbers of
attributes [11] such as in our ball histogram method.
We report both AUC and accuracy for the two combi-

nations of datasets (PD138/NB110 and PD138/NB843).
In case of datasets PD138 and NB110, the ball-histo-
gram method achieved the best results in terms of accu-
racy and AUC. The best results for ball-histogram
methods were obtained by random forest learning algo-
rithm. In case of datasets PD138 and NB843 accuracy is
not very meaningful measure of classification quality
because the dataset is highly class-skewed. However, if
we have a look at the AUC value, we can see that again
the ball-histogram method performs best.
In order to see whether the ball-histogram method,

which uses only structural information, could come
close to the results of methods which exploit also infor-
mation about the evolutionary conservation of regions
on protein surfaces, we compared our results with the
results of Nimrod et al. [8]. The AUC 0.96 and accuracy
0.90 reported in [8] for the datasets PD138 and NB110
differs only slightly (0.02, 0.03 respectively) from our
best results. The AUC 0.90 obtained for the datasets
PD138 and NB843 differs by 0.03 from our best results.
These results are encouraging given how important evo-
lutionary information turned out to be according to
experiments from [8]. When removing evolutionary
information, their classifier’s misclassification error
increased by 0.035. Even without this information their
classifier used significantly more information than our
method (e.g. secondary structure information).
In addition to improved accuracy, our method provides

us with interpretable features involving distributions of
selected amino acids in protein structures. The three
most informative automatically selected templates are:
(Arg, Cys, Gly), (Cys, Gly, Positive), (Cys, Polar, Positive).
It is well-known that positively charged amino acids
(under normal circumstances Arg and Lys are positively
charged, Glu and Asp are charged negatively) are critical
for DNA-binding function ([14-16]). This is probably the
reason why the property Positive is contained in two out
of three most informative templates. In the third one we
have the explicitly listed positively charged amino acid -
Arginine. The remaining amino acid properties listed in
the three most informative templates also fit well with
the results of Sathyapriya et al. [21], where protein-DNA
interactions were studied through structure network ana-
lysis. According to their results the polar, non-negative

amino acids have high DNA-binding propensity which
supports meaningfulness of the template (Cys, Polar,
Positive). Furthermore, they also show that Cysteine is
one of the amino acids with the lowest DNA-binding
propensity. This again fits well with the discovered tem-
plates, since Cysteine appears in all of them.
Each template gives rise to a set of features which cor-

respond to individual bins in the respective multi-
dimensional histogram. It is therefore interesting to
evaluate also the particular features from the point of
view of predictive information which they carry. We
evaluated the features corresponding to the automati-
cally selected templates using c2-criterion. The most
informative feature according to the c2-criterion
assumed presence of one arginine, no cysteine and no
glycine in a ball with radius 8 Å. Given a protein struc-
ture, each feature captures the fraction of sampling
balls, which contain the specified numbers of amino
acids complying with given properties. The next two
most informative features assumed presence of two,
respectively three positively charged amino acids, no
cysteine and no glycine. We show an example occur-
rence of the first feature in a DNA-binding protein with
the highlighted amino acid in Figure 5. All the three
most informative features correspond to the above-men-
tioned observations from [21].

Conclusions
We improved on state-of-the-art accuracies in the predic-
tion of DNA-binding propensity of proteins from structure
data through an innovative ball histogram method. The
method is based on systematic exploration of the distribu-
tion of automatically-selected amino acid properties in
protein structures, yielding a predictive model based on
features amenable to direct interpretation.
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